Известен угол альфа как найти бета

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение треугольников.

Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.

Эта математическая программа находит сторону ( c ), углы ( alpha ) и ( beta ) по заданным пользователем сторонам ( a, b ) и углу между ними ( gamma )

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Введите стороны ( a, b ) и угол между ними ( gamma ) Решить треугольник

Угол альфа и угол бета. Расшифровка

Популярные материалы

За сегодня:

Угол альфа и угол бета. Расшифровка

Положение суставов и головки бедренной кости оценивается не только визуально. Для определения их состояния используется специальное измерение углов по таблице Графа. Есть угол Альфа и угол Бета.

  • Альфа обозначает развитие костной части ветлужной ямки.
  • Бета описывает хрящевое пространство внутри ветлужной впадины.

Для здоровых детей считается нормальным, если угол Альфа составляет более 60 градусов, а угол Бета — менее 55 градусов.

Небольшое превышение нормы в 55 градусов допустимо, такой сустав считается нормальным, зрелым. Но если угол Бета составит 77 градусов, врач поставит в заключении подозрение на вывих или подвывих. Также на патологию указывает угол Альфа, который находится в диапазоне от 43 градусов.

Норма углов в таблице выглядит следующим образом.

Более 60 градусов

В пределах 55 градусов

Зрелый здоровый сустав

Менее 55 градусов, плотно облегает головку бедра

Физиологически незрелый сустав

Менее 55 градусов

Круглый, почти плоский

Менее 77 градусов

Более 77 градусов

Уплощенный или плоский

Менее 43 градусов

Не охватывает головку

Децентрация, полная незрелость сустава

В ходе роста ребенка показатели могут меняться, именно это будет учитывать доктор во время проведения УЗИ. Если ребенку уже исполнилось четыре месяца, наиболее правильным и точным методом обследования станет рентгеновский снимок.

В случае обнаружения проблем врачи стараются обследовать одновременно и костное строение малого таза. Довольно часто патология тазобедренного сустава отражается именно на нем.

В заключении доктор может быть немногословен и предпочтет ограничиться буквенно-числовым обозначением типа сустава, обнаруженного у ребенка. Запомните, что здоровый сустав всегда обозначается как 1А или 1В.

Если в заключении указано, что обнаружен сустав 2А или 2В, это означает, что у ребенка есть признаки физиологической незрелости, которая пройдет самостоятельно с огромной вероятностью, но все-таки потребует наблюдения у детского ортопеда.

Сустав 2С — сустав с признаками предвывиха. Обязательно требуется наблюдение у врача и выполнение всех его рекомендаций. 3А и 3В — суставы с подвывихом. Самая тяжелая патология — сустав 4 типа. Именно так обозначается тазобедренный сустав с признаками вывиха (дисплазии).

Угол альфа в физике. Что такое угол альфа?

Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. У г о л , образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол альфа .

Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях.

Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (-), поскольку находятся ниже изоэлектрической линии, а зубец R – знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).

Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°.

Если угол альфа находится в пределах 50-70° , говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической ось сердца вправо угол альфа будет определяться в пределах 70-90° . В обиходе такое положение электрической оси сердца называют правограммой .

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса .
Определяя угол альфа в пределах 50-0° говорят об отклонении электрической оси сердца влево, или о левограмме .
Изменение угла альфа в пределах 0 – минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме .
И наконец, если значение угла альфа будет меньше минус 30° (например, минус 45°) – говорят о блокаде передней ветви левой ножки пучка Гиса .

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.
Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.

В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием “определяющий зубец” комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S. Говорят о “желудочковом комплексе R-типа”, подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в “желудочковом комплексе S-типа” определяющим зубцом комплекса QRS является зубец S.

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма) . Схематично это условие записывается как RI-SIII.

Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма) .
Упрощенно это условие записывается как SI-RIII.

Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так , что его направление совпадает с направлением оси II стандартного отведения.

