Гравитация как ее нашли

Люди с древности задумывались о том, какая сила притягивает предметы к Земле. Явление гравитации пытались объяснить такие великие умы, как Ньютон и Эйнштейн, но до сих пор оно остается не до конца изученным

Гравитация (от лат. gravis, «тяжелый») — это сила, которая притягивает два тела друг к другу. Все, что имеет материю, то есть все, к чему можно прикоснуться, имеет также гравитационное притяжение. Гравитация является одной из четырех фундаментальных сил во Вселенной наряду с электромагнетизмом, а также сильными и слабыми ядерными взаимодействиями. Хотя это самая слабая сила, она наиболее видима. Из-за работы гравитационной силы люди могут ходить по Земле, а планеты — вращаться по орбите вокруг Солнца.

Степень гравитации любого объекта пропорциональна его массе. Таким образом, объекты с большей массой имеют большую гравитацию. Поскольку Земля является самым крупным и ближайшим объектом вокруг, то все предметы и объекты притягивается к ней. Например, яблоки падают на землю, а не притягиваются, к примеру, к голове человека.

Луна притягивается к Земле как к объекту с большей массой

Луна притягивается к Земле как к объекту с большей массой

(Фото: Shutterstock)

Расстояние также влияет на гравитацию. Чем дальше объект, тем гравитационное притяжение слабее.

Древние ученые, пытавшиеся описать мир, придумали собственные объяснения того, почему предметы падают на землю. Древнегреческий философ Аристотель утверждал, что объекты имеют естественную тенденцию двигаться к центру Вселенной, который, по его мнению, находился в середине Земли.

Однако поляк Николай Коперник в XVI веке понял, что траектории планет на небе определяются положением Солнца, которое и является центром Солнечной системы. Век спустя британский математик и физик Исаак Ньютон расширил идеи Коперника и пришел к выводу, что, поскольку Солнце притягивает планеты, все объекты притягиваются друг к другу.

В наши дни действующей теорией, описывающей гравитацию, является общая теория относительности Эйнштейна.

Классическая теория тяготения Ньютона

Английский физик Исаак Ньютон рассказывал, что идея о всемирном тяготении пришла ему в голову на прогулке. Он шел по яблоневому саду в поместье своих родителей и вдруг увидел Луну в дневном небе, а затем — как с ветки оторвалось и упало на землю яблоко. Ньютон к тому моменту уже работал над законами движения и понимал, что яблоко упало под воздействием гравитационного поля Земли. Он также знал, что Луна не занимает статичную позицию в небе, а вращается по орбите вокруг Земли, то есть, на нее воздействует какая-то сила, которая не дает спутнику улететь в космос. Физик понял, что, возможно, на яблоко и Луну действует одна и та же сила.

Предшественники Ньютона рассуждали иначе. Итальянский физик Галилео Галилей считал, что на Земле действует природное притяжение. Немецкий астроном Иоганн Кеплер полагал, что в небесных сферах действуют совсем иные законы движения, чем на Земле. Ньютон же объединил эти два типа гравитации в своем сознании.

Закон всемирного тяготения Ньютона, сформулированный им в 1687 году, гласит, что между любой парой тел во Вселенной действует сила взаимного притяжения. Он выражен математическим уравнением: если M и m — массы двух тел, а r — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна F = GMm/r², где G — гравитационная постоянная, равная силе, с которой действуют друг на друга тела с массами в 1 кг каждое, находясь на расстоянии в 1 метр друг от друга. Уравнение гласит, что сила (F) пропорциональна массам двух объектов, разделенным на квадрат расстояния между ними. Из него следует, что чем массивнее объекты, тем больше сила притяжения между ними, но чем дальше они друг от друга, тем слабее притяжение.

Закон гравитации Ньютона

Закон гравитации Ньютона

(Фото: praxilabs.com)

Действие закона распространяется на все без исключения физические материальные тела во Вселенной. Сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. На каждого человека действует сила земного притяжения, которая ощущается как вес.

Закон всемирного тяготения Ньютона говорит, что не только Земля притягивает яблоко, но и яблоко притягивает Землю. Но огромная масса Земли означает, что требуется гораздо больше силы, чтобы сдвинуть ее на ощутимую величину, поэтому яблоко падает, а Земля остается практически неподвижной. То же самое верно и в более широком контексте. Каждый объект во Вселенной притягивает любой другой объект, и чем он ближе и массивнее, тем больше его гравитационная сила.

По Ньютону, сила притяжения действует на любых расстояниях и мгновенно. Однако самая большая скорость в мире — скорость света, а для преодоления больших расстояний свету нужно не мгновение, а несколько секунд и иногда даже лет.

Теория гравитации Эйнштейна

В 1798 году британский физик Генри Кавендиш провел один из первых в мире высокоточных экспериментов, чтобы попытаться точно определить значение G, гравитационной постоянной. Он построил так называемые крутильные весы, прикрепив два маленьких свинцовых шарика к концам балки, подвешенной горизонтально на тонкой проволоке. Рядом с каждым из шаров физик поместил большой сферический свинцовый груз. Маленькие свинцовые шарики гравитационно притягивались к тяжелым свинцовым гирям, в результате чего проволока слегка скручивалась. Это явление позволило ему рассчитать величину G.

Примечательно, что оценка Кавендиша для G всего на 1% отличалась от принятого на сегодняшний день значения 6,674 × 10^-11 м^3/кг^1 * с^2. Чтобы получить точное значение, ученые должны разработать невероятно чувствительное оборудование.

