Химические схемы веществ как составить

Урок 12. Составление уравнений химических реакций

В уроке 12 «Составление уравнений химических реакций» из курса «Химия для чайников» мы научимся составлять уравнения химических реакций и правильно расставлять в них коэффициенты.

Составлять химические уравнения и производить расчеты по ним нужно, опираясь на закон сохранения массы веществ при химических реакциях. Рассмотрим, как можно составить химическое уравнение, на примере реакции меди с кислородом.

Слева запишем названия исходных веществ, справа — продуктов реакции. Если веществ два и более, соединяем их знаком «+». Между левой и правой частями пока поставим стрелку:

медь + кислород → соединение меди с кислородом.

Подобное выражение называют схемой химической реакции. Запишем эту схему при помощи химических формул:

Число атомов кислорода в левой части схемы равно двум, а в правой — одному. Так как при химических реакциях атомы не исчезают, а происходит только их перегруппировка, то число атомов каждого элемента до реакции и после реакции должно быть одинаковым. Чтобы уравнять число атомов кислорода в левой и правой частях схемы, перед формулой CuO ставим коэффициент 2:

Теперь число атомов меди после реакции (в правой части схемы) равно двум, а до реакции (в левой части схемы) — только одному, поэтому перед формулой меди Cu так же поставим коэффициент 2. В результате произведенных действий число атомов каждого вида в левой и правой частях схемы одинаково, что дает нам основание заменить стрелку на знак «=» (равно). Схема превратилась в уравнение химической реакции:

Это уравнение читается так: два купрум плюс о-два равно два купрум-о (рис. 60).

Рассмотрим еще один пример химической реакции между веществами СН4 (метан) и кислородом. Составим схему реакции, в которой слева запишем формулы метана и кислорода, а справа — формулы продуктов реакции — воды и соединения углерода с кислородом (углекислый газ):

Обратите внимание, что в левой части схемы число атомов углерода равно их числу в правой части. Поэтому уравнивать нужно числа атомов водорода и кислорода. Чтобы уравнять число атомов водорода, поставим перед формулой воды коэффициент 2:

Теперь число атомов водорода справа стало 2×2=4 и слева — также четыре. Далее посчитаем число атомов кислорода в правой части схемы: два атома кислорода в молекуле углекислого газа (1×2=2) и два атома кислорода в двух молекулах воды (2×1=2), суммарно 2+2=4. В левой части схемы кислорода только два атома в молекуле кислорода. Для того чтобы уравнять число атомов кислорода, поставим коэффициент 2 перед формулой кислорода:

В результате проведенных действий число атомов всех химических элементов до реакции равно их числу после реакции. Уравнение составлено. Читается оно так: це-аш-четыре плюс два о-два равно це-о-два плюс два аш-два-о (рис. 61).

Данный способ расстановки коэффициентов называют методом подбора.

В химии существуют и другие методы уравнивания чисел атомов элементов в левой и правой частях уравнений реакций, с которыми мы познакомимся позднее.

Краткие выводы урока:

Для составления уравнений химических реакций необходимо соблюдать следующий порядок действий.

  1. Установить состав исходных веществ и продуктов реакции.
  2. Записать формулы исходных веществ слева, продуктов реакции — справа.
  3. Между левой и правой частями уравнения сначала поставить стрелку.
  4. Расставить коэффициенты, т. е. уравнять числа атомов каждого химического элемента до и после реакции.
  5. Связать левую и правую части уравнения знаком «=» (равно).

Надеюсь урок 12 «Составление уравнений химических реакций» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

Как составлять химические уравнения по схемам

ХИМИЯ – это область чудес, в ней скрыто счастье человечества,

величайшие завоевания разума будут сделаны

именно в этой области.(М. ГОРЬКИЙ)

Таблица
Менделеева

Универсальная таблица растворимости

Коллекция таблиц к урокам по химии

Составление уравнений химических реакций

Урок посвящен изучению алгоритма составления уравнения химической реакции. В ходе урока вы научитесь составлять схему и уравнение химической реакции, зная формулы исходных веществ и продуктов реакции.

I. Схема химической реакции

Сущ­ность хи­ми­че­ской ре­ак­ции с по­зи­ции атом­но-мо­ле­ку­ляр­ной тео­рии за­клю­ча­ет­ся в том, что про­дук­ты ре­ак­ции об­ра­зу­ют­ся из тех же ато­мов, ко­то­рые вхо­ди­ли в со­став ис­ход­ных ве­ществ.

При­мер 1. При раз­ло­же­нии воды об­ра­зу­ют­ся про­стые ве­ще­ства – во­до­род и кис­ло­род (Рис.1.).

Рис. 1. Раз­ло­же­ние воды под дей­ствие элек­три­че­ско­го тока

За­пи­шем фор­му­лу ис­ход­но­го ве­ще­ства воды слева, а фор­му­лы про­дук­тов ре­ак­ции – во­до­ро­да и кис­ло­ро­да – спра­ва. Между ними по­ста­вим стрел­ку:

Эта за­пись яв­ля­ет­ся схе­мой ре­ак­ции.

Схема ре­ак­ции по­ка­зы­ва­ет толь­ко со­став ис­ход­ных ве­ществ и про­дук­тов ре­ак­ции, но не может пол­но­стью от­ра­жать сущ­ность ре­ак­ции. В со­став мо­ле­ку­лы воды вхо­дит один атом кис­ло­ро­да, а в со­став про­сто­го ве­ще­ства кис­ло­ро­да вхо­дят два атома. Это зна­чит, что не вы­пол­ня­ет­ся закон со­хра­не­ния массы ве­ществ.

II. Химические уравнения реакций

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Запишем протекающую реакцию в виде уравнения химической реакции:

Рассмотрим еще один пример: 2Н2О = 2Н2 + О2

Чтобы не было про­ти­во­ре­чий с за­ко­ном со­хра­не­ния массы ве­ществ, нужно урав­нять число ато­мов каж­до­го хи­ми­че­ско­го эле­мен­та слева и спра­ва от стрел­ки.

Чтобы об­ра­зо­ва­лась одна мо­ле­ку­ла кис­ло­ро­да, в ре­ак­цию долж­ны всту­пить две мо­ле­ку­лы воды. По­ста­вив ко­эф­фи­ци­ент «2» перед фор­му­лой воды. Те­перь урав­ня­ем ко­ли­че­ство ато­мов во­до­ро­да, по­ста­вив ко­эф­фи­ци­ент «2» перед фор­му­лой Н2, вме­сто стрел­ки по­ста­вим знак ра­вен­ства:

Эта за­пись яв­ля­ет­ся урав­не­ни­ем хи­ми­че­ской ре­ак­ции. В от­ли­чие от схемы ре­ак­ции, урав­не­ние учи­ты­ва­ет, что число ато­мов каж­до­го хи­ми­че­ско­го эле­мен­та в ре­ак­ции не ме­ня­ет­ся.

Цифры, сто­я­щие перед фор­му­лой ве­ще­ства, на­зы­ва­ют­ся ко­эф­фи­ци­ен­та­ми. Ко­эф­фи­ци­ент по­ка­зы­ва­ет ко­ли­че­ство мо­ле­кул ве­ще­ства.

Про­чи­тать за­пи­сан­ное урав­не­ние можно так: «Из двух мо­ле­кул воды об­ра­зу­ет­ся две мо­ле­ку­лы во­до­ро­да и 1 мо­ле­ку­ла кис­ло­ро­да».