На рисунке видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец R в I стандартном отведении превосходит зубец RIII. При таком условии соотношения зубцов R в различных стандартных отведениях мы имеем нормальное положение электрической оси сердца (электрическая ось сердца не отклонена). Краткая запись этого условия – RII>RI>RIII.

Угол альфа символ. Угол атаки

Датчики углов атаки у ракеты «воздух-воздух»

Для самолёта в горизонтальном прямолинейном полёте увеличение скорости и угла атаки приводит к увеличению подъёмной силы , создаваемой крылом. В то же время увеличение угла атаки сопровождается ростом.

Торпедоносец/пикирующий бомбардировщик Supermarine Type 322 , истребитель палубного базирования Воут F-8 «Крусейдер» (Vought F-8 Crusader, 1953 г.) и прототип бомбардировщика Martin XB-51 ( англ. ) (1949 г.) имели изменяемый в полёте угол установки крыла.

Угол альфа в треугольнике. Как найти угол в прямоугольном треугольнике

Здравствуйте!
Как найти угол в прямоугольном треугольнике? Расскажите, пожалуйста, как можно подробнее.
Спасибо!

Прежде, чем разобрать вопрос о том, как найти угол в прямоугольном треугольнике , рассмотрим основные свойства такого вида треугольников. Первое, что нас будет интересовать — это углы данного треугольника. Поскольку треугольник прямоугольный, то один его угол будет прямым, то есть равным 90 градусов. Известно, что если сложить все углы любого из треугольников, то получим 180 градусов. Соответственно, если один из углов в прямоугольном треугольнике равен 90 градусов, то сумма двух других будет равна 180 — 90 = 90 градусов. Следовательно, достаточно найти один из двух острых углов, и тогда легко можно вычислить и величину второго острого угла:
ugol1 = 90 — ugol2.
Зная две любые стороны прямоугольного треугольника и используя определения основных из тригонометрических функций, можно найти величину любого угла прямоугольного треугольника.
Например, если известна длина любого из катетов и длина гипотенузы, то можно вычислить синус или косинус одного из острых углов. А если даны длины обоих катетов. То можно вычислить значение тангенса или котангенса любого из острых углов.

Далее необходимо вычислить с помощью таблицы значений тригонометрических функций величину угла и рассчитать значение второго острого угла по выше упомянутой формуле:
ugol1 = 90 — ugol2.

Угол альфа, как определить. Таблица определения положения электрической оси сердца (по Дьеду)

Таблица определения угла альфа

Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме.

При отклонении электрической ось сердца вправо угол альфа будет определяться в пределах 70—90°. В обиходе такое положение электрической оси сердца называют правограммой.

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса.

Определяя угол альфа в пределах 50—0° говорят об отклонении электрической оси сердца влево, или о левограмме.

Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме.

И наконец, если значение угла альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса.

Пределы отклонения электрической оси сердца

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.

Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.

В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием «определяющий зубец» комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S .

Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.

Сопоставление зубцов R и S комплекса QRS

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).

Схематично это условие записывается как RI-SIII.

Визуальное определение электрической оси сердца. Левограмма

Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма).

Упрощенно это условие записывается как SI-RIII.

Визуальное определение электрической оси сердца. Правограмма

Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.

[spoiler title=”источники:”]

http://www.math-solution.ru/math-task/triangles2

http://shkola-krasoty.com/novosti/ugol-alfa-i-ugol-beta-rasshifrovka

[/spoiler]

Как выразить угол Бетта?

Аура Мебель



Ученик

(229),
на голосовании



10 лет назад

Голосование за лучший ответ

Капитан Гугл

Искусственный Интеллект

(145967)


10 лет назад

Бета пишется через одну т.
И если дан только угол альфа – то никак; из теоремы косинусов можно получить, что угол бета зависит от альфы и отношения помеченных сторон; но поскольку для этих сторон дана только теорема Пифагора с одной неизвестной, они могут иметь практически любое отношение.