Немецко-американский физик Альберт Эйнштейн произвел следующую революцию в нашем понимании гравитации. Его общая теория относительности показала, что гравитация возникает из-за искривления пространства-времени, а это означает, что даже лучи света, которые должны следовать этой кривизне, преломляются чрезвычайно массивными объектами. В рамках его теории гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы и энергии.

Теории Эйнштейна использовались для предположений о существовании черных дыр — небесных объектов с такой большой массой, что даже свет не может выйти из-под их поверхности. Вблизи черной дыры закон всемирного тяготения Ньютона уже не может точно описать, как движутся объекты.

Теория, которую Эйнштейн опубликовал в 1915 году, расширила его специальную теорию относительности, которую ученый разработал за десятилетие до этого. Специальная теория относительности утверждала, что пространство и время неразрывно связаны, но эта теория не признавала существование гравитации.

В своей специальной теории относительности Эйнштейн определил, что законы физики одинаковы для всех наблюдателей, не движущихся с ускорением, и показал, что скорость света в вакууме одинакова независимо от скорости, с которой движется наблюдатель. В результате он обнаружил, что пространство и время переплетаются, и события, происходящие в одно и то же время для одного наблюдателя, могут происходить в разное время для другого.

Разрабатывая уравнения своей общей теории относительности, Эйнштейн понял, что массивные объекты вызывают искажение пространства-времени. Представьте, что вы устанавливаете большой объект в центре батута. Объект вдавливался в ткань, вызывая появление ямочек. Если затем попытаться катить шарик по краю батута, он будет двигаться по спирали внутрь к этому объекту.

Вращение тяжелого объекта, такого как Земля, должно скручивать и искажать пространство-время вокруг него. В 2004 году NASA запустило гравитационный зонд Gravity Probe B. По данным агентства, оси точно откалиброванных гироскопов спутника с течением времени очень незначительно дрейфовали, что соответствует теории Эйнштейна.

Эйнштейн предсказал, что такие события, как столкновение двух черных дыр, создают рябь в пространстве-времени, известную как гравитационные волны. А в 2016 году Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) объявила, что впервые определила такой сигнал. Гравитационная волна была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца. После этого они слились в одну большую черную дыру. Это произошло, предположительно, 1,3 млрд лет назад.

Гравитационные волны, создаваемые двумя сталкивающимися черными дырами

Гравитационные волны, создаваемые двумя сталкивающимися черными дырами

(Фото: Р. Хёрт / Caltech-JPL)

С тех пор LIGO и ее европейский аналог Virgo обнаружили в общей сложности 50 гравитационно-волновых событий.

Чему равна сила гравитации

Гравитационное поле Земли — это поле силы тяжести, которое образуется из-за силы тяготения Земли и центробежной силы, вызванной ее суточным вращением.

Сила тяжести на поверхности Земли варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах. В приблизительных расчетах значение обычно принимают равным 9,81; 9,8 или 10 м/с². Однако оно учитывает только силу тяжести и не учитывает центробежную силу, возникающую за счет вращения Земли. При подъеме тела над поверхностью Земли значение уменьшается.

NASA в рамках проекта GRACE создало визуализацию гравитационных аномалий на Земле. Красным цветом показаны области, где гравитация сильнее, а синим — где она слабее стандартных значений

NASA в рамках проекта GRACE создало визуализацию гравитационных аномалий на Земле. Красным цветом показаны области, где гравитация сильнее, а синим — где она слабее стандартных значений

(Фото: NASA)

Французские ученые утверждают, что различие в гравитационной постоянной в различных регионах нашей планеты зависит от величины напряженности магнитного поля Земли. Они предположили, что такое влияние может объясняться наличием дополнительных и скрытых для непосредственного наблюдения измерений пространства. Ученые подсчитали, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле. Таким образом, своих максимальных значений оно достигает в районах северного и южного магнитных полюсов. Они не совпадают с географическими полюсами. Так, северный магнитный полюс располагается в границах нынешней канадской Арктики, а южный лежит на краю Антарктиды.

Если принимать значение гравитации на Земле за единицу, то на Солнце оно будет равно 27,9, на Меркурии — 0,37, на Венере — 0,9, на Луне — 0,16, на Марсе — 0,37, на Юпитере — 2,6. Таким образом, если человек, который на Земле весит 60 кг, взвесится на Юпитере, то весы покажут 142 кг.

Космонавты на орбите также испытывают микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.

Современное представление о гравитации

Научные исследования в области гравитации продолжаются. Теория относительности Эйнштейна объясняет некоторые аномалии в ньютоновской гравитации; однако открытия в атомной, ядерной физике и физике элементарных частиц показали, что ее нельзя отнести к взаимодействиям в квантовой физике. Проще говоря, эйнштейновская теория не работает в микромире. В связи с этим получило развитие направление «квантовой гравитации» или квантового описания гравитационного взаимодействия.

Однако теория квантовой гравитации пока не построена. Основная трудность заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности — опираются на разные наборы принципов. Первая описывает временну́ю эволюцию физических систем (например, атомов или элементарных частиц) на фоне внешнего пространства-времени. Во второй внешнего пространства-времени вообще нет — оно само является динамической переменной в теории.

В квантовой гравитации развиваются два основных направления — это теория струн и петлевая квантовая гравитация. В первой теории вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны.

Во второй делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону; пространство и время по этой теории состоят из дискретных частей. Это маленькие квантовые ячейки пространства, которые определенным способом соединены друг с другом, так что на малых масштабах времени и длины они создают дискретную структуру пространства, а в больших масштабах плавно переходят в непрерывное гладкое пространство-время. Предполагается, что именно петлевая квантовая гравитация может описать сам процесс взрыва, который предшествовал образованию Вселенной.

