Как через минус найти косинус

Для того, чтобы выразить косинус через синус, вспомним основное тригонометрическое тождество:

sin²α + cos²α = 1.

Таким образом, если известен синус, то косинус найти можно так:

cos²α = 1 – sin²α.

Возможны 2 варианта:

1) cosα = √(1 – sin²α), если угол α находится в 1 четверти (0 < α < 90) или в 4 четверти (270 < α < 360).

2) cosα = – √(1 – sin²α), если угол α находится во 2 четверти (90 < α < 180) или в 3 четверти (180 < α < 270).


Пример

1) Синус угла α = 0,3 и 90 < α < 180. Нужно найти, чему равен косинус угла α.

Так как угол α находится во второй четверти, то косинус будет отрицательным. Выразим его по формуле:

cosα = – √ (1 – 0,09) = -√0,91 = – 0,95.

2) Синус угла α = 0,7 и 270 < α < 360. Выразим косинус.

Так как угол α находится в 4 четверти, то косинус будет положительным.

cosα = √ (1 – 0,49) = √0,51 = 0,71.

минус в аргументе

Примеры: 

(sin⁡(-π)=-sin,⁡π)
(cos⁡(-225^° )=cos⁡, 225^°)
(tg(-frac{π}{2}-x)=-tg(frac{π}{2}+x))

И сразу два важных замечания.

Замечание №1

Многие ученики думают, что если можно вынести минус из тригонометрической функции, то можно вынести и число, но это не так:

(sin⁡,2x≠2 sin,⁡x)
(cos⁡,3x≠3cos,⁡x)
(tg,4x≠4tg,x)

Замечание №2

(sin^2⁡(-x)=sin^2⁡x)
(cos^2⁡(-x)=cos^2⁡x)
(tg^2 (-x)=tg^2 x)
(ctg^2 (-x)=ctg^2 x)

Квадрат меняет ситуацию. Всё дело в том, что (sin^2⁡(-x)=(sin⁡(-x) )^2=(-sin,⁡x )^2=sin^2⁡x), т.е. минус все равно выносится, но так как синуса два и они перемножаются, то в итоге получается плюс.

Примеры из ЕГЭ

Пример (ЕГЭ). Найдите значение выражения (24sqrt{2},cos⁡(-frac{π}{3}),sin⁡(-frac{π}{4})).
Решение. (24sqrt{2},cos⁡(-frac{π}{3}),sin⁡(-frac{π}{4})=-24sqrt{2},cos⁡frac{π}{3},sin⁡frac{π}{4}).

косинус пи на 3, синус пи на4

Из рисунка видно, что и косинус, и синус положителен. Косинус из трех стандартных значений (frac{1}{2}), (frac{sqrt{2}}{2}), (frac{sqrt{3}}{2}) принимает наименьшее т.е. (cos,⁡frac{π}{3}=frac{1}{2}). Синус из трех стандартных значений будет равен среднему т.е. (sin⁡,frac{π}{4}=frac{sqrt{2}}{2}). Получается:

(-24sqrt{2},cos⁡frac{π}{3},sin⁡frac{π}{4}=-24sqrt{2}cdot)(frac{1}{2})(cdot)(frac{sqrt{2}}{2})(=)(frac{-24sqrt{2}cdotsqrt{2}}{4})(=)(frac{-24cdot 2}{4})(=-6cdot2=-12)

Ответ: (-12).

Если вы не поняли почему (frac{π}{3}) и (frac{π}{4}) находятся на круге там, где мы из обозначили, то читайте статью «Как обозначать числа с пи на числовой окружности?». А если не поняли, как мы нашли синус и косинус, то читайте статью «Как найти синус и косинус без тригонометрической таблицы».

Пример (ЕГЭ). Найдите значение выражения (44sqrt{3},tg,(-480^° )).
Решение. (44sqrt{3},tg(-480^° )=-44sqrt{3},tg(480^° )=-44sqrt{3},tg(360^°+120^° )=-44sqrt{3},tg(360^°+90^°+30^°)).

Находим (480^°) на окружности:

тангенс 480 градусов

Соединяем точку, соответствующую (480^°) и центр окружности, и продляем до оси тангенсов:

тангенс 480 градусов

Мы попадаем в самое маленькое (из стандартных) значение тангенса.
Значит, (tg(480^° )=-sqrt{3}).
В итоге имеем: (44sqrt{3} tg(-480^° )=-44sqrt{3}cdot(-sqrt{3})=44cdot 3=132).
Ответ: (132).

Если вам не понятно, как мы нашли значение тангенса, то читайте статью «Как найти тангенс и котангенс без тригонометрической таблицы?».

Доказательства формул с минусом в аргументе:

(1)  Основное тригонометрическое тождество sin2(α) + cos2(α) = 1

(2)  Основное тождество через тангенс и косинус (3)  Основное тождество через котангенс и синус

(4)  Соотношение между тангенсом и котангенсом tg(α)ctg(α) = 1 (5)  Синус двойного угла sin(2α) = 2sin(α)cos(α) (6)  Косинус двойного угла cos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α) (7)  Тангенс двойного угла
tg(2α) =   2tg(α)


1 – tg2(α)

(8)  Котангенс двойного угла
ctg(2α) = ctg2(α) – 1


  2ctg(α)

(9)  Синус тройного угла sin(3α) = 3sin(α)cos2(α) – sin3(α) (10)  Косинус тройного угла cos(3α) = cos3(α) – 3cos(α)sin2(α) (11)  Косинус суммы/разности cos(α±β) = cos(α)cos(β) sin(α)sin(β) (12)  Синус суммы/разности sin(α±β) = sin(α)cos(β) ± cos(α)sin(β)

(13)  Тангенс суммы/разности (14)  Котангенс суммы/разности (15)  Произведение синусов sin(α)sin(β) = ½(cos(α–β) – cos(α+β)) (16)  Произведение косинусов cos(α)cos(β) = ½(cos(α+β) + cos(α–β)) (17)  Произведение синуса на косинус sin(α)cos(β) = ½(sin(α+β) + sin(α–β)) (18)  Сумма/разность синусов sin(α) ± sin(β) = 2sin(½(α±β))cos(½(αβ)) (19)  Сумма косинусов cos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β)) (20)  Разность косинусов cos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))