Как найти угол альфа формула

Содержание

  • Синус, косинус, тангенс и котангенс. Определения
  • Угол поворота
  • Числа
  • Тригонометрические функции углового и числового аргумента
  • Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла ( sin α ) — отношение противолежащего этому углу катета к гипотенузе.

Косинус угла ( cos α ) — отношение прилежащего катета к гипотенузе.

Тангенс угла ( t g α ) — отношение противолежащего катета к прилежащему.

Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).

Синус (sin) угла поворота

Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y

Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α = х

Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x

Котангенс угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )

При решении практических примеров не говорят “синус угла поворота α “. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами ( 1 , 0 ).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).

Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. Угол, образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол альфа.

Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях. Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (—), поскольку находятся ниже изоэлектрической линии, а зубец К — знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).

Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°. Таблица определения положения электрической оси сердца (по Дьеду)

Таблица определения угла альфа

Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической оси сердца вправо угол альфа будет определяться в пределах 70—90°. В обиходе такое положение электрической оси сердца называют правограммой.

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса. Определяя угол альфа в пределах 50—0° говорят об отклонении электрической оси сердца влево, или о левограмме. Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме. И наконец, если значение у г л а альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса.

Пределы отклонения электрической оси сердца

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой. Однако определить отклонение электрической оси сердца можно и без необходимых таблиц. В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса комплекса QRS, заменяют визуально понятием «определяющий зубец» сопоставляя по абсолютной величине зубцы R и S . Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец К. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.

Сопоставление зубцов К и 3 комплекса QRS

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).

Схематично это условие записывается как RI-SIII.

Визуальное определение электрической оси сердца

. Левограмма Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма). Упрощенно это условие записывается как SI-RIII.

Визуальное определение электрической оси сердца

. Правограмма Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.

Нормальное положение электрической оси сердца

(нормограмма) На рисунке видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец К в I стандартном отведении превосходит зубец RIII. При таком условии соотношения зубцов R в различных стандартных отведениях мы имеем нормальное положение электрической оси сердца (электрическая ось сердца не отклонена). Краткая запись этого условия — RII>RI>RIII.

Наиболее часто встречающиеся тригонометрические формулы:

(lacktriangleright) Основные тождества: [egin <|l|l|>hline sin^2 alpha+cos^2 alpha =1& mathrm, alpha cdot mathrm, alpha =1 &(sinalpha
e 0, cosalpha
e 0)[0.5ex] hline & mathrm, alpha=dfrac<sin alpha> <cos alpha>&mathrm, alpha =dfrac<cos alpha> <sin alpha>& 1+mathrm^2, alpha =dfrac1 <cos^2 alpha>& 1+mathrm^2, alpha=dfrac1<sin^2 alpha>& (cosalpha
e 0)& (sinalpha
e 0) hline end]

(lacktriangleright) Формулы сложения углов: [egin <|l|r|>hline & sin<(alphapm eta)>=sinalphacdot cosetapm sinetacdot cosalpha & cos<(alphapm eta)>=cosalphacdot coseta mp sinalphacdot sineta & hline & mathrm, (alphapm eta)=dfrac<mathrm, alphapm mathrm, eta><1 mp mathrm, alphacdot mathrm, eta> & mathrm, (alphapmeta)=-dfrac<1mp mathrm, alphacdot mathrm, eta><mathrm, alphapm mathrm, eta>& cosalphacoseta
e 0&sinalphasineta
e 0 hline end]

(lacktriangleright) Формулы двойного и тройного углов: [egin <|lc|cr|>hline sin <2alpha>=2sin alphacos alpha & qquad &qquad & cos<2alpha>=cos^2alpha -sin^2alpha sin alphacos alpha =dfrac12sin <2alpha>&& & cos<2alpha>=2cos^2alpha -1 & & & cos<2alpha>=1-2sin^2 alpha hline &&& mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>&&& cosalpha
e 0, cos2alpha
e 0 &&& sinalpha
e 0, sin2alpha
e 0 hline &&& sin <3alpha>=3sin alpha -4sin^3alpha && & cos<3alpha>=4cos^3alpha -3cos alpha&&& hline end]