Сотрудники Университета штата Пенсильвания с 1980-х годов разрабатывают парадигму, основанную на представлении о петлевой квантовой гравитации. Она описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.

Существующая теория Большого взрыва, как уже говорилось, не объясняет, что было до зарождения Вселенной. Ученые из Пенсильвании придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из распада предыдущей вселенной. Для описания этого состояния они объединили квантовую механику и теорию относительности. Авторы работы утверждают, что смогли описать космическое излучение, которое возникло непосредственно после зарождения Вселенной. Они заявили, что в эйнштейновскую ткань пространства-времени вплетены квантовые нити. Именно это в будущем может позволить объяснить, почему галактики и материя распространены во Вселенной неравномерно.

В 1990-х годах астрономы обнаружили, что расширение Вселенной ускоряется. Это противоречит предсказаниям общей теории относительности, согласно которой гравитация должна замедлять расширение. Чтобы объяснить это явление, космологи начали ссылаться на «темную энергию», силу, которая составляет почти три четверти материи и энергии во Вселенной и поэтому раздвигает ее. Но происхождение темной энергии по сей день остается загадкой. Некоторые исследователи пытаются объяснить ускорение расширения Вселенной без темной энергии, предполагая, что если общая теория относительности неверна, а гравитация ослабевает в космических масштабах. Но до сих пор никто не придумал способ проверить данную теорию.

Существует и такое понятие как антигравитация — предполагаемое противодействие, которое гасит или даже превышает гравитационное притяжение путем отталкивания.

Нынешний подход к антигравитации заключается в том, чтобы освободить объект от действия силы тяжести, чтобы он какое-то время не был подвержен гравитации. Например, полет человека в аэродинамической трубе обеспечивается за счет того, что силе тяжести противодействует поток воздуха.

Полет в аэротрубе

Полет в аэротрубе

(Фото: FlyStation)

Пока вопрос существования антигравитации как самостоятельного явления остается открытым, так как само явление гравитации только изучается.

Как преодолеть гравитацию

Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы объект двигался по орбите вокруг планеты. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость. Чтобы выйти за гра­ни­цу сфе­ры зем­но­го при­тя­же­ния, которая заканчивается на рас­стоя­нии около 930 тыс. км от Зем­ли, ско­рость объ­ек­та долж­на со­став­лять около 16,6 км/с. Это третья космическая скорость.

Если бы не было гравитации

В соответствии с вышеприведенными законами физики на практике такая ситуация невозможна.

Бывший астронавт NASA, физик Джей Баки, отмечает, что наш организм адаптирован к силе земного притяжения. Когда сила тяжести почти исчезает (например, на борту МКС), организм начинает перестраиваться. За время миссий в космосе члены экипажей кораблей теряют костную массу и мышечный тонус, а также чувство равновесия.

Доктор Кевин Фонг добавляет, что количество эритроцитов в организме падает, что приводит к так называемой космической анемии. При этом раны заживают дольше, а также снижается иммунитет, наблюдаются проблемы со сном. Таким образом, в отсутствие гравитации мышцы, вестибулярный аппарат, сердце и кровеносные сосуды развивались бы иначе.

Астроном Карен Мастерс из Портсмутского университета в Великобритании предположил, что в отсутствие гравитации Земля начала бы вращаться с большой угловой скоростью как раскручиваемая над головой веревка. Таким образом, любые объекты на планете улетели бы прямо в космос, как и вода с атмосферой. Только укрепленные строения могли бы какое-то время держаться на поверхности Земли.

В конечном счете отсутствие гравитации разрушит саму планету. Земля развалится на части, которые разлетятся в разные стороны.

Похожий пример, но с Солнцем, приводит канал Discovery News в своем видео.

Что произойдет, если гравитации не станет

Без гравитации не осталось бы ни звезд, ни планет, а Вселенная стала бы смесью рассеянных атомов и молекул.

Возможна ли искусственная гравитация

Когда человек оказывается в космосе, далеко от гравитационных воздействий, испытываемых на поверхности Земли, он переживает невесомость. Хотя все массы Вселенной продолжат притягивать его, они продолжат притягивать и космический корабль, поэтому человек как бы «плавает» внутри него. В связи с этим возникает вопрос — как создать условия искусственной гравитации, при которых человек сможет не летать, а спокойно ходить по космическому кораблю?

Пока нужный эффект можно получить только через ускорение. В случае с космическим кораблем — заставить его вращаться. Тогда можно можно получить центробежную тягу, как на Земле. Но для путешествия в другую звездную систему придется ускорять корабль по пути туда и замедлять по прибытии обратно. Человеческий организм вряд ли сможет перенести такие нагрузки. Например, чтобы разогнаться до «импульсной скорости» как в фильме «Звездный путь», до нескольких процентов от скорости света, то пришлось бы выдержать ускорение в 4000 g (единиц ускорения, вызванного гравитацией) в течение часа. Это в 100 раз больше ускорения, которое предотвращает ток крови в теле человека. В Роскосмосе изучают идею встроенной центрифуги на борту корабля, в которую космонавты смогут периодически заходить, чтобы испытывать силу тяжести и снижать негативные последствия от пребывания в невесомости.