(21)  Сумма/разность тангенсов

(22)  Формула понижения степени синуса sin2(α) = ½(1 – cos(2α)) (23)  Формула понижения степени косинуса cos2(α) = ½(1 + cos(2α))

(24)

 Сумма/разность синуса и косинуса (25)  Сумма/разность синуса и косинуса с коэффициентами (26)  Основное соотношение арксинуса и арккосинуса arcsin(x) + arccos(x) = π/2 (27)  Основное соотношение арктангенса и арккотангенса arctg(x) + arcctg(x) = π/2

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2021

Для удобства сразу же приведем таблицу с всеми тригонометрическими тождествами. Всегда удобно открыть формулы в одном месте, выбрать нужную и решить пример. После таблицы мы по отдельности рассмотрим каждую тригонометрическую формулу: обсудим ее вывод и порешаем примеры.

  1. Основное тригонометрическое тождество:
    $$sin(alpha)^2+cos(alpha)^2=1;$$
  2. Определение тангенса и котангенса через синус и косинус:
    $$tg(alpha)=frac{sin(alpha)}{cos(alpha)};$$
    $$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$
  3. Cвязь тангенса и котангенса:
    $$tg(alpha)=frac{1}{ctg(alpha)};$$
    $$tg(alpha)*ctg(alpha)=1;$$
  4. Тангенс через косинус. Котангенс через синус:
    $$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
    $$ctg(alpha)^2+1=frac{1}{sin(alpha)^2};$$
  5. Синус суммы и разности:
    $$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
    $$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
  6. Косинус суммы и разности:
    $$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
    $$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
  7. Тангенс суммы и разности:
    $$tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};$$
    $$tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};$$
  8. Котангенс суммы и разности:
    $$сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};$$
    $$сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};$$
  9. Двойной угол:
    $$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
    $$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
    $$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
    $$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$
  10. Тройной угол:
    $$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
    $$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
    $$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
    $$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$
  11. Формулы половинного угла:
    $$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
    $$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
    $$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
    $$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$
  12. Понижение степени:
    $$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
    $$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
    $$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
    $$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
    $$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
    $$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$
  13. Преобразование суммы и разности тригонометрических функций:
    $$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
    $$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
    $$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
    $$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
    $$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
    $$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
    $$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
    $$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
    $$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$
  14. Преобразование произведения тригонометрических функций:
    $$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
    $$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
    $$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$
  15. Формулы подстановки тангенса:
    $$sin(alpha)=frac{2*tg(frac{alpha}{2})}{1+tg(frac{alpha}{2})^2};$$
    $$cos(alpha)=frac{1-tg(frac{alpha}{2})^2}{1+tg(frac{alpha}{2})^2};$$
    $$tg(alpha)=frac{2*tg(frac{alpha}{2})}{1-tg(frac{alpha}{2})^2};$$
    $$ctg(alpha)=frac{1-tg(frac{alpha}{2})^2}{2*tg(frac{alpha}{2})};$$
  16. Формулы приведения можно найти в отдельной статье

Зачем нужны тригонометрические формулы?

Как видите, тригонометрических формул очень много. Тут еще и не все приведены. Но на ваше счастье, учить всю эту таблицу не нужно. Достаточно знать только основные: №1-6, 9. Остальные на ЕГЭ по профильной математике встречаются крайне редко, а если и попадутся, то, скорее всего, будут даны в справочных материалах.

Но для участия в олимпиадах или, если вы хотите поступать в сильный математический ВУЗ через вступительные экзамены, то вам может понадобиться вся таблица. По крайней мере, у вас точно должно быть представление о существовании таких формул, чтобы их вывести в случае необходимости. Да, большинство из них легко выводятся.

Тригонометрические формулы нужны, чтобы связать все тригонометрические функции между собой. Если вы знаете одну из функций, например, синус, то, используя эти формулы, можно легко найти оставшиеся три тригонометрические функции (косинус, тангенс и котангенс). Кроме этого тождества позволяют упростить выражение под тригонометрической функцией: например, выразить синус от двойного угла через комбинацию тригонометрических функций от одинарного угла, что бывает очень полезно при решении тригонометрических уравнений и неравенств.

Обсудим и порешаем примеры на все формулы из таблицы.

Основное тригонометрическое тождество

$$mathbf{sin(alpha)^2+cos(alpha)^2=1;}$$

Эту формулу можно считать главной и самой часто используемой в тригонометрии. Она выводится при помощи определения синуса и косинуса через прямоугольный треугольник и теоремы Пифагора. Не буду еще раз описывать вывод, с ним можно познакомиться в самой первой главе по тригонометрии.

При помощи основного тригонометрического тождества очень удобно искать значение синуса, если известен косинус и наоборот. Разберем пример:

Пример 1
Найдите (3sqrt{2}*sin(alpha)=?), если (cos(alpha)=frac{1}{3}) и (alphain(0;frac{pi}{2})). (ЕГЭ)

Чтобы найти значение выражения (3sqrt{2}*sin(alpha)) необходимо сначала найти значение синуса.

Формула, которая связывает и синус, и косинус – это основное тригонометрическое тождество:
$$sin(alpha)^2+cos(alpha)^2=1;$$
Просто подставим в нее известное значение косинуса
$$sin(alpha)^2+left(frac{1}{3}right)^2=1;$$
$$sin(alpha)^2+frac{1}{9}=1;$$
$$sin(alpha)^2=1-frac{1}{9};$$
$$sin(alpha)^2=frac{8}{9};$$
$$sin(alpha)=pmsqrt{frac{8}{9}}=pmfrac{2sqrt{2}}{3};$$
Обратите внимание на знак (pm), отрицательное значение синуса нас тоже устраивает, так как при подстановке и возведении в квадрат знак минус исчезает.

В задании указано, что это пример из ЕГЭ первой части, значит должен быть только один ответ. Какое же значение синуса нам выбрать: положительное или отрицательное?