(lacktriangleright) Формулы понижения степени: [egin <|lc|cr|>hline &&& sin^2alpha=dfrac<1-cos<2alpha>>2 &&& cos^2alpha=dfrac<1+cos<2alpha>>2&&& hline end]

(lacktriangleright) Формулы произведения функций: [egin <|c|>hline sinalphasineta=dfrac12igg(cos<(alpha-eta)>-cos<(alpha+eta)>igg)\ cosalphacoseta=dfrac12igg(cos<(alpha-eta)>+cos<(alpha+eta)>igg)\ sinalphacoseta=dfrac12igg(sin<(alpha-eta)>+sin<(alpha+eta)>igg)\ hline end]

(lacktriangleright) Выражение синуса и косинуса через тангенс половинного угла: [egin <|l|r|>hline & sin<2alpha>=dfrac<2mathrm, alpha><1+mathrm^2, alpha> & cos<2alpha>=dfrac<1-mathrm^2, alpha><1+mathrm^2, alpha>& cosalpha
e 0 & sinalpha
e 0 hline end]

(lacktriangleright) Формула вспомогательного аргумента: [egin <|c|>hline ext<Частный случай> hline sinalphapm cosalpha=sqrt2cdot sin<left(alphapm dfrac<pi>4
ight)>\ sqrt3sinalphapm cosalpha=2sin<left(alphapm dfrac<pi>6
ight)>\ sinalphapm sqrt3cosalpha=2sin<left(xpm dfrac<pi>3
ight)>\ hline ext<Общий случай> hline asinalphapm bcosalpha=sqrtcdot sin<(alphapm phi)>, cosphi=dfrac a<sqrt>, sinphi=dfrac b<sqrt>\ hline end]

Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.

Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.

(lacktriangleright) Вывод формулы косинуса разности углов (cos<(alpha -eta)>=cosalphacoseta+sinalphasineta)

Рассмотрим тригонометрическую окружность и на ней углы (alpha) и (eta) . Пусть этим углам соответствуют точки (A) и (B) соответственно. Тогда координаты этих точек: (A(cosalpha;sinalpha), B(coseta;sineta)) .

Рассмотрим ( riangle AOB: angle AOB=alpha-eta) . По теореме косинусов:

(AB^2=AO^2+BO^2-2AOcdot BOcdot cos(alpha-eta)=1+1-2cos(alpha-eta) (1)) (т.к. (AO=BO=R) – радиус окружности)

По формуле расстояния между двумя точками на плоскости:

Таким образом, сравнивая равенства ((1)) и ((2)) :

Отсюда и получается наша формула.

(lacktriangleright) Вывод остальных формул суммы/разности углов:

Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения (sin x=cos(90^circ-x)) и (cos x=sin (90^circ-x)) :

разделим числитель и знаменатель дроби на (cosalphacoseta
e 0)
(при (cosalpha=0 Rightarrow mathrm,(alphapmeta)=mp mathrm,eta) , при (coseta=0 Rightarrow mathrm,(alphapmeta)=pm mathrm,alpha) ):

Таким образом, данная формула верна только при (cosalphacoseta
e 0) .

5) Аналогично, только делением на (sinalphasineta
e 0) , выводится формула котангенса суммы/разности двух углов.

(lacktriangleright) Вывод формул двойного и тройного углов:

Данные формулы выводятся с помощью предыдущих формул:

1) (sin 2alpha=sin(alpha+alpha)=sinalphacosalpha+sinalphacosalpha=2sinalphacosalpha)

Используя основное тригонометрическое тождество (sin^2alpha+cos^2alpha=1) , получим еще две формулы для косинуса двойного угла:

разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0 Rightarrow mathrm,2alpha=0) ):

Таким образом, эта формула верна только при (cosalpha
e 0) , а также при (cos2alpha
e 0) (чтобы существовал сам (mathrm,2alpha) ).

По тем же причинам при (sinalpha
e 0, sin2alpha
e 0) .