Кадр из фильма «Звездный путь»

Кадр из фильма «Звездный путь»

(Фото: YouTube)

Предполагалось, что искусственная гравитация возможна при отрицательной гравитационной массе, которая, как ожидалось, свойственна антиматерии. Однако Европейская организация по ядерным исследованиям (ЦЕРН) обнаружила, что инертная масса антипротона («зеркального отражения» протона, который отличается знаками всех характеристик физического взаимодействия) совпадает с массой протона. Если бы гравитация действовала на антипротоны как-то иначе, то физики заметили бы разницу. Получается, что действие гравитации на антипротоны и протоны совпадает. Кроме того, в ЦЕРН получили антиводород — первую стабильную форму антиматерии. Но ее изучают, и пока сдвигов в теории антиматерии нет.

Общая теория относительности
Введение[en] · История[en]
Математическая формулировка
Предсказания

Фундаментальные принципы

Специальная теория относительности ·
Пространство-время ·
Принцип эквивалентности ·
Мировая линия · Псевдориманово многообразие

Явления

Задача Кеплера в ОТО · Гравитационное линзирование · Гравитационная волна ·
Увлечение инерциальных систем отсчёта
Расхождение геодезических
Горизонт событий
Гравитационная сингулярность
Чёрная дыра · Белая дыра
Космологическая сингулярность
Гравитомагнетизм

Уравнения

Уравнения Эйнштейна · Космологическая постоянная · Линеаризованная ОТО · Постньютоновский формализм

Развитие теории

Параметризованный постньютоновский формализм · Теории типа Калуцы — Клейна ·
Квантовая гравитация ·
Альтернативные теории

Решения

Точные решения:
Шварцшильда ·
Райсснера — Нордстрёма · Керра ·
Керра — Ньюмена ·
Гёделя · Казнера ·
Фридмана — Леметра — Робертсона — Уокера
Приближённые решения:

Постньютоновский формализм · Ковариантная теория возмущений ·
Численная относительность

Журналы

General Relativity and Gravitation · Classical and Quantum Gravity · Гравитация и космология · Living Reviews in Relativity

Связанные темы

Гравитация · Золотой век ОТО

См. также: Портал:Физика

Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между материальными телами, обладающими массой. В приближении малых по сравнению со скоростью света скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения)[1], определяя ключевые условия равновесия и устойчивости астрономических систем[2]. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр[3]. Гравитационное сжатие является основным источником энергии на поздних стадиях эволюции звёзд (белые карлики, нейтронные звезды, чёрные дыры).[4]

Согласно общей теории относительности, гравитационное взаимодействие является инвариантным относительно С-симметрии, P-симметрии и Т-симметрии[5]

Гравитационное притяжение[править | править код]

Закон всемирного тяготения

Внешние видеофайлы
Чирцов А. С. «Гравитация» // Лекция цикла «Интересно ли жить в мире полном предопределённости?», 2016

В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что гравитационное притяжение между двумя материальными точками массы m_1 и m_2, разделёнными расстоянием r, пропорционально обеим массам и обратно пропорционально квадрату расстояния:

F=G{frac  {m_{1}m_{2}}{r^{2}}}.

Здесь G — гравитационная постоянная, равная примерно 6,67⋅10−11 м³/(кг·с²)[6][7].
Этот закон выполняется в приближении при малых по сравнению со скоростью света v ll c скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R от тела массой M, величина {displaystyle {frac {GM}{c^{2}R}}ll 1}[8]). В общем случае гравитация описывается общей теорией относительности Эйнштейна.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (например, давление света) и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что работа силы притяжения не зависит от вида траектории, а только от начальной и конечной точек. Равносильно: можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не будет изменяться после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение.
В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звёзды и галактики — имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важное воздействие во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV век до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589 год) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687 год) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи[править | править код]

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля[править | править код]

В сильных гравитационных полях (а также при движении в гравитационном поле с релятивистскими скоростями) начинают проявляться эффекты общей теории относительности (ОТО):

  • изменение геометрии пространства-времени;
    • как следствие, отклонение закона тяготения от ньютоновского
    • и в экстремальных случаях — возникновение чёрных дыр;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений;
    • как следствие, появление гравитационных волн;
  • эффекты нелинейности: гравитационные поля имеют свойство «вмешиваться» в интенсивность друг друга, поэтому принцип суперпозиции в сильных полях уже не выполняется.

Гравитационное излучение[править | править код]

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого было подтверждено прямыми наблюдениями в 2015 году[9]. Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, обнаруженные в 1979 году в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением[10].

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n -польного источника пропорциональна (v/c)^{2n + 2}, если мультиполь имеет электрический тип, и (v/c)^{2n + 4} — если мультиполь магнитного типа[11], где v — характерная скорость движения источников в излучающей системе, а c — скорость света в вакууме. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L = frac{1}{5}frac{G}{c^5}leftlangle frac{d^3 Q_{ij}}{dt^3} frac{d^3 Q^{ij}}{dt^3}rightrangle,

где Q_{ij} — тензор квадрупольного момента распределения масс излучающей системы. Константа {displaystyle {frac {G}{c^{5}}}=2{,}76cdot 10^{-53}} (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера[en]), создаются детекторы гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA[en], GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном центре гравитационно-волновых исследований «Дулкын»[12] республики Татарстан.

Тонкие эффекты гравитации[править | править код]

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе — Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[13]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации[править | править код]

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[14] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности[править | править код]

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана[править | править код]

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время, кроме энергии-импульса, также и спина объектов[15]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса: один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением; второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения.
Получаемые поправки к ОТО, в условиях современной Вселенной, настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке[править | править код]

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ (Релятивистская теория гравитации), относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[16].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[17]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации[править | править код]

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Причинная динамическая триангуляция — пространственно-временное многообразие в ней строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Гравитация в микромире[править | править код]

Гравитация в микромире при низких энергиях элементарных частиц на много порядков слабее остальных фундаментальных взаимодействий. Так, отношение силы гравитационного взаимодействия двух покоящихся протонов к силе электростатического взаимодействия равно {displaystyle 10^{-36}}.

