Известный энергии время как найти напряжение

Сила Архимеда численно равна весу вытесненной жидкости

ее можно в данном случае определить как разность масс (именно столько вытесняется керосина), помноженной на g

т.е. Fa = (m1 – m2) g = 40 мН

E=16 В
r=2 Ом
Io=2 A

I1 – ?
I2 – ?

 Io= E/ (R+r), отсюда R=E/Io – r , R=16/2-2=6 Ом

а) I1=E/(2R+r),  I1=16/(2*6+2)=1.14 A

б) I2=E/(R/2+r)?,  I2=16/(6/2+2)=3.2 A

///////////////////////////////////////////

<span>линза с меньшим радиусом ( более выпуклая ) имеет меньшее фокусное расстояние и большее увеличение </span>

1)R=קl/S    ק=RS/l=0.4*10^-6
2)U=IR       R=U/I=0.2 Ом
3)I=U1/R1=2A        R2=U2/I=2 Ом
4) Нужна плотность нихромовой проволоки
5)R=R1+R3
R=R2+R4
1/R=1/R+1/R
долго писать)  R=30 Ом кароче
6) –

Мощность, время и энергия

Расчеты

Электрическая мощность является величиной, которая характеризует скорость преобразования или передачи электрической энергии. Для того, чтобы рассчитать мощность (Р), необходимо переданную энергию поделить на время:

P = W / T

где W — энергия, выраженная в джоулях;
Т — время в секундах;
Р — мощность в ваттах.

Единица мощности названа именем английского ученого Джемса Уатта (Ватта)
1 ватт = дж. / сек
1000 ватт равняется 1 киловатту

Если известны мощность и время, находим энергию как произведение этих величин:

W = P × Т

Чтобы определить время, нужно величину энергии поделить на мощность.

Т = W / Р

Быстро и правильно произвести нужные рассчеты вам поможет онлайн калькулятор.

Расчет мощности, времени, энергии онлайн

Закон Джоуля-Ленца

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Закон Джоуля-Ленца

На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.

Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.

Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.

Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:

количество теплоты в проводнике снижается при увеличении площади его сечения;

тепловой эффект снижается при уменьшении длины проводника.

Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.

Природа тепла в проводниках

Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.

При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.

Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.

Теперь представим, что сечение проводника увеличилось. Конечно, столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Уравнение Джоуля-Ленца

Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.

Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.

Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:

Q = IUt = I(IR)t = I 2 Rt

Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.

Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:

Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:

Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.

Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:

При расчетах используют следующие единицы измерения:

количество тепла Q— в джоулях (Дж);

силу тока I — в амперах (А);

сопротивление R — в омах (Ом);

время t — в секундах (с).

Практическое применение

Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.

Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.

Примеры задач

Задача 1

Электроплита подключена к сети с напряжением 220 В. Какое количество тепла выделит ее нагревательный элемент за 50 минут, если известно, что сила тока в цепи составляет 10 А.

Для того, чтобы рассчитать количество тепла, в данном случае подойдет интегральная формула Джоуля-Ленца Q = I 2 Rt, однако мы не знаем, чему равно сопротивление R. Однако согласно закону Ома R = U/I.

Вычислим сопротивление: R = U/I = 220/10 = 22 Ом.

Подставим имеющиеся данные в формулу:

Q = I 2 Rt = 10 2 × 22 × 3000 = 6 600 000 Дж = 6,6 МДж.

Ответ: плита выделит 6,6 мегаджоулей тепла.

Задача 2

Для обогрева дома требуется, чтобы отопительный прибор выделял 125 кДж тепла в час. Напряжение в электрической сети составляет 220 В. Каким должно быть электрическое сопротивление проводника, чтобы обеспечить данную теплоотдачу?

В данном случае подойдет уравнение

Ответ: сопротивление проводника 1393,92 Ом.

Источник

Как найти напряжение если известно время количество теплоты

Формулы, используемые на уроках «Задачи на Закон Джоуля-Ленца»

Название величины

Обозначение

Единица измерения

Формула

Сила тока

I

I = U / R

Напряжение

U

U = IR

Время

t

t = Q / I 2 R

Количество теплоты

Q

Q = I 2 Rt

1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Какое количество теплоты выделит за 20 мин спираль электроплитки сопротивлением 25 Ом, если сила тока в цепи 1,2 А?