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H2; N2; O2; F2; Cl2; Br2; I2. Между реагентами ставим знак «+», а затем стрелку:

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

  • Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
  • В данном случае это атомы кислорода.
  • Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

Как составить уравнение химической реакции: пошаговая инструкция

Превращение одних веществ в другие — обычное явление, которое происходит в ходе химических реакций. Для того чтобы обозначить, как протекают такие процессы, используют специальную систему уравнений. Так, например, горение метана (мы можем наблюдать его каждый день, когда зажигаем газовую плиту) протекает по следующей схеме:

СН4 + 2О2 → СО2 + Н2О

Расшифровать уравнение реакции можно следующим образом. Две молекулы кислорода соединяются с молекулой метана и в результате формируют две молекулы воды и молекулу углекислого газа. Можно отметить, что во время протекания реакции связи между некоторыми атомами (например, водорода и углерода) разрываются. Вместо них появляются новые, благодаря которым и формируются углекислород и вода.

Особенности записи формул химических реакций

Уравнения химических реакций: способы решения заданий

Для удобства записи уравнения химических реакций делают предельно схематичными: их записывают только при помощи латинских букв и цифр. В левой части уравнения указываются реагенты (те вещества, которые взаимодействуют между собой), а в правой — так называемые продукты реакции (те вещества, которые формируются после завершения процесса). При записи уравнения важно помнить о двух правилах.

  1. Атомы не исчезают никуда и не появляются из ниоткуда (соответственно, их число в обоих частях формулы должно быть одинаковым).
  2. Общая масса реагентов не может отличаться от итоговой массы продуктов реакции (именно по этой причине записи протекания реакций называют уравнениями).

Какими бывают химические реакции

Выделяют четыре варианта взаимодействия химических веществ друг с другом.

Тип реакции Пример Особенности
Соединения Формула образования воды:

2H2 + O2 = 2H2O

Несколько реагентов (простых или сложных веществ) создают один продукт.
Разложения При нагревании известняка он разделяется на углекислый газ и негашеную известь:

Стрелка, направленная вверх, показывает, что сформировавшийся газ улетучился и больше не участвует в процессе.

Одно вещество распадается на несколько простых компонентов.
Замещения При образовании хлорида цинка атомы цинка встают на место атомов водорода, который включен в состав хлороводорода:

Zn + 2HCl = H2↓ + ZnCl2

Направленная вниз стрелка показывает, что вещество осталось в осадке.

В таких реакциях обязательно участвуют простое и сложное вещества. При более активные атомы простого вещества вытесняют (замещают) компоненты сложного.
Обмена CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl В таких реакциях обязательно участвуют два сложных вещества, которые обмениваются атомами. Важно помнить: в уравнениях обмена обязательно формируются газ, осадок или вода.

Как расставить коэффициенты в химических уравнениях

Чтобы уравнение реакции было верным, крайне важно правильно расставить в нем коэффициенты. С помощью этих цифр указывается, какое число молекул необходимо для протекания реакции. Внешне коэффициент выглядит как число, поставленное перед формулой вещества (например, 2NaCl). Важно не перепутать их с индексами: последние как раз ставятся под символом химического элемента и указывают на количество атомов (например, H2).

Если вам требуется узнать, сколько атомов конкретного вещества участвует в реакции, следует индекс умножит на коэффициент. Например, при использовании двух молекул воды (2H₂O) речь идет о четырех атомах водорода и двух атомах кислорода. При решении уравнения реакции задача ученика — подобрать коэффициент и узнать, сколько молекул участвует в процессе.

Помочь разобраться в этом нелегком деле могут наши репетиторы по химии в Москве. Ведь, согласитесь, поспеть за школьной программой порой непросто и некоторые темы требуют более детального изучения, чем отведенные несколько школьных уроков.

Как составить уравнение химической реакции: пошаговая инструкция

  1. Подготовьте схему реакции. Для этого потребуется выделить реагенты и продукты реакции. Например, для формирования оксида магния схема будет выглядеть так: Mg + O2 → MgO.
  2. Расставьте коэффициенты. Из предыдущего примера видно, что в левой части уравнения представлено два атома кислорода, а в правой — только один. Поэтому в продукте реакции нужно увеличить количество молекул: Mg + O2 → 2MgO. Теперь у нас есть равное количество атомов кислорода, а вот с магнием возникла проблема. Уравняем и его число: 2Mg + O2 = 2MgO. Обратите внимание, что знак равно можно ставить только после того, как уравнение решено, до этого используется символ горизонтальной стрелки.

Уравнения химических реакций: способы решения заданий

В качестве завершающего примера предложим реакцию разложения нитрата калия. Он образует два вещества: кислород и нитрит калия. Схема реакции выглядит следующим образом: KNO₃ → KNO₂ + О₂. Если с атомами азота и калия все в порядке, то кислорода до момента начала реакции было три, а вот по завершении разложения стало уже четыре. Чтобы уравнять части поставим перед реагентом удвоенный коэффициент: 2KNO₃ → KNO₂ + О₂.

Теперь нужно разобраться с цифрами. До реакции мы имеем по два атома азота и калия и шест атомов кислорода. После же разложения атомов азота и калия по одному, а атомов кислорода всего четыре. Чтобы создать равенство, потребуется поставить удвоенный коэффициент перед нитритом калия в продуктах реакции: 2KNO₃ = 2KNO₂ + О₂. В итоге мы получили равное количество атомов в обеих частях: по два калия и азота и шесть кислорода. Важность уравнений состоит в том, что они не только дают определить, какие вещества получатся в ходе протекания реакции, но и позволяют понять количественное соотношение используемых реагентов.

[spoiler title=”источники:”]

http://kardaeva.ru/88-dlya-uchenika/8-klass/124-sostavlenie-uravnenij-khimicheskikh-reaktsij

http://egevpare.ru/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D1%85%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D0%B9-%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1/

[/spoiler]

Составление уравнений химических реакций

Урок посвящен изучению алгоритма составления уравнения химической реакции. В ходе урока вы научитесь составлять схему и уравнение химической реакции, зная формулы исходных веществ и продуктов реакции.

I. Схема химической реакции

Сущ­ность хи­ми­че­ской ре­ак­ции с по­зи­ции атом­но-мо­ле­ку­ляр­ной тео­рии за­клю­ча­ет­ся в том, что про­дук­ты ре­ак­ции об­ра­зу­ют­ся из тех же ато­мов, ко­то­рые вхо­ди­ли в со­став ис­ход­ных ве­ществ.

При­мер 1. При раз­ло­же­нии воды об­ра­зу­ют­ся про­стые ве­ще­ства – во­до­род и кис­ло­род (Рис.1.).

Разложение воды под действие электрического тока

Рис. 1. Раз­ло­же­ние воды под дей­ствие элек­три­че­ско­го тока

 За­пи­шем фор­му­лу ис­ход­но­го ве­ще­ства воды слева, а фор­му­лы про­дук­тов ре­ак­ции – во­до­ро­да и кис­ло­ро­да – спра­ва. Между ними по­ста­вим стрел­ку:

Н2О → Н2 + О2

Эта за­пись яв­ля­ет­ся схе­мой ре­ак­ции.

Схема ре­ак­ции по­ка­зы­ва­ет толь­ко со­став ис­ход­ных ве­ществ и про­дук­тов ре­ак­ции, но не может пол­но­стью от­ра­жать сущ­ность ре­ак­ции. В со­став мо­ле­ку­лы воды вхо­дит один атом кис­ло­ро­да, а в со­став про­сто­го ве­ще­ства кис­ло­ро­да вхо­дят два атома. Это зна­чит, что не вы­пол­ня­ет­ся закон со­хра­не­ния массы ве­ществ.