Для сравнения закона всемирного тяготения с законом Кулона величину {displaystyle {sqrt {G_{N}}}m} называют гравитационным зарядом. В силу принципа эквивалентности массы и энергии гравитационный заряд равен {displaystyle {sqrt {G_{N}}}{frac {E}{c^{2}}}}. Гравитационное взаимодействие становится равным по силе электромагнитному, когда гравитационный заряд равен электрическому {displaystyle {sqrt {G_{N}}}{frac {E}{c^{2}}}=e}, то есть при энергиях {displaystyle E={frac {ec^{2}}{sqrt {G_{N}}}}=10^{18}} ГэВ, пока недостижимых на ускорителях элементарных частиц.[18][19]

Предполагается, что гравитационное взаимодействие было таким же сильным, как и остальные взаимодействия в первые {displaystyle 10^{-43}} секунд после Большого взрыва[20].

Примечания[править | править код]

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 311.
  5. В. Паули Нарушение зеркальной симметрии в законах атомной физики // Теоретическая физика 20 века. Памяти Вольфганга Паули. — М., ИЛ, 1962. — c. 383
  6. Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013), DOI:10.1103/PhysRevLett.111.101102
  7. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (18 июня 2014).
  8. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  9. LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. — 2016-02-11. — Т. 116, вып. 6. — С. 061102. — doi:10.1103/PhysRevLett.116.061102.
  10. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  11. См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  12. Научный Центр Гравитационно-Волновых Исследований «Дулкын» Архивная копия от 25 сентября 2006 на Wayback Machine
  13. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Дата обращения: 6 мая 2011.
  14. Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  15. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  16. Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  17. С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  18. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. — ISBN 978-5-488-01248-6 — Тираж 5100 экз.
  19. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 145. — Тираж 50 000 экз.
  20. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 136.

Литература[править | править код]

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети XX в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Чёрные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.
  • Halliday, David; Robert Resnick; Kenneth S. Krane. Physics v. 1. — New York: John Wiley & Sons, 2001. — ISBN 978-0-471-32057-9.
  • Serway, Raymond A.; Jewett, John W. Physics for Scientists and Engineers. — 6th. — Brooks/Cole  (англ.) (рус., 2004. — ISBN 978-0-534-40842-8.
  • Tipler, Paul. Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (англ.). — 5th. — W.H. Freeman  (англ.) (рус., 2004. — ISBN 978-0-7167-0809-4.

Ссылки[править | править код]

  • Физическая энциклопедия — «Тяготение»
  • Hazewinkel, Michiel, ed. (2001), Gravitation, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
  • Hazewinkel, Michiel, ed. (2001), Gravitation, theory of, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

Сила, которая удерживает нас на поверхности планеты – сила притяжения – не вызывает, на первый взгляд, никаких вопросов: всю свою жизнь мы живем в поле ее действия. Но что это за сила, откуда она берется, как именной действует и чем переносится – для ответов на эти вопросы стоит углубиться в тему более подробно.

Оглавление

  • 1 Закон всемирного тяготения
    • 1.1 История открытия
    • 1.2 Запись и формулировка закона
    • 1.3 Как «представить» гравитацию?
  • 2
  • 3 Гравитационная постоянная
    • 3.1 Чему равна гравитационная постоянная
    • 3.2 В чем измеряется гравитационная постоянная.
    • 3.3 Эксперимент Генри Кавендиша
  • 4 Гравитационный параметр
  • 5 Ускорение свободного падения
    • 5.1 Чем отличается вес и масса
  • 6 Открытие планет
  • 7 Гравитон — мифическая частица
  • 8 Сравнительная таблица планет Солнечной системы

Закон всемирного тяготения

История открытия

портрет Исаака Ньютона

В поместье родителей Исаака Ньютона был прекрасный яблоневый сад. И молодой английский физик любил размышлять, гуляя по нему.

Когда в очередную такую прогулку, ученый увидел, как падает с ветки яблоко (не ему на голову), то у него возник закономерный вопрос: почему яблоко упало именно вниз? Почему не улетело прочь от Земли? Значит, на яблоко, со стороны планеты действует сила, что его притянула.

Этот эпизод произошел в 1666 году. Исааку Ньютону было 23 года.

Тогда получалось, что Луна также подвержена этой силе, ведь она не «улетает» от Земли и вращается вокруг нее. И все остальные предметы на планете тоже «держаться» только благодаря этой силе притяжения.

И только спустя 21 год после прогулки в яблоневом саду, Исаак Ньютон получил вывод формулы для силы, что удерживает Луну и планеты на орбите, а людей на Земле. Свои труды Исаак Ньютон опубликовал в «Математических началах натуральной философии» в 1687.

оригинальное издание Математических началах натуральной философии

Запись и формулировка закона

Формулировка Ньютона дошла до наших дней и осталась в первозданном виде:

Формулировка закона

Из закона всемирного тяготения следует, что между всеми телами, обладающими массой, есть сила притяжения.

Как «представить» гравитацию?

Для наглядного представления, как же именно работает закон всемирного тяготения, представим пространство как резиновую простыню. Она легко прогибается под тяжелыми предметами, если их на нее положить.

Возьмем большой и тяжелый шар для боулинга и положим его на простыню – это наше Солнце. Вокруг него образовалась «воронка». Если теперь рядом с «Солнцем» рассыпать много маленьких шариков – они все скатятся к нему. Так притягиваются планеты к Солнцу и не улетают в свободный полет в космос. Аналогично и Луна около Земли – спутник попал в «гравитационную воронку» нашей планеты и не может из нее выбраться.