Задача № 2. Какое количество теплоты выделит за 30 мин спираль электроплитки, если сила тока в цепи 2 А, а напряжение 220 В?

Задача № 3. Сколько времени нагревалась проволока сопротивлением 20 Ом, если при силе тока 1 А в ней выделилось 6 кДж теплоты.

Задача № 4. Электрическая плитка при силе тока 5 А за 30 мин потребляет 1080 кДж энергии. Рассчитайте сопротивление плитки.

Задача № 5. Какое количество теплоты выделится за 25 мин в обмотке электродвигателя, если ее активное сопротивление равно 125 Ом, а сила тока, протекающего в ней, равна 1,2 А?

Краткая теория для решения Задачи на Закон Джоуля-Ленца.

Это конспект по теме «ЗАДАЧИ на Закон Джоуля-Ленца». Выберите дальнейшие действия:

34 Комментарии

Какое количество теплоты выделяется за 30 мин проволочной спиралью сопротивлением в 20 ом при силе тока 5 а

Q = I^2 • R • t = 25 • 20 • 1800 = 900 кДж.

Два резистора подключены к источнику напряжением 120В последовательно. В первом резисторе сопротивлением 10 Ом за 5минут выделяется 80кДж теплоты. Каково сопротивление второго резистора?

Визначте, на скільки градусів нагріваються 100 г води, якщо на нагрівання їх витрачено всю кількість теплоти, що виділяється при протіканні струму 5 А по провіднику опором 10 Ом протягом 2 хв.​

Дано: m = 100 г = 0,1 кг; I = 5 A; R = 10 Ом; t = 2 мин = 120 с; с = 4200 Дж/(кг•°С)
Решение: Q1 = cmΔt (нагревание воды); Q2 = I^2Rt; Q1 = Q2.
Δt = (I^2Rt) / cm = (5^2 • 10 • 120) / (4200 • 0,1) ≈ 71 °С
Ответ: Δt ≈ 71 °С.

Участок цепи состоит из параллельно соединенных резистора сопротивлением 1,0 Ом и стального проводника длиной 10 м и сечением 1,2 мм2. Определите количество теплоты, выделяющейся в данном участке цепи за 10с, если общая сила тока в участке 3,0 А. Удельное сопротивление стали 1,2 ∙10-2 Ом∙ мм2 /м.

Дано: R = 1 Ом, lп = 10 м, S = 1,2 мм^2, I = 3 A, t = 10 c, ρ = 1,2 ∙10^-2 Ом∙ мм^2/м (видимо выдуманное значение, так как не соответствует реальному 0,12).

Решение: Q = P*t = I^2*Rобщ*t, Rобщ = R*Rп/(R+Rп), Rп = ρ*l/S ⇒ Rобщ = R*ρ*l/(S*R + ρ*l)

Q = P*t = I^2*[R*ρ*l/(S*R + ρ*l)]*t = 3^2*[1*0,012*10/(1,2*1 + 0,012*10)]*10 = 8,18 Дж

Два дроти однакових довжин та перерiзу залiзный та нiкелiновий зьеднанi паралельно. Через них пропускают электричний струм. В якому з них видiлиться бiльша кiлькiсть теплоты? У скiльки разiв? Вiдповiть пояснiть.

Решать по аналогии с этой задачей:
Две проволоки, медная и железная, равной длины и одинаковой площади поперечного сечения включены в цепь параллельно. В какой проволоке выделится большее количество теплоты? Почему?

При параллельном соединении падения напряжения на проволоках одинаковые, и больше тепла выделится на проволоке, которая имеет меньшее удельное сопротивление, т. к. при одинаковом падении напряжения сила тока в ней будет больше по закону Ома I = U/R, соответственно больше нагреется медная проволока, имеющая меньшее сопротивление.