II. Химические уравнения реакций

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

Видео – эксперимент“Нагревание смеси железа и серы”

В результате химического взаимодействия серы и железа получено вещество –  сульфид железа (II) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами. 

Новые вещества,  образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Fe + S = FeS

Рассмотрим еще один пример: 2Н2О = 2Н2 + О2

Чтобы не было про­ти­во­ре­чий с за­ко­ном со­хра­не­ния массы ве­ществ, нужно урав­нять число ато­мов каж­до­го хи­ми­че­ско­го эле­мен­та слева и спра­ва от стрел­ки.

Чтобы об­ра­зо­ва­лась одна мо­ле­ку­ла кис­ло­ро­да, в ре­ак­цию долж­ны всту­пить две мо­ле­ку­лы воды. По­ста­вив ко­эф­фи­ци­ент «2» перед фор­му­лой воды. Те­перь урав­ня­ем ко­ли­че­ство ато­мов во­до­ро­да, по­ста­вив ко­эф­фи­ци­ент «2» перед фор­му­лой Н2, вме­сто стрел­ки по­ста­вим знак ра­вен­ства:

Эта за­пись яв­ля­ет­ся урав­не­ни­ем хи­ми­че­ской ре­ак­ции. В от­ли­чие от схемы ре­ак­ции, урав­не­ние учи­ты­ва­ет, что число ато­мов каж­до­го хи­ми­че­ско­го эле­мен­та в ре­ак­ции не ме­ня­ет­ся.

Цифры, сто­я­щие перед фор­му­лой ве­ще­ства, на­зы­ва­ют­ся ко­эф­фи­ци­ен­та­ми. Ко­эф­фи­ци­ент по­ка­зы­ва­ет ко­ли­че­ство мо­ле­кул ве­ще­ства.

Про­чи­тать за­пи­сан­ное урав­не­ние можно так: «Из двух мо­ле­кул воды об­ра­зу­ет­ся две мо­ле­ку­лы во­до­ро­да и 1 мо­ле­ку­ла кис­ло­ро­да».

III. Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H2; N2; O2; F2; Cl2; Br2; I2. Между реагентами ставим знак «+», а затем стрелку:

P + O2 → 

2.  В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O2 → P2O

3.  Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

  • Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
  • В данном случае это атомы кислорода.
  • Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:       

  •  Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:

  • Закон схранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:

  •  Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:

4P + 5O2 = 2P2O5

IV. Работа с тренажерами

V. Задания для закрепления 

Задание №1

Преобразуйте следующие схемы в уравнения химических реакций расставив необходимые коэффициенты и заменив стрелки на знак равенства:

Zn + O→ ZnO

Fe + Cl2→ FeCl3

Mg + HCl → MgCl2 + H2

Al(OH)3 → Al2O3 + H2O

HNO3→ H2O+NO2+O2

CaO+H2O→ Ca(OH)2

H2+Cl2→ HCl

KClO3→ KClO4+KCl

Fe(OH)2+H2O+O2→ Fe(OH)3

KBr+Cl2→ KCl+Br2

Задание №2

Используя алгоритм составления уравнений химических реакций, составьте уравнения реакций взаимодействия между следующими парами веществ:

1) Na и O2 
2) Na и Cl2
3) Al и S

В уроке 3 «Схема образования молекул» из курса «Химия для чайников» выясним из чего состоят молекулы и как образуется ковалентная химическая связь; кроме того рассмотрим структурную и молекулярную формулы молекулы; научимся вычислять относительную молекулярную массу веществ. Настоятельно рекомендую перед тем, как приступить к прочтению данного урока, внимательно изучить предыдущие, так как они содержат необходимые основы химии для начинающих и буду весьма полезны в изучении курса. Напомню, что в прошлом уроке мы обсуждали изотопы элементов.

Содержание

  • Молекулы состоят из атомов
  • Связь атомов в молекулах
  • Ковалентная химическая связь
  • Молекулярная и структурная формула
  • Относительная молекулярная масса вещества

Молекулы состоят из атомов

Здесь все просто и понятно: все вещества во вселенной состоят из молекул, в свою очередь молекулы состоят из атомов, а атомы состоят из положительно заряженного ядра и электронных оболочек, на которых расположены отрицательно заряженные электроны.

молекулы состоят из атомов

Представьте, что два атома достаточно сблизились друг с другом. В таком случае электроны на внешней оболочке одного атома начинают взаимодействовать с внешними электронами другого. Подобное взаимодействие внешних электронов и образует молекулы, так как оно способно удерживать взаимодействующие атомы вместе, притягивая их друг к другу.

Связь атомов в молекулах

Связь атомов в молекулах

Как было сказано выше, образование молекул происходит из-за внешних электронов взаимодействующих атомов, так как они создают силы притяжения между ними. Когда образуются данные силы притяжения происходит образование химической связи. В природе существует несколько видов химической связи атомов в молекулах, но пока рассмотрим простейший из них.

Ковалентная химическая связь

Химическая связь, возникающая при обобществлении внешних электронов взаимодействующих атомов, называется ковалентной химической связью. Обобществленные электроны называются электронной парой. Объяснение ковалентной химической связи простыми словами: два атома положили в общую копилку по монетке (электрону) и схватились за нее «руками», причем оба атома не хотят отдавать копилку друг другу, поэтому так и продолжают держаться за нее.

Ковалентная химическая связь

Ковалентная химическая связь подразделяется на два вида: неполярную и полярную. В этом уроке рассмотрим ковалентную неполярную химическую связь, которая возникает, когда в состав молекулы входят два абсолютно одинаковых атома неметалла, потому как одинаковые атомы владеют электронной парой в равной степени. А «Неполярная» — означает что заряд атомов не изменился, после образовании ковалентной связи. Приведем примеры молекул, образованных ковалентной неполярной химической связью: H2, O2, N2, Cl2. В редких случаях ковалентная химическая связь может образовываться между атомами разных неметаллов, но подробнее об этом в следующем уроке, где мы изучим электроотрицательность, и вам станет понятнее механизм образования химических связей атомов в молекулах.

Молекулярная и структурная формула

Графическое изображение структуры молекулы называется структурной формулой. Обычно ковалентная химическая связь в структурных формулах молекул изображается прямой линией, которая соединяет связанные атомы.

Структурную формулу молекулы воды H2O, к примеру, изображают двумя способами. Второй вариант структурной формулы воды, учитывает тот факт, что на самом деле молекула воды не линейна; две связи Н—О образуют угол 105° друг с другом. Молекулы газообразного водорода, сероводорода, аммиака, метана и метанола (метилового спирта) имеют следующие структурные формулы:

Структурная формула молекулы лишь схематично изображает связи между атомами, но не дает информации о реальной форме молекулы. Заметим, что угол между связями в молекулах, содержащих более двух атомов, может принимать различные значения. Так, угол между связями в молекуле воды равен 105°, а угол в молекуле сероводорода равен 92°; четыре атома, присоединенных к центральному атому углерода в метане и метаноле, направлены к четырем вершинам тетраэдра. Структурная формула неразветвленного октана, одного из компонентов бензина, такова:

Изображение ниже дает более реальное представление о форме и относительном объеме некоторых простых молекул. Каждая пара связанных атомов как бы проникает друг в друга, потому что их электронные облака перекрываются между собой. Принято изображать молекулы таким образом, что расширяющаяся линия указывает связь, направленную от плоскости рисунка в сторону наблюдателя, а пунктирная линия указывает связь, уходящую за плоскость рисунка в сторону от наблюдателя.