5) (sin3alpha=sin(alpha+2alpha)=sinalphacos2alpha+cosalphasin2alpha=sinalpha(1-2sin^2alpha)+cosalphacdot 2sinalphacosalpha=)

6) Аналогично выводится, что (cos3alpha=cos(alpha+2alpha)=4cos^3alpha-3cosalpha)

(lacktriangleright) Вывод формул понижения степени:

Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:

1) (cos2alpha=2cos^2alpha-1 Rightarrow cos^2alpha=dfrac<1+cos2alpha>2)

2) (cos2alpha=1-2sin^2alpha Rightarrow sin^2alpha=dfrac<1-cos2alpha>2)

Заметим, что в данных формулах степень синуса/косинуса равна (2) в левой части, а в правой части степень косинуса равна (1) .

(lacktriangleright) Вывод формул произведения функций:

1) Сложим формулы косинуса суммы и косинуса разности двух углов:

Получим: (cos(alpha+eta)+cos(alpha-eta)=2cosalphacoseta Rightarrow cosalphacoseta=dfrac12Big(cos(alpha-eta)+cos(alpha+eta)Big))

2) Если вычесть из формулы косинуса суммы косинус разности, то получим:

3) Сложим формулы синуса суммы и синуса разности двух углов:

(lacktriangleright) Вывод формул суммы/разности функций:

Обозначим (alpha+eta=x, alpha-eta=y) . Тогда: (alpha=dfrac2, eta=dfrac2) . Подставим эти значения в предыдущие три формулы:

Получили формулу суммы косинусов.

Получили формулу разности косинусов.

Получили формулу суммы синусов.

4) Формулу разности синусов можно вывести из формулы суммы синусов:

Аналогично выводится формула суммы котангенсов.

(lacktriangleright) Вывод формул выражения синуса и косинуса через тангенс половинного угла:

(разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0) и (sin2alpha=0) ):)

2) Так же, только делением на (sin^2alpha) , выводится формула для косинуса.

(lacktriangleright) Вывод формул вспомогательного угла:

Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.

Рассмотрим выражение (asin x+bcos x) . Домножим и разделим это выражение на (sqrt,) :

(asin x+bcos x=sqrtleft(dfrac a<sqrt>sin x+ dfrac b<sqrt>cos x
ight)=sqrtig(a_1sin x+b_1cos xig))

Заметим, что таким образом мы добились того, что (a_1^2+b_1^2=1) , т.к. (left(dfrac a<sqrt>
ight)^2+left(dfrac b<sqrt>
ight)^2=dfrac=1)

Таким образом, можно утверждать, что существует такой угол (phi) , для которого, например, (cos phi=a_1, sin phi=b_1) . Тогда наше выражение примет вид:

(sqrt,ig(cos phi sin x+sin phicos xig)=sqrt,sin (x+phi)) (по формуле синуса суммы двух углов)

Значит, формула выглядит следующим образом: [<large,sin (x+phi),>> quad ext <где >cos phi=dfrac a<sqrt>] Заметим, что мы могли бы, например, принять за (cos phi=b_1, sin phi=a_1) и тогда формула выглядела бы как [asin x+bcos x=sqrt,cos (x-phi)]

(lacktriangleright) Рассмотрим некоторые частные случаи формул вспомогательного угла:

(a) sin xpmcos x=sqrt2,left(dfrac1<sqrt2>sin xpmdfrac1<sqrt2>cos x
ight)=sqrt2, sin left(xpmdfrac<pi>4
ight))

(b) sqrt3sin xpmcos x=2left(dfrac<sqrt3>2sin xpm dfrac12cos x
ight)=2, sin left(xpmdfrac<pi>6
ight))

(c) sin xpmsqrt3cos x=2left(dfrac12sin xpmdfrac<sqrt3>2cos x
ight)=2,sinleft(xpmdfrac<pi>3
ight))

antibamicaco516

antibamicaco516

Вопрос по геометрии:

Дано:
α-β=30°.

Найти:
α,
β.