Гравитационная постоянная

В формуле закона всемирного тяготения присутствует постоянный коэффициент G – гравитационная постоянная или гравитационная константа. Это фундаментальная величина в современной классической физике, которая является неизменной. Еще она носит название — постоянная Ньютона, хотя в публикациях ученого она не фигурировала.

Чему равна гравитационная постоянная

Значение этого параметра постоянно уточняется, так как гравитационная константа представляет собой десятичную бесконечную дробь.

Современные установки и компьютеры, позволяют измерить значение очень точно. По последним измерения гравитационная постоянная численно равна

значение G

Гравитационная постоянная показывает с какой силой притягиваются два тела массой по 1 кг на расстоянии 1 метр.

Именно из-за маленького значения гравитационной постоянной, объясняется тот факт, что мы не ощущаем силу притяжения между предметами. Значение силы становится существенной только при больших массах – звезд и планет.

В чем измеряется гравитационная постоянная.

Если расписать размерность силы – ньютон в Международной системе единиц

размерность силы

то закон всемирного тяготения запишется следующим образом

запись закона через размерность

Сокращая килограммы и выражая G, получим

размерность G

Эксперимент Генри Кавендиша

Опыт Генри Кавендиша состоялся в 1798 году.

Экспериментальная установка Кавендиша состояла из двух коромысел. На одном коромысле на концах находились массивные шары, на другом маленькие. Масса шаров отличалась почти в 64 раза, размер в 4 раза. Из-за такой большой разницы масс притяжение шаров должно было быть заметно.

установка Кавендиша

Малые шары были подвешены на длинной нити и по повороту коромысла от первоначального положения, можно было определить силу притяжения шаров.

схема эксперимента

Правда, опыт Кавендиша был нацелен на определение средней плотности Земли, что он и сделал с погрешностью всего лишь в 0,7%. Однако, результаты его эксперимента легли в основу вычисления гравитационной постоянной.

Гравитационный параметр

Вычисление гравитационной постоянной было затруднено, так как все вычисления основывались на движения планет, а сила тяготения, действующая на них со стороны Солнца, зависит от массы самой планеты.

В работах Ньютона так же не было упоминания именно гравитационной константы, зато появился гравитационный параметр.

Даже сейчас значение гравитационной постоянной варьируется, а во времена первых открытии найти его было сложно, как и отдельно массы планет. Поэтому гравитационный параметр был более распространен и вычислен для многих планет Солнечной системы.

формула гравитационного параметра

Ускорение свободного падения

В условиях нашей планеты, мы привыкли оперировать понятие силы тяжести – силы, что действует на объект со стороны планеты.

Сила тяжести выводится из закона всемирного притяжения путем замены величин, не зависящих от массы тела, на одну величину – ускорение свободного падения.

ускорение свободного падения

Таким образом, вместо использования многих значений: массы планеты, ее радиуса и гравитационной константы, можно использовать одно.

Чем отличается вес и масса

Эти два понятия перепутались в повседневной жизни и часто заменяют одно другое. Но вес и масса – это две совершенно разных величины.

Масса – это то, сколько килограммов «есть» в теле. Это его характеристика, которая зависит только от свойств самого объекта.

А вес – это сила, с которой объект давит на опору. На горизонтальных поверхностях он равен силе тяжести, на наклонных чуть меньше, но тоже зависит от силы тяжести.

Именно из-за маленькой силы притяжения, космонавты на Луне могли так высоко подпрыгивать, ведь их вес стал значительно меньше, а их масса осталась неизменной.

Открытие планет

По видимой траектории планет и их отклонений от теоретических траекторий, стало возможно расширение Солнечной системы.

рисунок Солнечной системы

Так, в 1781 году была открыта седьмая планета – Уран. Но, ее предсказанный путь вокруг Солнца не совпадал с наблюдаемым. И был сделан вывод, что на Уран гравитацией действует еще один объект за пределами его орбиты. И в 1846 был обнаружен Нептун.

Но и восьмая планета двигалась не в соответствии с теоретическими выводами. Спустя 100 лет, в 1930 году был открыт Плутон, получивший гордое название Девятой планеты, но лишившийся его из-за небольшой массы.

Гравитон — мифическая частица

Гравитация является одним из фундаментальных взаимодействий в современной физике. Вместе с электромагнитным взаимодействием, гравитация описывает весь наш видимый мир. Но в отличие от электромагнитного (его переносчиком является фотон), гравитация не имеет частицы, которая бы являлась переносчиком этого взаимодействия.

Пытаясь «уравнять» эти взаимодействия, ученые предположили, что частица, которая переносит гравитацию может существовать и назвали ее «гравитон».

Однако, экспериментального доказательства ее существования нет.

Предположительно, гравитон не должен обладать массой, электрическим и другими зарядами. Но для того, чтобы выполнять роль переносчика гравитации должен обладать энергией и двигаться со скоростью света.

Таким образом, гравитация, которая формирует галактики и звездные системы таит в себе еще много загадок. Сформулированный в 1687 году закон Ньютона прекрасно описывает движение планет и взаимодействие между телами, но не дает объяснения, так что же такое гравитация и как она «работает».

Сравнительная таблица планет Солнечной системы

Сравнительная таблица

«Коэффициент в сравнении с Земным g» показывает, во сколько раз будет отличатся вес на каждой планете. Например, на Марсе наш вес будет составлять только 38% от Земного, а на Юпитере в 2,54 раза больше.