Форма и объем некоторых молекул

Каждая из указанных выше структурных формул может быть сведена к сжатой молекулярной формуле, которая указывает, сколько атомов каждого элемента имеется в молекуле, но совсем или почти совсем не дает сведений о том, как эти атомы соединены между собой. Молекулярная формула водорода Н2, воды Н2O, сероводорода H2S, аммиака NH3, метана СН4, метанола (метилового спирта) СН3ОН или СН4O, а октана С8Н18. Формула октана может быть также записана в такой форме:

Относительная молекулярная масса вещества

Под молекулярной массой вещества понимается масса молекулы, вычисленная через сумму всех атомных масс, входящих в нее атомов; измеряется, как и атомная масса, в а.е.м. Если молекулярную массу вещества вычислять через относительные атомные массы, то и называться масса молекулы будет относительной молекулярной массой вещества. Относительная молекулярная масса — величина безразмерная.

Пример 1: Какая относительная молекулярная масса у воды?

Решение: Заходим в таблицу Менделеева и выписываем относительные атомные массы водорода и кислорода, округляя до целого значения. У водорода = 1, а у кислорода = 16. Так как молекулярная формула воды имеет вид H2O, то ее молекулярная масса равна:

  • 1×2 + 16 = 18

Ответ: относительная молекулярная масса воды равна 18.

Пример 2: Вычислите молекулярную массу метанола (метилового спирта).

Решение: Молекулярная формула метанола СН3ОН или СН4O. Следовательно,

  • 1 углерод: 1 × 12,011 а.е.м. = 12,011 а.е.м.
  • 4 водорода: 4 × 1,008 а.е.м. = 4,032 а.е.м.
  • 1 кислород: 1 × 15,999 а.е.м. = 15,999 а.е.м.

Ответ: Суммарная молекулярная масса равна 32,04 а.е.м.

В примере 2 следует обратить внимание на то, что естественная атомная масса углерода равна не 12,000, а 12,011 а.е.м., поскольку природный углерод представляет собой смесь, содержащую 98,89% углерода-12 и 1,11% углерода-13, а также следы углерода-14.

Пример 3: Чему равна молекулярная масса чистого октана?
Решение: Молекулярная формула октана С8Н18, поэтому его молекулярная масса равна

  • (8 × 12,011) + (18 × 1,008) = 114,23 а.е.м.

Надеюсь урок 3 «Схема образования молекул» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Схемы образования химических элементов


Схемы образования химических элементов

4.6

Средняя оценка: 4.6

Всего получено оценок: 300.

4.6

Средняя оценка: 4.6

Всего получено оценок: 300.

В настоящее время открыто 118 химических элементов. Все они способны образовывать химические вещества с помощью химических связей. Что такое химический элемент, и с помощью каких связей образуются новые вещества?

Что такое химический элемент?

Определенный вид атомов называют химическим элементом. В настоящее время известно 118 химических элементов. Каждый элемент обозначают символом, который представляет одну или две буквы из его латинского названия. Например, водород обозначают латинской буквой H – первой буквой латинского названия этого элемента Hydrogenium.

Все достаточно хорошо изученные элементы имеют символы и названия, которые можно найти в Периодической системе, где все они расположены в определенном порядке.

Главным свойством атома, относящим его к определенному элементу, является заряд ядра

Химические связи

Образование химических веществ происходит с помощью химических связей. Химической связью называют силы, удерживающие атомы в молекулах или кристаллах. Эти силы носят электростатический характер, ядра связанных атомов притягиваются вследствие наличия области повышенной электронной плотности между ними.

Увеличение электронной плотности происходит вследствие перекрывания электронных орбиталей в области связывания, так как расстояние между ядрами связанных атомов меньше, чем сумма радиусов атомов. Межъядерное расстояние принимают за длину химической связи. Образование связи происходит только в том случае, если этот процесс энергетически выгоден, поэтому образование связи всегда сопровождается выделением энергии.

Образование химической связи

Рис. 1. Образование химической связи.

Энергия химической связи – это то значение энергии (в кДж/моль), которое необходимо затратить для разрыва связи и которое выделяется при ее образовании.

При образовании связей, как правило, достраивается октет (восемь) электронов для связанных атомов, то есть их внешняя электронная оболочка становится завершенный, что и придает стабильность молекуле или кристаллу и делает эту систему равновесной.

Схемы образования химических элементов бывают атомные или ковалентные (полярные и неполярные), ионные, металлические, водородные:

  • ковалентная химическая связь – это связь, осуществляемая за счет образования общих электронных пар. Неполярная ковалентная связь образуется между атомами с одинаковой электроотрицательностью. полярная ковалентная связь образуется между атомами, электроотрицательности которых незначительно отличаются.

Ковалентная химическая связь

Рис. 2. Ковалентная химическая связь.
  • ионная связь – химическая связь, возникающая между ионами в результате действия электростатических сил притяжения
  • металлическая связь – характерна для элементов, атомы которых на внешнем уровне имеют мало валентных электронов, слабо удерживающихся в атоме, и большое количество энергетически близких свободных орбиталей.
  • водородная связь – слабая связь физической природы, которая образуется между молекулами, содержащими электроотрицательные атомы (кислород О, азот N), которые имеют неподеленную электронную пару, и молекулами, в которых атом водорода имеет небольшой положительный заряд.

Водородная химическая связь

Рис. 3. Водородная химическая связь.

Заключение

Что мы узнали?

Химический элемент – вид атомов с одинаковым положительным зарядом ядра. Химические вещества образуются из элементов, которые вступают в химические связи. Эти связи могут быть ковалентными, водородными, ионными, металлическими.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Александр Котков

    5/5

  • Gulchekhra Suyundukova

    5/5

  • Александр Котков

    5/5

  • Александр Котков

    5/5

  • Лидия Маслова

    5/5

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 300.


А какая ваша оценка?


CharChem
:

Система описания химических формул для WEB.

Химические формулы для “чайников”

Научно-популярная статья о химических формулах.
Обсуждаются структурные развёрнутые, упрощенные и скелетные формулы. А так же истинные и рациональные формулы.

Изначально сайт был задуман, как ресурс для профессиональных химиков.
Но в реальности из поисковых систем происходит очень много обращений от людей, только начинающих изучать химию.
Специально для них создан этот раздел, чтобы в доступной форме рассказать о том, как составляются химические формулы.

Содержание

Структурные формулы – это просто!

Я думаю, что знакомство с формулами лучше всего начать со структурных формул органических веществ.
Считается, что они сложны для понимания, поэтому в школе их изучают в выпускных классах.
Но я уверен, что через 10 минут вы разберетесь, как легко составлять структурные формулы.

Перед нами структурная формула метана – самого простого органического вещества.

H-C-H;H|#2|H

Что мы видим? В центре латинская буква C, а от неё четыре палочки, на концах которых четыре латинских буквы H.
C означает углерод, а H – водород. Это два самых важных элемента, которые входят в состав любых органических веществ.
А что означают палочки? Это химические связи. В них кроется практически весь секрет органической химии.
Фокус в том, что валентность углерода равна 4. Поэтому у каждой буквы C должно быть 4 палочки.
А валентность водорода равна 1, поэтому у него палочка должна быть только одна.
По-моему, палочки отлично демонстрируют такие “страшные” понятия, как химические связи и валентность.

Структурные формулы могут слегка менять свой внешний вид.
В них главное – количество элементов и наличие нужных связей.
Например, формула метана может иметь и такой вид:

H-C-H; H|#2|H =
$slope(45)H/C/H;H#CH$slope() = HC/H; H/#CH =
C<_(x-1.5,y1)H><_(x-.5,y1)H><_(x.5,y1)H>_(x1.5,y1)H

Все эти картинки означают одно и то же. И считаются одинаковыми формулами.