В этом нам поможет дополнительное условие на (alphain(0;frac{pi}{2})), что соответсвует первой четверти на тригонометрической окружности. Раз (alpha) лежит в первой четверти, то синус должен быть положительный. Выбираем положительное значение синуса:
$$sin(alpha)=frac{2sqrt{2}}{3};$$
И подставим найденное значение в искомое выражение:
$$3sqrt{2}*sin(alpha)=3sqrt{2}*frac{2sqrt{2}}{3}=4.$$

Ответ: (4.)

Аналогично по основному тригонометрическому тождеству можно находить значение косинуса, если известен синус.

Основные тригонометрическое тождество это ключ к решению более половины всех тригонометрических уравнений.

Основные связи тригонометрических функций

А как найти тангенс или котангенс, если нам, например, известен косинус? Посмотрите на формулы №2, для того, чтобы найти тангенс, нужно знать и косинус, и синус:

$$mathbf{tg(alpha)=frac{sin(alpha)}{cos(alpha)};}$$
$$mathbf{ctg(alpha)=frac{cos(alpha)}{sin(alpha)};}$$

Но зная косинус, мы легко можем найти синус по основному тригонометрическому тождеству, а потом уже найти тангенс.

Пример 2
Найдите (tg(alpha)) и (ctg(alpha)), если (cos(alpha)=frac{sqrt{10}}{10}) и (alpha in (frac{3pi}{2};2pi)).

Сначала находим значение синуса:
$$sin(alpha)^2+cos(alpha)^2=1;$$
$$sin(alpha)^2+left(frac{sqrt{10}}{10}right)^2=1;$$
$$sin(alpha)^2+frac{1}{10}=1;$$
$$sin(alpha)^2=1-frac{1}{10};$$
$$sin(alpha)^2=frac{9}{10};$$
$$sin(alpha)=pmsqrt{frac{9}{10}}=pmfrac{3}{sqrt{10}};$$
Так как по условию задачи (alpha in (frac{3pi}{2};2pi)), что соответсвует четвертой четверти на тригонометрической окружности, то (sin(alpha)<0). Выбираем отрицательное значение:
$$sin(alpha)=-frac{3}{sqrt{10}};$$
Теперь нам известны значения и косинуса, и синуса, можем найти тангенс:
$$tg(alpha)=frac{sin(alpha)}{cos(alpha)}=frac{-frac{3}{sqrt{10}}}{frac{sqrt{10}}{10}}=-frac{3}{sqrt{10}}*frac{10}{sqrt{10}}=-3;$$
Котангенс можно найти аналогично по формуле:
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$
Но поступим проще и воспользуемся тригонометрической формулой, связывающей тангенс с котангенсом:
$$mathbf{сtg(alpha)=frac{1}{tg(alpha)};}$$
$$сtg(alpha)=frac{1}{-3}=-frac{1}{3};$$

Ответ: (tg(alpha)=-3;) (ctg(alpha)=-frac{1}{3}.)

Как видите, чтобы найти тангенс или котангенс через косинус или синус, необходимо воспользоваться сразу двумя тригонометрическими формулами. Это не очень удобно, поэтому очень полезны тригонометрические формулы, связывающие тангенс с косинусом или котангенс с синусом напрямую:
$$mathbf{tg(alpha)^2+1=frac{1}{cos(alpha)^2};}$$
$$mathbf{ctg(alpha)^2+1=frac{1}{sin(alpha)^2};}$$

Вывод связи тангенса с косинусом и котангенса с синусом

Полезно знать, как они выводятся. Вывод, на самом деле, элементарный, с использованием основного тригонометрического тождества и определения тангенса через синус и косинус:
$$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
$$left(frac{sin(alpha)}{cos(alpha)}right)^2+1=frac{1}{cos(alpha)^2};$$
Приводим левую часть к общему знаменателю:
$$frac{sin(alpha)^2}{cos(alpha)^2}+frac{cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
$$frac{sin(alpha)^2+cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
В числителе у нас получилось основное тригонометрическое тождество:
$$frac{1}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
Получилось верное равенство – формула доказана. Аналогично доказывается формула для котангенса и синуса. (В качестве упражнения докажите ее сами).

Если решать пример №2 по этим формулам, то решение заметно сокращается:
$$tg(alpha)^2+1=frac{1}{left(frac{sqrt{10}}{10}right)^2};$$
$$tg(alpha)^2+1=10;$$
$$tg(alpha)^2=9;$$
$$tg(alpha)=pm3;$$
Так как (alpha in (frac{3pi}{2};2pi)), то тангенс будет отрицательным:
$$tg(alpha)=-3;$$

Формулы суммы и разности тригонометрических функций

  1. Синус суммы и разности:
    $$mathbf{sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);}$$
    $$mathbf{sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);}$$
  2. Косинус суммы и разности:
    $$mathbf{cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);}$$
    $$mathbf{cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);}$$
  3. Тангенс суммы и разности:
    $$mathbf{tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};}$$
    $$mathbf{tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};}$$
  4. Котангенс суммы и разности:
    $$mathbf{сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};}$$
    $$mathbf{сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};}$$

Формулы суммы разности тригонометрических функций попадаются в ЕГЭ по профильной математике в №12. В прошлые года эти формулы давались в справочные материалах и учить их было не обязательно. Тем не менее, я бы рекомендовал выучить хотя бы формулы суммы и разности для синуса и косинуса.

Это не очень удобно, но иногда формулы суммы разности используют для вывода формул приведения:

Пример 3
Упростить выражение (sin(frac{pi}{2}+alpha)).

Воспользуемся формулой синуса суммы:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(frac{pi}{2}+alpha)=sin(frac{pi}{2})*cos(alpha)+sin(alpha)*cos(frac{pi}{2})=$$
$$=1*cos(alpha)+sin(alpha)*0=cos(alpha);$$

Формулы суммы разности так же полезны, когда нужно посчитать значение тригонометрических функций некоторых нестандартных углов:

Пример 4
Найдите значение (sin(15^o)=?)