Изображение к вопросу

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 2

nanghafacaw494

nanghafacaw494

A+b=180 Как смежные
a-b=30 Складываем два уравнения
a=105
b=75

treveaprad962

treveaprad962

α+β=180
Пусть α = x, тогда β=180-x
получается уравнение
х-(180-х)=30
2х=210
х=105

α=105
β=75

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.


Калькулятор онлайн.
Решение треугольников.

Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем
данным элементам, определяющим треугольник.

Эта математическая программа находит сторону ( c ), углы ( alpha ) и ( beta ) по заданным пользователем
сторонам ( a, b ) и углу между ними ( gamma )

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа можно задать не только целые, но и дробные.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Введите стороны ( a, b ) и угол между ними ( gamma )

Наши игры, головоломки, эмуляторы:

Немного теории.

Теорема синусов

Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Стороны треугольника пропорциональны синусам противолежащих углов:
$$ frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} $$

Теорема косинусов

Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное
на косинус угла между ними.

$$ a^2 = b^2+c^2-2ba cos A $$

Решение треугольников

Решением треугольника называется нахождение всех его шести элементов (т.е. трёх сторон и трёх углов) по каким-нибудь трём данным
элементам, определяющим треугольник.

Рассмотрим три задачи на решение треугольника. При этом будем пользоваться такими обозначениями для сторон треугольника ABC:
AB = c, BC = a, CA = b.

Решение треугольника по двум сторонам и углу между ними

Дано: ( a, b, angle C ). Найти ( c, angle A, angle B )

Решение
1. По теореме косинусов находим (c):

$$ c = sqrt{ a^2+b^2-2ab cos C } $$

2. Пользуясь теоремой косинусов, имеем:

$$ cos A = frac{ b^2+c^2-a^2 }{2bc} $$

По ( cos A ) находим ( angle A ) с помощью микрокалькулятора или по таблице.

3. ( angle B = 180^circ -angle A -angle C )

Решение треугольника по стороне и прилежащим к ней углам

Дано: ( a, angle B, angle C ). Найти ( angle A, b, c )

Решение
1. ( angle A = 180^circ -angle B -angle C )

2. С помощью теоремы синусов вычисляем b и c:

$$ b = a frac{sin B}{sin A}, quad c = a frac{sin C}{sin A} $$

Решение треугольника по трём сторонам

Дано: ( a, b, c ). Найти ( angle A, angle B, angle C )

Решение
1. По теореме косинусов получаем:
$$ cos A = frac{b^2+c^2-a^2}{2bc} $$

По ( cos A ) находим ( angle A ) с помощью микрокалькулятора или по таблице.

2. Аналогично находим угол B.
3. ( angle C = 180^circ -angle A -angle B )

Решение треугольника по двум сторонам и углу напротив известной стороны

Дано: ( a, b, angle A ). Найти ( c, angle B, angle C )

Решение
1. По теореме синусов находим ( sin B ) получаем:
$$ frac{a}{sin A} = frac{b}{sin B} Rightarrow sin B = frac{b}{a} cdot sin A $$

Введём обозначение: ( D = frac{b}{a} cdot sin A ). В зависимости от числа D возможны случаи:
Если D > 1, такого треугольника не существует, т.к. ( sin B ) больше 1 быть не может
Если D = 1, существует единственный ( angle B: quad sin B = 1 Rightarrow angle B = 90^circ )
Если D < 1 и a < b, то ( angle B ) имеет два возможных значения: острый ( angle B = arcsin D ) и тупой
( angle B’ = 180^circ – angle B )
Если D < 1 и ( a geqslant b), то ( angle A geqslant angle B ) (против большей стороны лежит больший угол). Т.к. в треугольнике не
может быть двух тупых углов, тупой угол для ( angle B ) исключён, и угол ( angle B = arcsin D ) единственный.

2. ( angle C = 180^circ -angle A -angle B )

3. С помощью теоремы синусов вычисляем сторону c:
$$ c = a frac{sin C}{sin A} $$

Добавить комментарий