Еще больше космоса и интересных фактов в телеграмм-канале.

Гравитация – это одна из самых спорных территорий в физике. Казалось бы, нет ничего проще. Описание этого явления стало одним из первых достижений классической механики. Но стоит задуматься о том, откуда именно гравитация берётся или из чего состоит гравитационное поле и появляются гипотезы, споры и пропадает однозначность.

Гравитация во вселенной
Гравитация во вселенной

Всегда, когда появляются подобные мысли – нужен эксперимент. Именно эксперимент покажет наличие некоторой силы, которую мы называем гравитацией. Вот только большинству из нас известны лишь прямые способы измерения гравитации. Механические, если желаете. Они используются с тех самых времен, когда отцы классической механики описывали явление гравитации тем или иным способом.

Но есть ли какие-то ещё варианты оценить влияние гравитации, например на другой планете? Дочитайте до конца и узнаете!

Оценка гравитации с помощью гравитационной линзы

Гравитационная линза из Википедии
Гравитационная линза из Википедии

Ещё Эйнштейн предсказал, что луч света, проходящий мимо массивных объектов, которые априори обладают гравитационным полем, будет искажаться. Произойдёт его искривление под действием гравитации. Следовательно, одним из способов измерения гравитации является влияние объекта на свет.

Позже было установлено, что лучи света и правда имеют свойство искажаться у крупных объектов. Планеты и крупные своим гравитационным полем влияют на световой луч. Это установлено сейчас с помощью высокоточных приборов.

Полученные эффект называется гравитационным линзированием. И да, это не совсем-таки линза, которую мы привыкли наблюдать в очках или объективе фотоаппарата 🙂 Это объект, который гравитационным полем “ломает” луч света.

Следовательно, наличие гравитации на объектах можно обнаружить посредством искажения света рядом с ними. Принцип, как и котопёс, работает в обе стороны.

Кстати, полезно будет узнать, что сегодня гравитационное линзирование выступает одним из способов изучения космического пространства. Ведь многие невидимые объекты можно обнаружить по взаимодействию с ними лучами света. Ну а методика очень интересна ещё и благодаря тому, что это, пожалуй, единственный способ найти гравитацию на другой планете.

Оценка замедления времени

Как оно происходит. Схема из википедии
Как оно происходит. Схема из википедии

В общем-то, методика довольно распространенная. Применить её с Земли в космосе не представляется возможным, зато это способ измерить гравитацию без механики.

Наверное все читатели видели фильмы, где экипаж космического корабля ощущает время иначе, нежели жители планеты, с которой он улетел. Они в итоге или стареют быстрее, или наоборот – медленнее. Это совсем уже не фантастика. Так проявляется специфика нашего пространства, которая кажется результатом работы автора нового блокбастера.

Меньшее количество читателей знают, что были проведены реальные эксперименты по оценке скорости хода времени в зависимости от гравитационного воздействия. В итоге на высокой башне часы идут быстрее, нежели у её подножия. Причем, часы идут так вовсе не из-за аномалии 🙂 Это гравитация воздействует напрямую на элементы часов и процессы буквально замедляются или ускоряются на атомарном уровне. Гравитация мешает процессам происходить быстро. Можно сказать, что тут играет роль лишь “геометрическая” относительность, но это не так.

В итоге, точные атомные часы на Земле будут идти медленнее, чем на луне. Вот мы и нашли ещё один способ определить гравитацию без крутильных весов Кавендиша, о которых я рассказывал в своей книге.

Влияние на радиоактивные частицы

Частица
Частица

Методика не совсем-таки общепринятая. И сразу скажем, спорная. Но мы сейчас говорим о практических возможностях обнаружить влияние гравитации без использования механики. Теоретически, влияние гравитации на скорость распада можно применить на практике.

Сегодня ученые сообщают об обнаружении воздействия гравитации на время жизни радиоактивной частицы. Такие частицы при воздействии гравитационного поля, имеют специфику существовать меньшее количество времени. При этом ранее считалось, что на радиоактивный распад гравитация не оказывает существенного влияния, как и не влияет на квантовые процессы. Между тем, моё мнение тут простое – это влияние должно существовать.

Ну а время жизни частицы вполне можно измерить. Чем сильнее будет воздействие гравитации на частицу, тем меньше она сможет существовать.

Напомним, что гравитационное поле – это та субстанция, которая осуществляет передача гравитационного взаимодействия. На практике имеем дело с очередным особым видом материи, потому что мысли про гравитон пока вызывают у большинства ученых мало энтузиазма.

Так или иначе, рассматриваемый способ вполне подходит под определение измерения гравитации без механики.

Пожалуйста, подпишитесь на проект, оцените статью лайком и напишите комментарий! Сейчас это очень важно для выживания проекта!

Статьи по теме на моем канале:

Ещё кое-что полезное:

  • Путеводитель по научно-популярным каналам ДЗЕНа: смотрите здесь
  • Присоединяйся к моей телеге
  • Статья о гравитационном линзировании в википедии

Согласно популярной легенде, первым человеком, узнавшим о существовании силы гравитации, был Исаак Ньютон — английский физик, математик, механик и астроном. Озарение пришло случайно, когда великий ученый сидел под деревом и на его голову упало яблоко. После этого происшествия, Ньютон сформулировал закон всемирного тяготения, которая гласит, что все тела во Вселенной притягиваются друг к другу. Этот закон объяснил, почему Луна всегда удерживается в пределах Земли, а также помог астрономам узнать массу Солнца, открыть планету Нептун и совершить много других научных прорывов. Нам со школьных лет говорят, что гравитацию открыл сэр Исаак Ньютон, однако недавно были найдены весомые доказательства того, что впервые о ее существовании узнал Леонардо да Винчи. Что же это, получается, что скоро учебники по физике будут переписаны?