(15^o) нестандартный угол, вы его не найдете в тригонометрической таблице углов. Представим (15^o) в виде разности стандартных углов (15^o=45^o-30^o). И воспользуемся формулой синуса разности:
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(15^o)=sin(45^o-30^o)=sin(45^o)*cos(30^o)-sin(30^o)*cos(45^o)=$$
$$=frac{sqrt{2}}{2}*frac{sqrt{3}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
Вот мы наши синус (15^o). Получилось такое иррациональное некрасивое выражение, так и оставляем.

Ответ: (sin(15^o)=frac{sqrt{6}-sqrt{2}}{4}.)

Пример 5
Найдите значение (cos(75^o)=?)

(75^o) можно представить в виде суммы стандартных углов (75^o=30^o+45^o). Здесь воспользуемся формулой косинуса суммы:
$$cos(alpha+beta)=cos(30^o)*cos(45^o)-sin(30^0)*sin(45^0)=$$
$$=frac{sqrt{3}}{2}*frac{sqrt{2}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
У нас получился опять отвратительный ответ, но внимательный читатель заметит, что ответ такой же, как в предыдущем примере, это значит, что (cos(75^o)=sin(15^o)). Такой же вывод можно было бы сделать исходя из формул приведения и знания тригонометрической окружности.

Ответ: (cos(75^o)=frac{sqrt{6}-sqrt{2}}{4}.)

Мы не будем выводить эти формулы – это не самое приятное занятие. Их проще выучить, а вывод вам вряд ли когда-либо пригодится. Но сами формулы суммы и разности служат основой для доказательства других тригонометрических формул.

Формулы двойного угла

$$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
$$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
$$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
$$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$

Формулы двойного угла для синуса, косинуса, тангенса и котангенса дают возможность выразить двойной угол (2alpha) через (alpha). Формулы для синуса и косинуса очень часто встречаются на ЕГЭ. Их обязательно нужно знать. Все они легко выводятся из формул синуса и косинуса суммы (формулы №5 и №6) :

$$cos(2alpha)=cos(alpha+alpha)=cos(alpha)*cos(alpha)-sin(alpha)*sin(alpha)=cos(alpha)^2-sin(alpha)^2;$$
Воспользовавшись основным тригонометрическим тождеством можно преобразовать эту формулу:
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=1-sin(alpha)^2-sin(alpha)^2=1-2sin(alpha)^2;$$
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=cos(alpha)^2-(1-cos(alpha)^2)=2cos(alpha)^2-1;$$

Синус двойного угла выводится аналогичным образом только с использованием формулы синуса суммы:
$$sin(2alpha)=sin(alpha)*cos(alpha)+sin(alpha)*cos(alpha)=2sin(alpha)cos(alpha);$$

Для вывода формул двойного угла для тангенса нам понадобится представить тангенс в виде отношения синуса к косинуса по определению и только что выведенные формулы синуса и косинуса двойного угла:
$$tg(2alpha)=frac{sin(2alpha)}{cos(2alpha)}=frac{2sin(alpha)cos(alpha)}{cos(alpha)^2-sin(alpha)^2}=frac{frac{2sin(alpha)cos(alpha)}{cos(alpha)^2}}{frac{cos(alpha)^2-sin(alpha)^2}{cos(alpha)^2}}=frac{frac{2sin(alpha)}{cos(alpha)}}{1-frac{sin(alpha)^2}{cos(alpha)^2}}=frac{2tg(alpha)}{1-tg(alpha)^2};$$
Котангенс двойного угла выводится абсолютно также:
$$сtg(2alpha)=frac{cos(2alpha)}{sin(2alpha)}=frac{cos(alpha)^2-sin(alpha)^2}{2sin(alpha)cos(alpha)}=frac{frac{cos(alpha)^2-sin(alpha)^2}{sin(alpha)^2}}{frac{2sin(alpha)cos(alpha)}{sin(alpha)^2}}=frac{frac{cos(alpha)^2}{sin(alpha)^2}-1}{frac{2cos(alpha)}{sin(alpha)}}=frac{ctg(alpha)^2-1}{2ctg(alpha)};$$

В первой части на ЕГЭ попадаются номера на преобразование тригонометрических выражений, где часто содержится двойной угол:

Пример 6
Найти значение (24cos(2alpha)=?), если (sin(alpha)=-0,2.)

Воспользуемся формулой косинуса двойного угла:
$$cos(2alpha)=1-2sin(alpha)^2;$$
$$24cos(2alpha)=24(1-2sin(alpha)^2)=24-48sin(alpha)^2=24-48*(-0,2)^2=24-48*0,04=22,08.$$

Пример 7
Найти значение (frac{10sin(6alpha)}{3cos(3alpha)}=?), если (sin(3alpha)=0,6.)

Используем синус двойного угла, для этого представим (6alpha=2*(3alpha)):
$$sin(6alpha)=sin(2*(3alpha))=2sin(3alpha)cos(3alpha);$$
$$frac{10sin(6alpha)}{3cos(3alpha)}=frac{10*2sin(3alpha)cos(3alpha)}{3cos(3alpha)}=frac{20sin(3alpha)}{3}=frac{20*0,6}{3}=frac{12}{3}=4.$$

Пример 8
Найти значение выражения (frac{12sin(11^o)cos(11^o)}{sin(22^o)}=?)