Дано: Р — 1120кг; η – 86.8%. Найти М -?
М- теоретически полученный металл, Р- практически полученный металл, η- выход по току).
Помогите пожалуйста решить

Нагрівник, ККД якого 75%, нагріває воду від 25 до 75 градусів. Його виготовлено з 11м нікелінового дроту з площею перерізу 0,5 міліметрів квадратних. Напруга 220В. Визначте масу води, що проходить через нагрівник за 2 хвилини

Q1/Q = 0.75 (75%)
Q1 = c * m * ▲T (c — удельная теплоёмкость, ▲T — разность температур);
Q = U * I * t (Закон Джоуля-Ленца);
I = U/R (U — напряжение, R — сопротивление провода),
Q = (U^2 * t)/R;
R = p*(l/S) (удельное сопротивление умножить на отношение длины к площади);
Конечная формула: m = (0,75 * U^2 * t * S) / (c * ▲T * p * l).

Задача 1. Дано: I1 = 1 A, R3 =20 Ом, Р1 = 10 Вт, U = 40 B. Користуюсь
законами Ома, Кирхгофа та Джоуля-Ленца розрахувати I2.

Найти сопротивление цепи, которая за 1 мин выделяет в пространство 9 кДж теплоты.
Сила тока в цепи 1 А.

Электроплитка сопротивлением 40 Ом
включена в сеть с напряжением 120 В. Какое
количество теплоты выделится в этой плитке за 5 мин.
Ответ дать в кДж

Для нагрева среды в термостате в течении 19 мин необходимо теплота 240 кДж. На какую мощность должен быть рассчитан электронагреватель термостата, если его кпд равен 64 %? Определить ток, если нагреватель подключен к сети напряжением 230 В.

Яку кількість теплоти виділить дротина опором 11 Ом за 20 хв увімкнена в електричне коло з напругою 220 В?

Определите количество тепла, выделяемого за 20 минут на неподвижном проводе с напряжением 5 В и током 0,01 А.

2. Ток через лампу 2 А. Напряжение на лампе 10 В, что определяет сопротивление провода лампы.
3. Сопротивление катушки варочной панели, подключенной к сети 220 В, составляет 55 Ом, ток в катушке.
4. Вольтметр 12 кОм показывает напряжение 220 В. Какой ток через него протекает?
5. Какое сопротивление у медного провода длиной 100 м и сечением 2 мм2?

6. Катушка электрочайника сопротивлением 30 Ом подключается к сети напряжением 120 В. Определите ток в катушке чайника.

на сколько градусов нагреются 30 кг алюминия потратив 4,6 мдж тепла

В проводнике сопротивлением 20 ом за 30 с выделилось 2400 Дж теплоты Какой силы ток идёт по проводнику

Электрочайник мощностью 1500 Вт забыли выключить.Через какое время выкипет вся вода в чайнике?Объём чайника 2 л,КПД чайника 50%,начальная температура воды 20°С?

на сколько градусов измениться температура 0,2 кг Газа при сообщении ему 390 кг дж. теплоты . уделная теплоемкость газа в этом процессе -650 кг дж. ( кг.К)

Сопротивление 55 Ом при подключении к сети 220В.
Рассчитайте ток в катушке электронагревателя.

Два одинаковых проводника сопротивлением R, работающих от одного источника тока напряжением U, соединяют сначала последовательно, а потом параллельно. Найти отношение количества теплоты, выделившейся в первом случае, к количеству теплоты – во втором.

Сопротивление каждого из двух проводников равно 240 Ом. Напряжение на участке цепи, содержащем эти проводники, равно 120В. Определите силу тока, протекающего по каждому проводнику, при их: а) последовательном соединении; б) параллельном соединении.

Электрическая плитка мощностью 0,6 кВт рассчитана на включение в электрическую сеть напряжением 220 В. Какое количество теплоты выделится в спирали электроплитки за 1 минуту работы?

Электроплитка сопротивлением 40 Ом включена в цепь с напряжением 120 В. Какое количество теплоты выделится в этой плитке за 5 минут.Ответ дать в кДж.