В общем, структурные формулы не являются какими-то жесткими конструкциями.
Если вдруг Вам захотелось бы сделать модель молекулы из подручных материалов,
то для этого лучше всего подошли бы шарики, соединённые пружинками или резинками.
Под шариками я конечно подразумеваю атомы, а резинки – химические связи.

Но в химии приняты не только структурные формулы. И здесь мы познакомимся с некоторыми из них.
Достаточно распространены так называемые истинные формулы.
Для метана истинная формула записывается так:

CH4

Палочки исчезли, а вместо четырёх букв H осталась одна, но с маленькой цифрой 4, которая указывает количество атомов.
Иногда такие формулы называют брутто-формулами.
Мне почему-то такое название нравится больше, поэтому я буду чаще пользоваться именно таким термином.

Обе формулы – структурная и истинная – означают одно и то же вещество.
Структурная конечно более понятна, но брутто-формула проще записывается.

Стоит упомянуть, что метан – это природный газ, который знаком всем, у кого есть газовая плита.
Но не будем на нём долго задерживаться. Пора посмотреть, какие ещё бывают варианты органических структур.

Углеводороды

Прежде, чем мы начнём знакомство с многочисленными органическими соединениями, хочу напомнить –
мы здесь изучаем химические формулы. А все упоминаемые вещества служат для иллюстрации.

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Этан H-C-C-H; H|#2|H; H|#3|H CH3-CH3
Пропан H-C-C-C-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH3
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Пентан H-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H CH3-CH2-CH2-CH2-CH3
Гексан H-C-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H;H|#7|H

CH3-CH2-CH2-CH2-CH2-CH3

или то же самое, но короче:

CH3-(CH2)4-CH3

C6H14

Здесь представлены органические вещества, называемые углеводородами.
Название означает, что они состоят только из углерода и водорода.
Эти вещества в различной мере входят в состав нефти. И это далеко не полный список.
Но сначала смотрим ту колонку, которая называется Развёрнутая структурная формула.
Мы видим уже знакомые буквы C и H, соединённые химическими связями – палочками.
Главное правило по-прежнему в силе: у каждой буквы C четыре палочки, а у каждой H – одна.
Что здесь нового? Появились химические связи между атомами углерода.
И в результате оказалось, что молекулы органических веществ могут строиться при помощи таких цепочек,
где звеньями являются атомы углерода с прилипшими к ними водородами.

Теперь посмотрим на колонку, где представлены упрощённые структурные формулы.
Несложно догадаться, что они призваны экономить время людей, которые постоянно пишут формулы.
Особенно, если эти формулы достаточно большие.
Правила здесь довольно простые – убираем палочки между углеродом и водородом и пишем число атомов водорода в виде числа.
Таким образом, звенья цепочки становятся видны гораздо более отчётливо. По-научному они называются функциональные группы.
Можно даже довольно быстро понять некоторые более хитрые закономерности.
Например, группа на конце цепочки записывается CH3,
а в середине цепочки – CH2.
А для ещё большей экономии повторяющиеся группы можно объединить в скобочках, подписав количество повторов.
Это показано в последней строке таблицы для формулы гексана: CH3-(CH2)4-CH3.

Некоторые функциональные группы получают собственные названия и даже специальные обозначения.
Например, группа CH3 называется метильная группа (от названия метана)
и имеет собственное обозначение: Me. Если Вам попадётся, к примеру, такая формула: {Me}-CH2-{Me},
то ничего страшного тут нет. Это то же самое, что CH3-CH2-CH3, то есть – пропан.

Двойные и тройные связи

Итак, за короткое время мы уже разобрались, что такое структурные формулы и выяснили, что они бывают развёрнутые и упрощённые.
Но пока что мы познакомились только с одинарными химическими связями.
Но на самом деле существуют двойные и даже тройные связи. Посмотрим на следующую таблицу.

Вещество Развёрнутая формула Упрощённая формула Брутто-фломула
Этен
(Этилен)
$slope(55)HC<`/H>_(x1,N2)C<H>/H CH2=CH2
Пропен
(Пропилен)
$slope(45)HC-C/C/H; H#-3H;H/#2-#3H CH2=CH-CH3
Бутен
(Бутилен)
HC<`/H>=C<|H>-C<`|H><|H>-C-H; H|#-3|H CH2=CH-CH2-CH3
Этин
(Ацетилен)
H-C%C-H CH%CH
Пропин
(Метилацетилен)
H-C%C-C-H; H|#-3|H CH%C-CH3
Бутин
(Этилацетилен)
H-C%C-C<`|H><|H>-C-H; H|#-3|H CH%C-CH2-CH3

Представленные здесь вещества тоже относятся к углеводородам.
Если хорошенько присмотреться, то можно увидеть определённое сходство с веществами из первой таблицы.
Названия формируются заменой буквы в конце названия: этан – этен – этин или
пропан – пропен – пропин. Сходство не ограничивается названиями.
Главное – одинаковое количество атомов углерода. А значит – одинаковое количество звеньев в цепи.
Различие кроется в наличии двойных и тройных связей.
Углеводороды в первой таблице называются предельными.
Это означает, что к ним больше ничего нельзя добавить.
А во второй таблице представлены непредельные углеводороды.
То есть, при определённых условиях к ним можно добавить по парочке атомов водорода.

Кроме того, появились дополнительные названия. Тут тоже нет ничего страшного.
Верхние названия, которые без скобок – это научные названия.
А в скобках даны традиционные названия, которые тоже довольно часто употребляются как в научной литературе, так и в быту.

Циклические углеводороды

Продолжим знакомство с формулами углеводородов. Они ещё не раскрыли нам всех своих секретов.
Оказывается, что цепочки могут быть замкнутыми. То есть, атомы углерода соединяются друг с другом циклически.

Вещество Развёрнутая формула Упрощённая формула Брутто-формула
Циклопропан $slope(60)H`/C`/C:a`/H; H#CC:bH; H-#a-#b-H H2C_(x1.4)CH2_q3CH2_q3
Циклобутан H|C|C|H; H|C|C|H; H-#2-#6-H; H-#3-#7-H H2C-CH2`|CH2`-H2C_#1
Циклопентан C_(x1.1)C@:H2()<_(a24)H><_(a84)H>@()_qC@H2()_qC@H2()_qC@H2()_q@H2() H2C_(x1.4)CH2_qCH2_qCH2_qH2C_q
Циклогексан CC@:H2()<_(a-30)H><_(a-90)H>@()|C@H2()`/C@H2()`C@H2()`|C@H2()/@H2() $L(1.3)CH2CH2|CH2`/CH2`H2C`|H2C/

Изомеры

До сих пор мы не особенно обращали внимания на последнюю колонку, где выведены брутто-формулы.
Но может возникнуть вполне законный вопрос: зачем вообще нужны структурные формулы?
Ведь брутто-формулы гораздо проще записывать. Может быть, достаточно было бы пользоваться только ими?
Но оказывается, что без структурных формул обойтись не получится.
Например, если сравнить брутто-формулы из двух предыдущих таблиц, то мы увидим,
что циклопропан имеет абсолютно тот же состав, что и пропен (C3H6).
А брутто-формула циклобутана совпадает с бутеном (C4H8).
Но это разные вещества! И разница заключается в структуре.
То есть, имеет большое значение, в каком порядке элементы соединены друг с другом.
А значит, именно структурные формулы позволяют точно описать нужное вещество.