Замечаем, что (22^o=2*11^o) и воспользуемся синусом двойного угла:
$$frac{12sin(11^o)cos(11^o)}{sin(22^o)}=frac{12sin(11^o)cos(11^o)}{2sin(11^o)cos(11^o)}=frac{12}{2}=6.$$

Формулы тройного угла

Формулы тройного угла обычно попадаются на математических олимпиадах или вступительных экзаменах в математические ВУЗы. Учить их необязательно, но знать о существовании полезно, тем более, что они достаточно легко выводятся.
$$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
$$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
$$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
$$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$

Выведем эти формулы, использую формулы сложения. Начнем с косинуса тройного угла:
$$cos(3*alpha)=cos(2alpha+alpha)=cos(2alpha)*cos(alpha)-sin(2alpha)*sin(alpha)=$$
$$=(cos(alpha)^2-sin(alpha)^2)*cos(alpha)-2sin(alpha)*cos(alpha)*sin(alpha)=$$
$$=cos(alpha)^3-sin(alpha)^2*cos(alpha)-2sin(alpha)^2*cos(alpha)=$$
$$=cos(alpha)^3-3sin(alpha)^2*cos(alpha);$$

Если расписать (sin(alpha)^2=1-cos(alpha)^2), то получим еще один вариант формулы тройного угла:
$$cos(3*alpha)=cos(alpha)^3-3sin(alpha)^2*cos(alpha)=cos(alpha)^3-3(1-cos(alpha)^2)*cos(alpha)=$$
$$=4cos(alpha)^3-3cos(alpha);$$

Аналогично выводится формула синуса тройного угла:
$$sin(3alpha)=sin(2alpha+alpha)=sin(2alpha)*cos(alpha)+sin(alpha)*cos(2alpha)=$$
$$=2sin(alpha)*cos(alpha)*cos(alpha)+sin(alpha)*(cos(alpha)^2-sin(alpha)^2)=$$
$$=2sin(alpha)*cos(alpha)^2+sin(alpha)*cos(alpha)^2-sin(alpha)^3=3sin(alpha)*cos(alpha)^2-sin(alpha)^3;$$
Распишем по основному тригонометрическому тождеству (cos(alpha)^2=1-sin(alpha)^2) и подставим:
$$sin(3alpha)=3sin(alpha)*cos(alpha)^2-sin(alpha)^3=$$
$$=3sin(alpha)*(1-sin(alpha)^2)-sin(alpha)^3=3sin(alpha)-4sin(alpha)^3;$$

Для тангенса и котангенса формулы тройного угла здесь выводить не будем, так как они достаточно редки. Но в качестве упражнения можете сами выполнить вывод, представив тангенс или котангенс по определению: через отношение синуса тройного угла к косинусу тройного угла или наоборот соотвественно.

Формулы тройного угла обычно используются при преобразовании сложных тригонометрических выражений. Например, на вступительных экзаменах в МФТИ любят давать тригонометрические уравнения на тройной угол и больше.

Формулы половинного угла (двойного аргумента)

$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
$$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$

Формулы половинного угла это по сути формулы обратные формулам двойного угла. Достаточно запомнить их элементарный вывод, тогда учить совсем необязательно. Здесь важный момент, что любой угол (alpha) всегда можно представить в виде удвоенного угла (frac{alpha}{2}):
$$alpha=2*frac{alpha}{2};$$

Выведем формулу синуса половинного угла, для этого нам понадобится формула косинуса двойного угла:
$$cos(alpha)=1-2*sin(frac{alpha}{2})^2;$$
Выразим отсюда (sin(frac{alpha}{2})):
$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
Иногда эту формулу записывают без квадрата:
$$sin(frac{alpha}{2})=pmsqrt{frac{1-cos(alpha)}{2}};$$
Плюс минус возникает при избавлении от квадрата.
Вывод косинуса половинного угла тоже получается из формулы косинуса двойного угла:
$$cos(alpha)=2*cos(frac{alpha}{2})^2-1;$$
$$cos(frac{alpha}{2})^2=frac{cos(alpha)+1}{2};$$
$$cos(frac{alpha}{2})=pmsqrt{frac{cos(alpha)+1}{2}};$$

Доказательство формул половинного угла для тангенса и котангенса следует из выше доказанных формул:
$$tg(frac{alpha}{2})=frac{sin(frac{alpha}{2})}{cos(frac{alpha}{2})}=frac{pmsqrt{frac{1-cos(alpha)}{2}}}{pmsqrt{frac{cos(alpha)+1}{2}}}=sqrt{frac{frac{1-cos(alpha)}{2}}{frac{cos(alpha)+1}{2}}}=frac{1-cos(alpha)}{1+cos(alpha)};$$
Точно так же для котангенса:
$$сtg(frac{alpha}{2})=frac{cos(frac{alpha}{2})}{sin(frac{alpha}{2})}=frac{pmsqrt{frac{cos(alpha)+1}{2}}}{pmsqrt{frac{1-cos(alpha)}{2}}}=sqrt{frac{frac{cos(alpha)+1}{2}}{frac{1-cos(alpha)}{2}}}=frac{1+cos(alpha)}{1-cos(alpha)};$$

Пример 9
При помощи формул половинного угла можно, например, посчитать (cos(15^o)):

$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$cos(15^o)^2=frac{1+cos(30^o)}{2}=frac{1+frac{sqrt{3}}{2}}{2}=frac{2+sqrt{3}}{4};$$
$$cos(15^o)=sqrt{frac{2+sqrt{3}}{4}}.$$

Кстати, формулы половинного угла справедливы не только в явном виде, когда аргумент правой части формулы (alpha), а левой (frac{alpha}{2}). Но и в неявном, достаточно, чтобы аргумент правой части был больше аргумента левой в два раза:
$$sin(5alpha)=pmsqrt{frac{1-cos(10alpha)}{2}};$$

Формулы понижения степени

$$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
$$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
$$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
$$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
$$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
$$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$

Формулы понижения второй степени на самом деле дублируют формулы половинного угла.

Формулы понижения третей степени перестановкой слагаемых дублируют формулы тройного угла.

Преобразование суммы и разности тригонометрических функций:

$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
$$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
$$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
$$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
$$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
$$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$

Формулы для суммы и разности тригонометрических функций полезны, если необходимо превратить сумму двух функций в произведение. Они в основном используются в уравнениях и преобразованиях сложных выражений, когда необходимо слагаемые разложить на множители.

Для вывода формул суммы и разности синусов и косинусов нам понадобится пара трюков и формулы синуса и косинуса суммы и разности (тут можно запутаться, в названиях формул, будьте внимательны). Вывод получается не самый очевидный.