Кто открыл гравитацию — Исаак Ньютон или Леонардо да Винчи? Ученые считают, что Леонардо да Винчи начал расшифровку законов гравитации раньше, чем Исаак Ньютон. Фото.

Ученые считают, что Леонардо да Винчи начал расшифровку законов гравитации раньше, чем Исаак Ньютон

Интересный факт: история о том, как на формулировку закона всемирного тяготения Исаака Ньютона вдохновило упавшее яблоко, скорее всего, не выдумка. Впервые она была рассказана в книге «Воспоминания о жизни Ньютона» под авторством биографа Уильяма Стьюкли. Со слов племянницы ученого, история произошла в 1666 году, когда он пережидал эпидемию чумы в поместье своей матери.

Неожиданные рукописи Леонардо да Винчи

Доказательства причастности Леонардо да Винчи к открытию гравитации нашлись в Кодексе Арундела. Так называется собрание из почти 300 заметок, сделанных ученым в период с 1480 по 1518 год. На старинных листах имеется много текстов и рисунков, которые касаются тем механики и геометрии. Кодекс получил свое название в честь графа Арундела, который приобрел его в 1630-е годы в Испании.

Неожиданные рукописи Леонардо да Винчи. Леонардо да Винчи оставил после себя огромное количество рукописей, который до сих пор изучаются специалистами. Фото.

Леонардо да Винчи оставил после себя огромное количество рукописей, который до сих пор изучаются специалистами

В 2017 году профессор Калифорнийского технологического института Мори Гариб (Mory Gharib) изучал рукописи ученого, в надежде найти иллюстрации, которые он мог бы показать своим ученикам. На одной из страниц он нашел весьма интригующий набросок с кувшином и высыпающимися из него частицами. Посоветовавшись с двумя инженерами, профессор пришел к выводу, что на рисунке изображен эксперимент, который дал начало расшифровке законов гравитации. Это произошло за десятилетия до того, как об этом задумался Исаак Ньютон.

Неожиданные рукописи Леонардо да Винчи. Иллюстрация эксперимента, проведенного Леонардо да Винчи. Фото.

Иллюстрация эксперимента, проведенного Леонардо да Винчи

Статья в тему: Ученые нашли ныне живущих потомков Леонардо да Винчи

Эксперимент Леонардо да Винчи, о котором никто не знал

В эксперименте Леонардо да Винчи, кувшин с водой или песком перемещается по прямой траектории, параллельно земле. В процессе этого перемещения, содержимое сосуда стекает вниз. Итальянский ученый отметил, что частицы воды или песка не падают с постоянной скоростью, а ускоряются. Он показал, что после высвобождения из кувшина, частицы перестают двигаться вместе с ним по горизонтали, а падают вниз.

Эксперимент Леонардо да Винчи, о котором никто не знал. Равнобедренный треугольник в набросках Леонардо да Винчи. Фото.

Равнобедренный треугольник в набросках Леонардо да Винчи

Наброски ученого также демонстрируют, что если кувшин движется по горизонтали с тем же ускорением, что и падающие частицы, создается равнобедренный треугольник. А если сосуд движется со строго определенным ускорением, образуется наклонная линия. Судя по записям, Леонардо да Винчи также хотел сформулировать уравнение для описания ускорения, но сделать этого он не смог. При всем этом, компьютерное моделирование показало, что если ученый действительно провел эти эксперименты, ему бы вполне удалось рассчитать значение свободного падения с точностью 97%.

Читайте также: Древнейшая карта ночного неба оказалась поразительно точной, но кто и как ее создал?

Что открыл Леонардо да Винчи?

Пожалуй, итальянец Леонардо да Винчи является самым известным ученым во всем мире — о нем слышали все. Большинству из нас он знаком как художник, руки которого создали знаменитую «Мона Лизу» и роспись «Тайная вечеря». Но также он был очень продуктивным изобретателем — он создал устройства, опередившие свое время. Так, в далеком 1508 году он разработал прообраз контактных линз в виде наполненного шара с водой. Если интересно, вы можете почитать об этом изобретении по этой ссылке.

Что открыл Леонардо да Винчи? Наброски изобретений Леонардо ла Винчи. Фото.

Наброски изобретений Леонардо ла Винчи

Если выводы профессора Мори Гариба и его коллег верны, Леонардо да Винчи вполне может быть первым человеком, который догадался о существовании гравитации. По словам профессора, они не знают, продолжил ли итальянец свои эксперименты. Но сам факт наличия таких записей говорит о том, что ученого интересовало, почему и как объекты падают на землю. Мышление Леонардо да Винчи дошло очень далеко, но сформулировать закон всемирного тяготения ему все-таки не удалось — это сделал Исаак Ньютон. Скорее всего, именно он останется общепринятым человеком, который открыл гравитацию. Но первые шаги в этом направлении сделал Леонардо да Винчи.

Что открыл Леонардо да Винчи? Кажется, Леонардо да Винчи опередил Исаака Ньютона, но не довел дело до конца. Фото.

Кажется, Леонардо да Винчи опередил Исаака Ньютона, но не довел дело до конца

Самые свежие новости науки и технологии вы найдете в нашем Telegram-канале. Подпишитесь прямо сейчас!

Напоследок стоит отметить, что великий ученый является автором самой дорогой картины в мире — она называется «Спаситель мира». В нее заложен любопытный секрет, о котором мы рассказывали в этом материале.

Добавить комментарий