Геометрия как найти длину хорды

Формула длины хорды окружности


Хорда – отрезок соединяющий любые две точки окружности. Диаметр окружности, самая большая хорда.

Найти длину хорды окружности

L – хорда

R – радиус окружности

O – центр окружности

α – центральный угол

Формула длины хорды, (L):

Найти длину хорды окружности, формула

Калькулятор для расчета длины хорды окружности :

Дополнительные формулы для окружности:

Подробности

Автор: Administrator

Опубликовано: 16 октября 2011

Обновлено: 13 августа 2021

Как посчитать хорду окружности

Онлайн калькулятор

Хорда круга – отрезок соединяющий две точки, лежащие на окружности.

Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)

Как посчитать длину хорды (градусы)

Чему равна длина хорды окружности если её радиус ,
а

Как посчитать длину хорды (радианы)

Чему равна длина хорды окружности если её радиус ,
а

Теория

Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?

Формула

Пример

Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.

Формула длины хорды окружности

Хорда – отрезок соединяющий любые две точки окружности. Диаметр окружности, самая большая хорда.

L – хорда

R – радиус окружности

O – центр окружности

α – центральный угол

Формула длины хорды, ( L ):

Калькулятор для расчета длины хорды окружности :

Дополнительные формулы для окружности:

Хорда окружности – определение, свойства, теорема

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

[spoiler title=”источники:”]

http://www-formula.ru/circle-chord-l

http://nauka.club/matematika/geometriya/khorda-okruzhnosti.html

[/spoiler]

У этого термина существуют и другие значения, см. Хорда.

1 — секущая, 2 — хорда AB (отмечена красным цветом), 3 — сегмент (отмечен зелёным цветом), 4 — дуга

Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).

Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда окружности.

Свойства хорд окружности[править | править код]

Хорда и расстояние до центра окружности[править | править код]

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны.
  • Если хорды равны, то расстояния от центра окружности до этих хорд равны.
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
  • Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
  • Наибольшая возможная хорда является диаметром.
  • Наименьшая возможная хорда является точкой.
  • Если хорда проходит через центр окружности, то эта хорда является диаметром.
  • Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
  • Серединный перпендикуляр к хорде проходит через центр окружности.

Хорда и диаметр[править | править код]

  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.

Хорда и радиус[править | править код]

  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
  • Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда и вписанный угол[править | править код]

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Хорда и центральный угол[править | править код]

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Хорда и дуга[править | править код]

  • Если хорды стягивают равные дуги, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные дуги.
  • Из дуг, меньших полуокружности, бóльшая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
  • Из дуг, меньших полуокружности, бóльшая хорда стягивает бóльшую дугу, меньшая хорда стягивает меньшую дугу.
  • Из дуг, бóльших полуокружности, меньшая дуга стягивается большей хордой, бóльшая дуга стягивается меньшей хордой.
  • Из дуг, бóльших полуокружности, бóльшая хорда стягивает меньшую дугу, меньшая хорда стягивает бóльшую дугу.
  • Хорда, стягивающая полуокружность, является диаметром.
  • Если хорды параллельны, то дуги, заключённые между этими хордами (не путать с дугами, стягиваемыми хордами), равны.

Другие свойства[править | править код]

Рис. 1. {displaystyle AEcdot EB=CEcdot ED}

  • При пересечении двух хорд AB и CD в точке E получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рис. 1): {displaystyle AEcdot EB=CEcdot ED}.
  • Если хорда делится пополам какой-либо точкой, то её длина самая маленькая по сравнению с длинами проведённых через эту точку хорд.

Свойства хорд эллипса[править | править код]

Пазлинка и перо

Этот раздел статьи ещё не написан.

Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017)

Основные формулы[править | править код]

  • Длина хорды равна {displaystyle l=2rsin {frac {alpha }{2}}=Dsin {frac {alpha }{2}}}, где r — радиус окружности, D – диаметр окружности, alpha — центральный угол, опирающийся на данную хорду (рис. 2).
  • Формула, напрямую выводящаяся из теоремы Пифагора (рис. 3): {displaystyle left({frac {l}{2}}right)^{2}+d^{2}=r^{2}}, где l — длина хорды, r — радиус окружности, d — расстояние от центра окружности до хорды.
  • Если известны все четыре длины отрезков двух пересекающихся хорд, например, {displaystyle {overline {a}}=AE,;,{overline {A}}=EB,;,{overline {b}}=CE,;,{overline {B}}=ED} (см. Рис.1), то радиус окружности определяется формулой:
{displaystyle r={sqrt {{overline {A}}cdot {overline {a}}+{frac {({overline {A}}-{overline {a}})^{2}+({overline {B}}-{overline {b}})^{2}-2,({overline {A}}-{overline {a}})({overline {B}}-{overline {b}})cos {t}}{4,sin ^{2}{t}}}}}}
при ограничениях: {displaystyle {overline {A}}cdot {overline {a}}={overline {B}}cdot {overline {b}},;quad {overline {A}}geq {overline {a}},;quad {overline {B}}geq {overline {b}}}.
Здесь t, — угол между отрезками overline A и {displaystyle {overline {B}},,} (или между отрезками {displaystyle {overline {a}}} и {displaystyle {overline {b}}}) .
В случае, когда хорды взаимно перпендикулярны,

{displaystyle r={frac {1}{2}}{sqrt {{overline {A}}^{2}+{overline {a}}^{2}+{overline {B}}^{2}+{overline {b}}^{2}}}}

Связанные понятия[править | править код]

  • Касательная
  • Секущая
  • Диаметр
  • Дуга окружности

Ссылки[править | править код]

  • Справочник. Окружности.

Как посчитать хорду окружности

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать хорду окружности

Чтобы посчитать хорду круга (окружности) просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

хорда

Хорда круга – отрезок соединяющий две точки, лежащие на окружности.

Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)

Как посчитать длину хорды (градусы)

Чему равна длина хорды окружности если её радиус ,
а

угол α °

Ответ:

0

Как посчитать длину хорды (радианы)

Чему равна длина хорды окружности если её радиус ,
а

угол α рад

Ответ:

0

Теория

Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?

Формула

l = 2r⋅sinα/2

Пример

Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.

См. также

Хорда окружности

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Хорды окружности примеры

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

Свойства хорды окружности

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

 теорема о пересекающихся хордах

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Длина хорды окружности

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

 свойства хорды в окружности

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

 хорда

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Хорда это в геометрии

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

Хорды окружности задачи

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

Добавить комментарий