Обратите внимание, что любой угол (alpha) можно представить в таком странном виде:
$$alpha=frac{alpha}{2}+frac{alpha}{2}+frac{beta}{2}-frac{beta}{2}=frac{alpha+beta}{2}+frac{alpha-beta}{2};$$
Аналогично угол (beta):
$$beta=frac{alpha+beta}{2}-frac{alpha-beta}{2};$$
Эти странности нам понадобятся при выводе формул, просто обратите на них внимание.
А теперь перейдем непосредственно к выводу формулы суммы синусов двух углов. Для начала распишем угла (alpha) и (beta) по формулам выше:
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2}); qquad (*)$$
Теперь воспользуемся формулами синуса суммы и синуса разности:

$$sin(gamma+sigma)=sin(gamma)*cos(sigma)+sin(sigma)*cos(gamma);$$
$$sin(gamma-sigma)=sin(gamma)*cos(sigma)-sin(sigma)*cos(gamma);$$

Только у нас под синусами будут стоять не (gamma) и (sigma), а целые выражения.
Пусть:
$$gamma=frac{alpha+beta}{2};$$
$$sigma=frac{alpha-beta}{2};$$
Применим формулы синуса суммы и разности в (*):
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2})=$$
$$=left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})+sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)+$$
$$+left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})-sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)=$$
$$=2*sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2}); $$
В самом конце мы просто раскрыли большие скобки и привели подобные слагаемые.

Аналогично выводятся все остальные формулы.

Пример 10
Вычислить (sin(165)+sin(75)=?)

(165^o) и (75^o) это не табличные углы. Значения синусов этих углов мы не знаем. Для решения этого примера воспользуемся формулой суммы синусов:
$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(165^o)+sin(75^o)=2*sinleft(frac{165^o+75^o}{2}right)*cosleft(frac{165^o-75^o}{2}right)=$$
$$=2*sin(120^o)*cos(45^o)=2*frac{sqrt{3}}{2}*frac{sqrt{2}}{2}=frac{sqrt{6}}{2}.$$

Преобразование произведения тригонометрических функций

$$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
$$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$

В некотором смысле формулы произведения синуса, косинуса, тангенса и котангенса являются обратными к тригонометрическим формулам суммы и разности тригонометрических функций. При помощи этих формул возможно перейти от произведения к сумме или разности.

Для вывода нам опять понадобятся формулы косинуса суммы и разности:
$$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$

Сложим эти две формулы. Для этого складываем их левые части и приравниваем сумме правых частей:

$$cos(alpha+beta)+cos(alpha-beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha)+cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Приводим подобные слагаемые:
$$cos(alpha+beta)+cos(alpha-beta)=2*cos(alpha)*cos(beta);$$
Отсюда получаем:
$$cos(alpha)*cos(beta)=frac{1}{2}*(cos(alpha+beta)+cos(alpha-beta));$$
Формула произведения косинусов доказана.

Произведение синусов доказывается похожим образом. Для этого домножим формулу косинуса суммы слева и справа на ((-1)):
$$-cos(alpha+beta)=-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Косинус разности оставим без изменений:
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Сложим опять эти две формулы:
$$cos(alpha-beta)-cos(alpha+beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha)-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
$$cos(alpha-beta)-cos(alpha+beta)=2*sin(beta)*sin(alpha);$$
$$sin(beta)*sin(alpha)=frac{1}{2}*(cos(alpha-beta)-cos(alpha+beta));$$
Произведение синусов тоже доказано.

Для того, чтобы вывести формулу произведения синуса и косинуса, нам понадобятся формулы синуса суммы и разности:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
Сложим их:
$$sin(alpha+beta)+sin(alpha-beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha)+sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(alpha+beta)+sin(alpha-beta)=2*sin(alpha)*cos(beta);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$

Пример 11
Вычислить (sin(75^o)*cos(15^o)=?)

Воспользуемся формулой произведения синуса и косинуса:
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$
$$sin(75^o)*cos(15^o)=frac{1}{2}*(sin(75^o+15^o)+sin(75^o-15^o))=$$
$$=frac{1}{2}*(sin(90^o)+sin(60^o))=frac{1}{2}*(1+frac{sqrt{3}}{2})=frac{2+sqrt{3}}{4}.$$

Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция – arccos(y)=x

cos(arccos(y))=y

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Рассчитать арккосинус

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Косинус острого угла

cos(α) = AC/AB

cos(-α) = cos(α)

cos(α ± 2π) = cos(α)

Таблица косинусов в радианах

cos(0°) = 1cos(π/12) = cos(15°) = 0.9659258263cos(π/6) = cos(30°) = 0.8660254038cos(π/4) = cos(45°) = 0.7071067812cos(π/3) = cos(60°) = 0.5cos(5π/12) = cos(75°) = 0.2588190451cos(π/2) = cos(90°) = 0cos(7π/12) = cos(105°) = -0.2588190451cos(2π/3) = cos(120°) = -0.5cos(3π/4) = cos(135°) = -0.7071067812cos(5π/6) = cos(150°) = -0.8660254038cos(11π/12) = cos(165°) = -0.9659258263cos(π) = cos(180°) = -1cos(13π/12) = cos(195°) = -0.9659258263cos(7π/6) = cos(210°) = -0.8660254038cos(5π/4) = cos(225°) = -0.7071067812cos(4π/3) = cos(240°) = -0.5cos(17π/12) = cos(255°) = -0.2588190451cos(3π/2) = cos(270°) = 0cos(19π/12) = cos(285°) = 0.2588190451cos(5π/3) = cos(300°) = 0.5cos(7π/4) = cos(315°) = 0.7071067812cos(11π/6) = cos(330°) = 0.8660254038cos(23π/12) = cos(345°) = 0.9659258263