В химии существует такое понятие как изомеры.
Так называют разные вещества, которые имеют одинаковый состав. Это не редкость.
И в этом нет ничего странного. Ведь бывают же совершенно разные слова, состоящие из одинаковых букв.

Классическими изомерами среди углеводородов можно назвать бутан и изобутан. Посмотрим на их формулы:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Метилпропан
(Изобутан)
HCC/C/H; H|#2`/H; H|#4H; H|#3|C|H; H/#-3H CH3-CH<|CH3>-CH3

Изобутан является изомером бутана. Обратите внимание, что брутто-формулы одинаковы.
Но хотя они близки по свойствам, это разные вещества.

Как видно, разнообразие углеводородов не перестаёт удивлять.
Оказывается, они могут состоять не только из линейных цепочек, но могут образовывать разветвлённые структуры.
И чем длиннее исходная цепочка, тем больше вариантов.
Если у бутана возможны только два изомера, то у пентана их уже три:

Вещество Упрощённая формула Брутто-формула
Пентан CH3-CH2-CH2-CH2-CH3
2-метилбутан
(Изопентан)
CH3-CH<`|CH3>-CH2-CH3
2,2-диметилпропан
(Неопентан)
CH3-C<`|CH3><|CH3>-CH3

А у вещества декан, имеющего формулу C10H22, существует 75 изомеров.
Но мы не будем их здесь рассматривать.

Обратите внимание, что научное название зависит от числа звеньев в прямой цепочке,
а традиционное название просто учитывает количество атомов углерода в молекуле.
Так получилось из-за того, что химики, которые только начинали исследовать углеводороды,
первым делом научились определять состав веществ.
То есть, сначала люди смогли получить лишь брутто-формулы.
А из них невозможно понять, какова длина самой длинной цепочки. Поэтому названия учитывали общее число атомов углерода.
Затем наука дошла до того, что люди смогли исследовать структуру молекул, придумали структурные формулы
и переименовали уже известные вещества в соответствии с новыми знаниями.
Но старые названия уже успели прижиться и существуют до сих пор.

Бензол и скелетные формулы

Думаю, что пора познакомиться ещё с одним весьма примечательным представителем углеводородов.
Это вещество называется бензол. Вот его формулы:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H H_(y.5)C\CH|CH`//C<_(y.5)H>`HC`||HC/ \|`//“||/

Чем же этот бензол так примечателен? Дело в том, что это шестиугольное колечко входит в состав огромного
числа органических веществ.
И вот на примере бензола предлагаю ознакомиться с ещё одним очень важным способом записи структурных формул – скелетными формулами.
Как видно из таблицы, скелетная формула бензола представляет собой правильный шестиугольник без каких-либо букв,
зато изображения химических связей выглядят одинаково.
В общем, правила составления скелетных формул отличаются от уже знакомых нам развёрнутых всего двумя особенностями:

  • Буквы C не пишутся. Предполагается, что каждый угол изображаемой геометрической фигуры содержит атом углерода.
  • Буквы H тоже не пишутся. Если в углу сходятся меньше четырёх линий, то это означает, что все оставшиеся заняты водородом.

Конечно, скелетные формулы не так просты, как развёрнутые, но зато их гораздо легче записывать.
Поэтому в органической химии это самый популярный вид формул. И мне кажется, Вам тоже будет несложно к ним привыкнуть.

Давайте посмотрим, как выглядят формулы других веществ, производных от бензола.

Вещество Развёрнутая формула Скелетная формула Смешанный вариант Брутто-формула
Нафталин C/C<`|H>\C</H>|C<H>`//C<|H>`C`|`\C<`|H>`/C<`H>||C<`/H>C/`/|H /\|`//“|`\`/||// C10H8
Толуол H|C|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H; H-#2-H |\|`//“||/ CH3|\|`//“||/
Кумол HCC/C/H; H|#2|H; H|#4|H; H|#3|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H </>|\|`//“||/ H3C</CH3>|\|`//“||/

Как видите, появился ещё и смешанный вариант. Опять какой-то новый вид формул? На этот раз уже нет.
Просто иногда внутри одной формулы удобно сочетать различные способы.

А вот скелетная формула углеводорода, который называется коронен. Причём, другие варианты здесь уже использовать нет смысла.

|/`/|“/|`|“|/`/“||/\/\|||`/|`//“/`\`|/`/“||/

Впечатляет? Но это далеко не самая сложная структура для органического вещества.
Так что теперь Вы понимаете, почему скелетные формулы так популярны….

Скелетные формулы существуют не только для циклических молекул.
Понятно, что метан и этан имеют слишком мало узлов, поэтому для них не стоит пытаться использовать скелетные формулы.
А вот какая-нибудь длинная молекула изображается довольно легко.
Только не в виде прямой цепочки, а при помощи ломаной линии, ведь атомы углерода изображаются углами.

Бутан Бутен Изобутан Гексан
// /// |`|0/ ///

Трехмерные изображения

Иногда плоского изображения становится недостаточно.
Поэтому для изображения трехмерных структурных формул используют особое изображение для химических связей:

{A}<`wB><|wB>/wB Такая химическая связь означает, что А находится в плоскости листа, а В расположено ближе к наблюдателю.
{A}<`dB><|dB>/dB а здесь В расположено от наблюдателя дальше, чем плоскость листа. То есть, А ближе, чем В

В качестве примера посмотрим на формулы уже известных нам углеводородов:

Метан Пропан Циклопропан Циклопентан
H|C<`/H><_(A65,w+)H>_(A20,d+)H $slope(45)H|C<_(A170,d+)H><`/wH>C<`/wH><dH>/C<wH><_(A10,d+)H>`|H C_(x1.3)C_q3C_q3; H_(A-20,w-)#1_(A110,d+)H; H_(A-160,w-)#2_(A80,d+)H; H_(A65,w-)#3_(A-65,d+)H _(x1,y.5,W+)_(x1.5)_(x.5,y-1.5,W-)_(x-1.3,y1.1)_#1; $slope(60)H#1`/H; H#2`/H; H_(A140)#3H; H|#4-H; H#5_(y1.2)H

Конечно, здесь потребуется включать воображение, чтобы представить трёхмерную структуру.
Но зато теперь Вы не растеряетесь, увидев подобную запись.

Формулы с окружностью

Думаю, что стоит упомянуть ещё одну интересную конструкцию, которая нередко встречается при изображении циклических структур.
Вот перед Вами несколько скелетных формул уже известного нам бензола:

/\|`//“|| <-> /=`//`-`\ <-> //||`/`\`| <-> /|`/“|_o <-> H|</H>|<H>`/<|H>`<`/H>`|<`H>/_o

Само собой, все они означают одно и то же. Но первые три отличаются только поворотом вокруг собственного центра.
Тут нет ничего необычного, ведь молекулы не стоят на одном месте.
А вот дальше мы видим кружок вместо трёх двойных связей.
Причём, я намеренно изобразил все атомы водорода в последней формуле.
Чтобы было хорошо видно, что каждый угол фактически лишился одной чёрточки. Их заменил кружок.
Он как бы означает, что все двойные связи равномерно распределены внутри кольца.

Формулы бензола, где используется чередование одинарных и двойных связей называются формулами Кекуле в честь немецкого учёного,
который внёс значительный вклад в исследование структуры бензола.

На самом деле, среди химиков нет единого мнения по поводу того, насколько правильно использование формул с кружком.
Некоторые авторы категорически против. Но есть масса публикаций, где такая запись широко употребляется.
Моя задача состоит в том, чтобы Вы узнали о существовании подобных формул и не удивлялись, увидев их.