через электрический чайник сопротивлением 50 ом идет ток 5 А. Сколько времени нагревается вода с массой 500 г до температуры 300К

Сила струму в резисторі опором 10 Ом змінюється від I0=1А до I =8А за 4с за законом I = I0еkt.. Визначити заряд, що пройшов через резистор і кількість теплоти, що виділилася в ньому за перші 3 с

Добавить комментарий Отменить ответ

Конспекты по физике:

7 класс

  • Физические величины
  • Строение вещества
  • Механическое движение. Траектория
  • Прямолинейное равномерное движение
  • Неравномерное движение. Средняя скорость
  • ЗАДАЧИ на движение с решением
  • Масса тела. Плотность вещества
  • ЗАДАЧИ на плотность, массу и объем
  • Силы вокруг нас (силы тяжести, трения, упругости)
  • ЗАДАЧИ на силу тяжести и вес тела
  • Давление тел, жидкостей и газов
  • ЗАДАЧИ на давление твердых тел с решениями
  • ЗАДАЧИ на давление жидкостей с решениями
  • Закон Архимеда
  • Сообщающиеся сосуды. Шлюзы
  • ЗАДАЧИ на силу Архимеда с решениями
  • Механическая работа, мощность и КПД
  • ЗАДАЧИ на механическую работу с решениями
  • ЗАДАЧИ на механическую мощность
  • Простые механизмы. Блоки
  • Рычаг. Равновесие рычага. Момент силы
  • ЗАДАЧИ на простые механизмы с решениями
  • ЗАДАЧИ на КПД простых механизмов
  • Механическая энергия. Закон сохранения энергии
  • Физика 7: все формулы и определения
  • ЗАДАЧИ на Сообщающиеся сосуды

8 класс

  • Введение в оптику
  • Тепловое движение. Броуновское движение
  • Диффузия. Взаимодействие молекул
  • Тепловое равновесие. Температура. Шкала Цельсия
  • Внутренняя энергия
  • Виды теплопередачи: теплопроводность, конвекция, излучение
  • Количество теплоты. Удельная теплоёмкость
  • Уравнение теплового баланса
  • Испарение. Конденсация
  • Кипение. Удельная теплота парообразования
  • Влажность воздуха
  • Плавление и кристаллизация
  • Тепловые машины. ДВС. Удельная теплота сгорания топлива
  • Электризация тел
  • Два вида электрических зарядов. Взаимодействие зарядов
  • Закон сохранения электрического заряда
  • Электрическое поле. Проводники и диэлектрики
  • Постоянный электрический ток
  • Сила тока. Напряжение
  • Электрическое сопротивление
  • Закон Ома. Соединение проводников
  • Работа и мощность электрического тока
  • Закон Джоуля-Ленца и его применение
  • Электромагнитные явления
  • Колебательные и волновые явления
  • Физика 8: все формулы и определения
  • ЗАДАЧИ на количество теплоты с решениями
  • ЗАДАЧИ на сгорание топлива с решениями
  • ЗАДАЧИ на плавление и отвердевание
  • ЗАДАЧИ на парообразование и конденсацию
  • ЗАДАЧИ на КПД тепловых двигателей
  • ЗАДАЧИ на Закон Ома с решениями
  • ЗАДАЧИ на сопротивление проводников
  • ЗАДАЧИ на Последовательное соединение
  • ЗАДАЧИ на Параллельное соединение
  • ЗАДАЧИ на Работу электрического тока
  • ЗАДАЧИ на Мощность электрического тока
  • ЗАДАЧИ на Закон Джоуля-Ленца
  • Опыты Эрстеда. Магнитное поле. Электромагнит
  • Магнитное поле постоянного магнита
  • Действие магнитного поля на проводник с током
  • Электромагнитная индукция. Опыты Фарадея
  • Явления распространения света
  • Дисперсия света. Линза
  • Оптические приборы
  • Электромагнитные колебания и волны