Таблица Брадиса косинусы

cos(0) = 1 cos(120) = -0.5 cos(240) = -0.5
cos(1) = 0.9998476952 cos(121) = -0.5150380749 cos(241) = -0.4848096202
cos(2) = 0.999390827 cos(122) = -0.5299192642 cos(242) = -0.4694715628
cos(3) = 0.9986295348 cos(123) = -0.544639035 cos(243) = -0.4539904997
cos(4) = 0.9975640503 cos(124) = -0.5591929035 cos(244) = -0.4383711468
cos(5) = 0.9961946981 cos(125) = -0.5735764364 cos(245) = -0.4226182617
cos(6) = 0.9945218954 cos(126) = -0.5877852523 cos(246) = -0.4067366431
cos(7) = 0.9925461516 cos(127) = -0.6018150232 cos(247) = -0.3907311285
cos(8) = 0.9902680687 cos(128) = -0.6156614753 cos(248) = -0.3746065934
cos(9) = 0.9876883406 cos(129) = -0.629320391 cos(249) = -0.3583679495
cos(10) = 0.984807753 cos(130) = -0.6427876097 cos(250) = -0.3420201433
cos(11) = 0.9816271834 cos(131) = -0.656059029 cos(251) = -0.3255681545
cos(12) = 0.9781476007 cos(132) = -0.6691306064 cos(252) = -0.3090169944
cos(13) = 0.9743700648 cos(133) = -0.6819983601 cos(253) = -0.2923717047
cos(14) = 0.9702957263 cos(134) = -0.6946583705 cos(254) = -0.2756373558
cos(15) = 0.9659258263 cos(135) = -0.7071067812 cos(255) = -0.2588190451
cos(16) = 0.9612616959 cos(136) = -0.7193398003 cos(256) = -0.2419218956
cos(17) = 0.956304756 cos(137) = -0.7313537016 cos(257) = -0.2249510543
cos(18) = 0.9510565163 cos(138) = -0.7431448255 cos(258) = -0.2079116908
cos(19) = 0.9455185756 cos(139) = -0.7547095802 cos(259) = -0.1908089954
cos(20) = 0.9396926208 cos(140) = -0.7660444431 cos(260) = -0.1736481777
cos(21) = 0.9335804265 cos(141) = -0.7771459615 cos(261) = -0.156434465
cos(22) = 0.9271838546 cos(142) = -0.7880107536 cos(262) = -0.139173101
cos(23) = 0.9205048535 cos(143) = -0.79863551 cos(263) = -0.1218693434
cos(24) = 0.9135454576 cos(144) = -0.8090169944 cos(264) = -0.1045284633
cos(25) = 0.906307787 cos(145) = -0.8191520443 cos(265) = -0.08715574275
cos(26) = 0.8987940463 cos(146) = -0.8290375726 cos(266) = -0.06975647374
cos(27) = 0.8910065242 cos(147) = -0.8386705679 cos(267) = -0.05233595624
cos(28) = 0.8829475929 cos(148) = -0.8480480962 cos(268) = -0.0348994967
cos(29) = 0.8746197071 cos(149) = -0.8571673007 cos(269) = -0.01745240644
cos(30) = 0.8660254038 cos(150) = -0.8660254038 cos(270) = 0
cos(31) = 0.8571673007 cos(151) = -0.8746197071 cos(271) = 0.01745240644
cos(32) = 0.8480480962 cos(152) = -0.8829475929 cos(272) = 0.0348994967
cos(33) = 0.8386705679 cos(153) = -0.8910065242 cos(273) = 0.05233595624
cos(34) = 0.8290375726 cos(154) = -0.8987940463 cos(274) = 0.06975647374
cos(35) = 0.8191520443 cos(155) = -0.906307787 cos(275) = 0.08715574275
cos(36) = 0.8090169944 cos(156) = -0.9135454576 cos(276) = 0.1045284633
cos(37) = 0.79863551 cos(157) = -0.9205048535 cos(277) = 0.1218693434
cos(38) = 0.7880107536 cos(158) = -0.9271838546 cos(278) = 0.139173101
cos(39) = 0.7771459615 cos(159) = -0.9335804265 cos(279) = 0.156434465
cos(40) = 0.7660444431 cos(160) = -0.9396926208 cos(280) = 0.1736481777
cos(41) = 0.7547095802 cos(161) = -0.9455185756 cos(281) = 0.1908089954
cos(42) = 0.7431448255 cos(162) = -0.9510565163 cos(282) = 0.2079116908
cos(43) = 0.7313537016 cos(163) = -0.956304756 cos(283) = 0.2249510543
cos(44) = 0.7193398003 cos(164) = -0.9612616959 cos(284) = 0.2419218956
cos(45) = 0.7071067812 cos(165) = -0.9659258263 cos(285) = 0.2588190451
cos(46) = 0.6946583705 cos(166) = -0.9702957263 cos(286) = 0.2756373558
cos(47) = 0.6819983601 cos(167) = -0.9743700648 cos(287) = 0.2923717047
cos(48) = 0.6691306064 cos(168) = -0.9781476007 cos(288) = 0.3090169944
cos(49) = 0.656059029 cos(169) = -0.9816271834 cos(289) = 0.3255681545
cos(50) = 0.6427876097 cos(170) = -0.984807753 cos(290) = 0.3420201433
cos(51) = 0.629320391 cos(171) = -0.9876883406 cos(291) = 0.3583679495
cos(52) = 0.6156614753 cos(172) = -0.9902680687 cos(292) = 0.3746065934
cos(53) = 0.6018150232 cos(173) = -0.9925461516 cos(293) = 0.3907311285
cos(54) = 0.5877852523 cos(174) = -0.9945218954 cos(294) = 0.4067366431
cos(55) = 0.5735764364 cos(175) = -0.9961946981 cos(295) = 0.4226182617
cos(56) = 0.5591929035 cos(176) = -0.9975640503 cos(296) = 0.4383711468
cos(57) = 0.544639035 cos(177) = -0.9986295348 cos(297) = 0.4539904997
cos(58) = 0.5299192642 cos(178) = -0.999390827 cos(298) = 0.4694715628
cos(59) = 0.5150380749 cos(179) = -0.9998476952 cos(299) = 0.4848096202
cos(60) = 0.5 cos(180) = -1 cos(300) = 0.5