Вот пара примеров записи уже для уже знакомых нам веществ:

Нафталин: /|`/“|_o“/|/_o Толуол: `/`-`/-_o-CH3

Знакомство с кислородом. Спирты

До сих пор мы знакомились со структурными формулами углеводородов, которые состоят только из углерода и водорода.
Думаю, пора познакомиться с новым элементом – кислородом. Он обозначается латинской буквой O.
Его валентнсть равна 2. То есть, каждая буква O в структурных формулах должна снабжаться двумя палочками.

Кислород – очень распространённый элемент на нашей планете.
Он входит в состав большого количества органических и неорганических веществ.
Но мы начнём знакомство с группы веществ, называемых спиртами:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метанол
(метиловый спирт)
H-C-O-H; H|#C|H CH3-OH OH
Этанол
(этиловый спирт)
H-C-C-O-H; H|#2|H; H|#3|H CH3-CH2-OH /OH
1-Пропанол
(пропиловый спирт)
H-C-C-C-O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-OH //OH
2-Пропанол
(изопропиловый спирт)
H-C-C-C-H; H|#2|H; H|#3|O|H; H|#4|H CH3-CH<|OH>-CH3 <|OH>/

Не правда ли, что в этом есть что-то знакомое? Метан – метанол, этан – этанол, пропан – пропанол.
Да, можно сказать, что спирт получается из углеводорода, если заменить один атом -H на группу -O-H
(или -OH в упрощенных структурных формулах).
Химики называют её: гидроксильная группа, по латинским названиям водорода и кислорода.
А иногда она даже называется спиртовой группой.

Все спирты можно описать в виде обобщённой формулы {R}-OH,
где OH – гидроксильная группа, а R – остальная часть молекулы органического вещества.

Конечно же стоит упомянуть, что этанол – это тот самый спирт, который входит в состав алкогольных напитков.
Другие представленные здесь спирты по запаху, цвету и даже вкусу довольно похожи на этиловый спирт.
Но они очень вредны для здоровья человка. Например, один глоток метанола может оставить человека слепым на всю жизнь.
А если выпить больше, то это можеть оказаться фатальным для жизни.

Ещё здесь из четырёх спиртов есть два изомера: 1-пропанол и 2-пропанол.
У них одинаковые брутто-формулы, хотя вещества это разные.
Их молекулы отличаются номером углеродного атома, к которому крепится группа OH.
Возможно, Вы спросите, почему у 1-пропанола гидроксильная группа присоединена к третьему, а не к первому атому углерода?
Тут следует вспомнить, что молекулы не находятся в одном положении. Они постоянно крутятся. И вполне могут развернуться как угодно:

CH3-CH2-CH2-OH = $slope(45)CH3CH2CH2OH = CH3|CH2|CH2|OH = HO/CH2/CH2/CH3 =
HO-CH2-CH2-CH3; @:Cx(n,t)#&n_(y.7,N0)$itemColor1(gray)”&t”@(2,1); @Cx(3,2); @Cx(4,3)

Поэтому первый номер – тот, который ближе к гидроксильной группе.

Все спирты, с которыми мы уже успели познакомиться, имеют в своём составе одну гидроксильную группу.
Химики называют их одноатомные спирты. Но существуют вещества с различным количеством гидроксильных групп.
Они соответственно называются двухатомные спирты, трёхатомные спирты и так далее…
В качестве примера трёхатомного спирта можно привести достаточно известное вещество – глицерин:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H-C-C-C-H; $slope(45)H`/O|#2|H; H`/O|#3|H; H`/O|#4|H OH|CH2-CH<`|OH>-CH2`|OH HO/<`|OH>/OH

Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества – холестерина.
Далеко не все знают, что он является одноатомным спиртом!

|`/`\`|<`|w>“/|<`/w$color(red)HO$color()>/`|0/`|/<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`|dH;
#a_(A-72)<_(A-120,d+)>-/-/<->`

Гидроксильную группу в нём я обозначил красным цветом.

Карбоновые кислоты

Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет.
Но химики знают причину – если к спирту присоединить ещё один атом кислорода, то получится кислота.

Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метановая кислота
(муравьиная кислота)
H/C`|O|OH HCOOH O//OH
Этановая кислота
(уксусная кислота)
H-C-C<//O>O-H; H|#C|H CH3-COOH /`|O|OH
Пропановая кислота
(метилуксусная кислота)
H-C-C-C<//O>O-H; H|#2|H; H|#3|H CH3-CH2-COOH /`|O|OH
Бутановая кислота
(масляная кислота)
H-C-C-C-C<//O>O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH //`|O|OH
Обобщённая формула {R}-C<//O>O-H {R}-COOH или {R}-CO2H {R}/`|O|OH

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH),
которая и придаёт таким веществам кислотные свойства.

Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты.
Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) – вода.
Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

Карбоновые кислоты могут иметь несколько карбоксильных групп.
В этом случае они называются: двухосновная, трёхосновная и т.д…

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Щавелевая кислота Молочная кислота Яблочная кислота Лимонная кислота
HOOC-COOH H3C<|OH>/COOH HOOC/<`|OH>COOH HOOC/<`|COOH><|OH>/COOH
двухосновная карбоновая кислота оксикарбоновая кислота Двухосновная оксикарбоновая кислота Трёхосновная оксикарбоновая кислота

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся.
Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов.
Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Радикалы – это ещё одно понятие, которое оказало влияние на химические формулы.
Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты – {R}-OH и
карбоновые кислоты – {R}-COOH. Напомню, что -OH и -COOH – это функциональные группы.
А вот R – это и есть радикал. Не зря он изображается в виде буквы R.

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода.
Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия.
Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов.
И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

Название Структурная формула Обозначение Краткая формула Пример спирта
Метил CH3-{} Me CH3 {Me}-OH CH3OH
Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
Изопропил H3CCH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
Фенил `/`=`//-\-{} Ph C6H5 {Ph}-OH C6H5OH

Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов.
Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно.
Например, CH3-CH2-OH превращается в C2H5OH.
А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

Существует ещё такое явление, как свободные радикалы.
Это радикалы, которые по каким-то причинам отделились от функциональных групп.
При этом нарушается одно из тех правил, с которых мы начали изучение формул:
число химических связей уже не соответствует валентности одного из атомов.
Ну или можно сказать, что одна из связей становится незакрытой с одного конца.
Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот.
Он обозначается латинской буквой N и имеет валентность, равную трём.

Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Аминометан
(метиламин)
H-C-N</H>H;H|#C|H CH3-NH2 NH2
Аминоэтан
(этиламин)
H-C-C-N</H>H;H|#C|H;H|#3|H CH3-CH2-NH2 /NH2
Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>dCH3 /N<_(y-.5)H>
Аминобензол
(Анилин)
HN</H>|C\C</H>|C<H>`//C<|H>`C<`/H>`||C<`H>/ NH2|C\CH|CH`//C<_(y.5)H>`HC`||HC/ NH2||`/“|/_o
Триэтиламин $slope(45)H-C-C/NC-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 /N<`|/>|

Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины.
Функциональная группа {}-NH2 называется аминогруппой.
Вот несколько обобщающих формул аминов:

По числу замещённых атомов водорода По числу аминогрупп в молекуле
Первичный амин {R}-NH2 Моноамин {R}-NH2
Вторичный амин {R1}-NH-{R2} Диамин H2N-{R}-NH2
Третичный амин {R1}-N<`|{R3}>-{R2} Триамин H2N-{R}(*`|NH2*)-NH2

В общем, никаких особых новшеств здесь нет.
Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии,
используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии.
Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая.
Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды.
Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева.
А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

Так вот, ничего этого я рассказывать не буду. Тема моей статьи – химические формулы.
А с ними как раз всё относительно просто.
Наиболее часто в неорганической химии употребляются рациональные формулы.
И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

Для начала, познакомимся с ещё одним элементом – кальцием. Это тоже весьма распространённый элемент.
Обозначается он Ca и имеет валентность, равную двум.
Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

Вещество Структурная формула Рациональная формула Брутто-формула
Оксид кальция Ca=O CaO
Гидроксид кальция H-O-Ca-O-H Ca(OH)2
Карбонат кальция $slope(45)Ca`/OC|O`|/O`#1 CaCO3
Гидрокарбонат кальция HO/`|O|O/CaO/`|O|OH Ca(HCO3)2
Угольная кислота H|OC|O`|/O`|H H2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой.
Но пока что не очень понятно, как они получаются.
Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Кальций в чистом виде – это мягкий белый металл. В природе он не встречается.
Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха.
Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
Итак, реакция кальция с кислородом:

2Ca + O2 -> 2CaO

Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
Из кальция и кислорода получается оксид кальция.
Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

CaO + H2O -> Ca(OH2)

Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно,
что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт,
а если к металлу – то гидроксид.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа.
Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов,
при пожарах и извержениях вулканов.
Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

CO2 + H2O <=> H2CO3

Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой
и превращается в малорастворимый карбонат кальция:

Ca(OH)2 + H2CO3 -> CaCO3″|v” + 2H2O

Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая
реакция образования кислой соли – гидрокарбоната кальция, который хорошо растворим в воде

CaCO3 + CO2 + H2O <=> Ca(HCO3)2

Этот процесс влияет на жесткость воды.
При повышении температуры гидрокарбонат обратно превращается в карбонат.
Поэтому в регионах с жесткой водой в чайниках образуется накипь.

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы.
Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д…
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы.
Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

OH Гидроксильная группа
CO3 Карбонат – соль угольной кислоты
HCO3 Гидрокарбонат – кислая соль угольной кислоты

Кроме того, отдельные элементы – Ca, H, O(в оксидах) – тоже являются самостоятельными группами.

Ионы

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо.
А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают.
Электроны – это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд.
Если он отдал электрон, то его заряд становится положительным, а если принял – то отрицатеньным.
Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион.
Для этого существует специальная запись в химических формулах:

H2O <=> H^+ + OH^-

Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный
ион водорода и отрицательно заряженную группу OH.
Ион OH^- называется гидроксид-ион.
Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы.
Знак + или – в верхнем правом углу демонстрирует заряд иона.
А вот угольная кислота никогда не существует в виде самостоятельного вещества.
Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

Отрицательно заряженные ионы называются анионы. Обычно к ним относятся кислотные остатки.
Положительно заряженные ионы – катионы. Чаще всего это водород и металлы.

И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним – анион.
Даже если формула не содержит никаких зарядов.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами.
Вот скелетная формула гидрокарбонат-аниона:

O^-|O`|/OH

Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки.
Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле.
С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка.
Как всегда, подобный факт нужно продемонстрировать на примере.
Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
А таким веществом является аммиак. Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки.
Аммиак является соединением водорода и азота и имеет рациональную формулу NH3.
Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

NH3 + H2O <=> NH4^+ + OH^-

То же самое, но с использованием структурных формул:

H|N<`/H>H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

В правой части мы видим два иона.
Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака.
Но этот атом переместился без своего электрона. Анион нам уже знаком – это гидроксид-ион.
А катион называется аммоний. Он проявляет свойства, схожие с металлами.
Например, он может объединиться с кислотным остатком.
Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония:
(NH4)2CO3.
Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-C|O`|/O^- <=>
H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><H>`|H

Но в таком виде уравнение реакции дано в демонстрационных целях.
Обычно уравнения используют рациональные формулы:

2NH4^+ + CO3^2- <=> (NH4)2CO3

Система Хилла

Итак, можно считать, что мы уже изучили структурные и рациональные формулы.
Но есть ещё один вопрос, который стоит рассмотреть подробнее.
Чем же всё-таки отличаются брутто-формулы от рациональных?
Мы знаем почему рациональная формула угольной кислоты записывается H2CO3, а не как-то иначе.
(Сначала идут два катиона водорода, а за ними карбонат-анион).
Но почему брутто-формула записывается CH2O3 ?

В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой,
ведь в ней нет повторяющихся элементов. В отличие от NH4OH или
Ca(OH)2.
Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов.
Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
Вот и выходит CH2O3 – углерод, водород, кислород.
Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

Вместо заключения мне хотелось бы рассказать о системе CharChem.
Она разработана для того, чтобы все те формулы, которые мы тут обсуждали,
можно было легко вставить в текст.
Собственно, все формулы в этой статье нарисованы при помощи CharChem.

Зачем вообще нужна какая-то система для вывода формул?
Всё дело в том, что стандартный способ отображения информации в интернет-браузерах – это язык гипертекстовой разметки (HTML).
Он ориентирован на обработку текстовой информации.

Рациональные и брутто-формулы вполне можно изобразить при помощи текста.
Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом,
например спирт CH3-CH2-OH.
Хотя для этого пришлось бы в HTML использовать такую запись:
CH<sub>3</sub>-CH<sub>2</sub>-OH.
Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу?
В принципе, можно использовать моноширинный шрифт:

    H H
    | |
  H-C-C-O-H
    | |
    H H

Выглядит конечно не очень красиво, но тоже осуществимо.

Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул.
Здесь не остаётся иного пути, кроме подключения растрового изображения.
Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
Для создания таких файлов требуется графический редактор. Например, Фотошоп.
Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
Гораздо лучше с этой задачей справляются
молекулярные редакторы.
Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
Например, число формул в этой статье равно .
Из них выведены виде графических изображений (остальные при помощи средств HTML).

Система CharChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически.
Потому что CharChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф),
а затем с этой структурой можно выполнять различные действия.
Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу,
проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Таким образом, для подготовки этой статьи я пользовался только текстовым редактором.
Причём, мне не пришлось думать, какая из формул будет графической, а какая – текстовой.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи:

Текстовое описание CharChem Выводимый результат Сгенерированная брутто-формула
(NH4)2CO3 (NH4)2CO3
H-C-C-O-H; H|#2|H; H|#3|H H-C-C-O-H; H|#2|H; H|#3|H
CH3|\|`//“||/ CH3|\|`//“||/

Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат.
Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом ;
Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия,
которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов и /.
Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы CharChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Краткий толковый словарь использованных в статье терминов

Углеводороды
Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул.
Структурные формулы
схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи – чёрточками.
Структурные формулы бывают развёрнутыми, упрощёнными и скелетными.
Развёрнутые структурные формулы
– такие структурные формулы, где каждый атом представлен в виде отдельного узла.
Упрощённые структурные формулы
– такие структурные формулы, где атомы водорода записаны рядом с тем элементом,
с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа.
Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы.
Скелетные формулы
– структурные формулы, где атомы углерода изображаются в виде пустых узлов.
Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле.
Для узлов, образованных не углеродом, применяются правила упрощённых формул.
Брутто-формула
(она же истинная формула) – список всех химических элементов,
которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется)
Система Хилла
– правило, определяющее порядок следования атомов в брутто-формуле:
первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке.
Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла.
Функциональные группы
Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций.
Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

Добавить комментарий