9 класс

  • Введение в квантовую физику
  • Формула времени. Решение задач
  • ЗАДАЧИ на Прямолинейное равномерное движение
  • ЗАДАЧИ на Прямолинейное равноускоренное движение
  • ЗАДАЧИ на Свободное падение с решениями
  • ЗАДАЧИ на Законы Ньютона с решениями
  • ЗАДАЧИ закон всемирного тяготения
  • ЗАДАЧИ на Движение тела по окружности
  • ЗАДАЧИ на искусственные спутники Земли
  • ЗАДАЧИ на Закон сохранения импульса
  • ЗАДАЧИ на Механические колебания
  • ЗАДАЧИ на Механические волны
  • ЗАДАЧИ на Состав атома и ядерные реакции
  • ЗАДАЧИ на Электромагнитные волны
  • Физика 9 класс. Все формулы и определения
  • Относительность движения
  • Равномерное прямолинейное движение
  • Прямолинейное равноускоренное движение
  • Свободное падение
  • Скорость равномерного движения тела по окружности
  • Масса. Плотность вещества
  • Сила – векторная физическая величина
  • Первый закон Ньютона
  • Второй закон Ньютона. Третий закон Ньютона
  • Трение покоя и трение скольжения
  • Деформация тела
  • Всемирное тяготение. Сила тяжести
  • Импульс тела. Закон сохранения импульса
  • Механическая работа. Механическая мощность
  • Кинетическая и потенциальная энергия
  • Механическая энергия
  • Золотое правило механики
  • Давление твёрдого тела. Давление газа
  • Закон Паскаля. Гидравлический пресс
  • Закон Архимеда. Условие плавания тел
  • Механические колебания и волны. Звук
  • МКТ. Агрегатные состояния вещества
  • Радиоактивность. Излучения. Распад
  • Опыты Резерфорда. Планетарная модель атома
  • Состав атомного ядра. Изотопы
  • Ядерные реакции. Ядерный реактор

10-11 классы

  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)
  • ЕГЭ Закон Кулона. ЗАДАЧИ с решениями
  • Электрическое поле. ЗАДАЧИ с решениями
  • Потенциал. Разность потенциалов. ЗАДАЧИ с решениями
  • Закон Ома. Соединение проводников. ЗАДАЧИ на ЕГЭ
  • Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Найти конспект:

О проекте

Сайт «УчительPRO» — некоммерческий школьный проект учеников, их родителей и учителей. Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie и других пользовательских данных в целях функционирования сайта, проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Возрастная категория: 12+

(с) 2021 Учитель.PRO — Копирование информации с сайта только при указании активной ссылки на сайт!

Источник

Как найти напряжение, зная силу тока, время и работу

Найди верный ответ на вопрос ✅ «Как найти напряжение, зная силу тока, время и работу …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Физика » Как найти напряжение, зная силу тока, время и работу

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.

Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.

Сопротивление

Формула механической мощности — средняя и мгновенная мощность

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.


Резисторы различных типов

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.

Переменный ток

Im=Vm/Z

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.

Интегральная форма

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.

Формула напряжения тока закона Ома выглядит следующим образом:

I=U/R.

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

P=U∙I.

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Закон Ома для неоднородного участка цепи

Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:

$ E_{эдс} = {A_{cт}over q} $ (1).

Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.

Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:

$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).

Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

$ U_п = φ_1 – φ_2 $ (3).

Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

$ I = {U over R} $ (4).

Рис. 2. Портрет Георга Ома.

Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:

$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).

Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.

Сила тока формула через мощность:

I=P/U;

Сопротивление:

R=U/I.

Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:

R=U2/P.

Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.

Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:

P=U2/R.

Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.

Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.

Облегчить расчеты можно, используя онлайн калькулятор.

Определение через разложение электрического поля

Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.

формула для вычисления напряжения

В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Различные используемые величины

Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:

  • Кило – 1000;
  • Мега – 1000000;
  • Гига – 1000000000;
  • Милли – 0.001.

Таким образом, получается:

  • Киловольт (кВ) – тысяча вольт;
  • Мегаватт (Мвт) – миллион ватт;
  • Миллиом (мОм) – одна тысячная Ом;
  • Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.

Как найти напряжение

Формула нахождения напряжения как разности потенциалов в электрическом поле:

U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.

Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:

U=A/q, где q – величина заряда.

Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.

Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.

Единицы измерения в формуле

Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы

формула напряжения физика

В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.

Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.

Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Измерительные приборы

Для измерения параметров электрических цепей служат измерительные приборы:

  • Вольтметр;
  • Амперметр;
  • Омметр.

Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.

Добавить комментарий