cos(61) = 0.4848096202 cos(181) = -0.9998476952 cos(301) = 0.5150380749
cos(62) = 0.4694715628 cos(182) = -0.999390827 cos(302) = 0.5299192642
cos(63) = 0.4539904997 cos(183) = -0.9986295348 cos(303) = 0.544639035
cos(64) = 0.4383711468 cos(184) = -0.9975640503 cos(304) = 0.5591929035
cos(65) = 0.4226182617 cos(185) = -0.9961946981 cos(305) = 0.5735764364
cos(66) = 0.4067366431 cos(186) = -0.9945218954 cos(306) = 0.5877852523
cos(67) = 0.3907311285 cos(187) = -0.9925461516 cos(307) = 0.6018150232
cos(68) = 0.3746065934 cos(188) = -0.9902680687 cos(308) = 0.6156614753
cos(69) = 0.3583679495 cos(189) = -0.9876883406 cos(309) = 0.629320391
cos(70) = 0.3420201433 cos(190) = -0.984807753 cos(310) = 0.6427876097
cos(71) = 0.3255681545 cos(191) = -0.9816271834 cos(311) = 0.656059029
cos(72) = 0.3090169944 cos(192) = -0.9781476007 cos(312) = 0.6691306064
cos(73) = 0.2923717047 cos(193) = -0.9743700648 cos(313) = 0.6819983601
cos(74) = 0.2756373558 cos(194) = -0.9702957263 cos(314) = 0.6946583705
cos(75) = 0.2588190451 cos(195) = -0.9659258263 cos(315) = 0.7071067812
cos(76) = 0.2419218956 cos(196) = -0.9612616959 cos(316) = 0.7193398003
cos(77) = 0.2249510543 cos(197) = -0.956304756 cos(317) = 0.7313537016
cos(78) = 0.2079116908 cos(198) = -0.9510565163 cos(318) = 0.7431448255
cos(79) = 0.1908089954 cos(199) = -0.9455185756 cos(319) = 0.7547095802
cos(80) = 0.1736481777 cos(200) = -0.9396926208 cos(320) = 0.7660444431
cos(81) = 0.156434465 cos(201) = -0.9335804265 cos(321) = 0.7771459615
cos(82) = 0.139173101 cos(202) = -0.9271838546 cos(322) = 0.7880107536
cos(83) = 0.1218693434 cos(203) = -0.9205048535 cos(323) = 0.79863551
cos(84) = 0.1045284633 cos(204) = -0.9135454576 cos(324) = 0.8090169944
cos(85) = 0.08715574275 cos(205) = -0.906307787 cos(325) = 0.8191520443
cos(86) = 0.06975647374 cos(206) = -0.8987940463 cos(326) = 0.8290375726
cos(87) = 0.05233595624 cos(207) = -0.8910065242 cos(327) = 0.8386705679
cos(88) = 0.0348994967 cos(208) = -0.8829475929 cos(328) = 0.8480480962
cos(89) = 0.01745240644 cos(209) = -0.8746197071 cos(329) = 0.8571673007
cos(90) = 0 cos(210) = -0.8660254038 cos(330) = 0.8660254038
cos(91) = -0.01745240644 cos(211) = -0.8571673007 cos(331) = 0.8746197071
cos(92) = -0.0348994967 cos(212) = -0.8480480962 cos(332) = 0.8829475929
cos(93) = -0.05233595624 cos(213) = -0.8386705679 cos(333) = 0.8910065242
cos(94) = -0.06975647374 cos(214) = -0.8290375726 cos(334) = 0.8987940463
cos(95) = -0.08715574275 cos(215) = -0.8191520443 cos(335) = 0.906307787
cos(96) = -0.1045284633 cos(216) = -0.8090169944 cos(336) = 0.9135454576
cos(97) = -0.1218693434 cos(217) = -0.79863551 cos(337) = 0.9205048535
cos(98) = -0.139173101 cos(218) = -0.7880107536 cos(338) = 0.9271838546
cos(99) = -0.156434465 cos(219) = -0.7771459615 cos(339) = 0.9335804265
cos(100) = -0.1736481777 cos(220) = -0.7660444431 cos(340) = 0.9396926208
cos(101) = -0.1908089954 cos(221) = -0.7547095802 cos(341) = 0.9455185756
cos(102) = -0.2079116908 cos(222) = -0.7431448255 cos(342) = 0.9510565163
cos(103) = -0.2249510543 cos(223) = -0.7313537016 cos(343) = 0.956304756
cos(104) = -0.2419218956 cos(224) = -0.7193398003 cos(344) = 0.9612616959
cos(105) = -0.2588190451 cos(225) = -0.7071067812 cos(345) = 0.9659258263
cos(106) = -0.2756373558 cos(226) = -0.6946583705 cos(346) = 0.9702957263
cos(107) = -0.2923717047 cos(227) = -0.6819983601 cos(347) = 0.9743700648
cos(108) = -0.3090169944 cos(228) = -0.6691306064 cos(348) = 0.9781476007
cos(109) = -0.3255681545 cos(229) = -0.656059029 cos(349) = 0.9816271834
cos(110) = -0.3420201433 cos(230) = -0.6427876097 cos(350) = 0.984807753
cos(111) = -0.3583679495 cos(231) = -0.629320391 cos(351) = 0.9876883406
cos(112) = -0.3746065934 cos(232) = -0.6156614753 cos(352) = 0.9902680687
cos(113) = -0.3907311285 cos(233) = -0.6018150232 cos(353) = 0.9925461516
cos(114) = -0.4067366431 cos(234) = -0.5877852523 cos(354) = 0.9945218954
cos(115) = -0.4226182617 cos(235) = -0.5735764364 cos(355) = 0.9961946981
cos(116) = -0.4383711468 cos(236) = -0.5591929035 cos(356) = 0.9975640503
cos(117) = -0.4539904997 cos(237) = -0.544639035 cos(357) = 0.9986295348
cos(118) = -0.4694715628 cos(238) = -0.5299192642 cos(358) = 0.999390827
cos(119) = -0.4848096202 cos(239) = -0.5150380749 cos(359) = 0.9998476952

Похожие калькуляторы

Добавить комментарий