Голосование за лучший ответ
Алексей Жуков
Мастер
(1043)
6 лет назад
периметр дели на делитель и умножь на делимое.
Артём Литвяков
Ученик
(107)
6 лет назад
Составить и решить уравнение вида P = ax + bx + cx, где a, b, c – соотношения длин сторон. После решения вычислить слагаемые в левой части уравнения. Это и будут длины сторон.
Scarabey
Искусственный Интеллект
(110810)
6 лет назад
значит сложи соотношение и раздели периметр на полученное, получишь коэфф пропорциональности сторон. умножая на каждое число соотношения получишь стороны
Математика
В двух треугольниках, имеющих равные углы, стороны, лежащие против одинаковых углов, называются сходственными (соответственными).
В треугольниках ABC и DEF (черт. 152), в которых
стороны AB и DE, BC и EF, AC и DF, лежащие против равных углов C и F, A и D, B и E будут соответственными сторонами.
Определение подобных треугольников. Подобными называются такие два треугольника, у которых углы равны и сходственные стороны пропорциональны.
Если в двух треугольниках (черт. 152) ABC и DEF углы равны
и соответственные стороны пропорциональны
AB/DE = AC/DF = BC/EF
то треугольники называются подобными.
Подобие обычно выражают знаком ∼.
Подобие двух треугольников изображают письменно:
Случаи подобия треугольников
Теорема 89. (Первый случай подобия.) Два треугольника подобны, если три угла одного равны трем углам другого треугольника.
Дано. В треугольниках ABC и DEF углы равны (черт. 153).
Требуется доказать, что они подобны. Для этого нужно доказать, что их стороны пропорциональны, т. е. удовлетворяют отношениям:
AB/DE = AC/DF = BC/EF
Доказательство. Наложим треугольник DEF на ABC так, чтобы вершина E совпала с вершиной B, сторона ED со стороной AB. По равенству углов B и E сторона EF пойдет по стороне BC. Положим, точка D упадет в D’, а точка F в E’. Треугольник D’BE’ равен треугольнику DEF, следовательно,
Если соответственные углы равны, то D’E || AC.
По теореме 86 имеют место равенства
AC/D’E’ = AB/BD’ = BC/BE’
Так как BD’ = ED, BE’ = EF, D’E’ = DF, то
AC/DF = AB/ED = BC/EF (ЧТД).
Теорема 90 (второй случай подобия). Два треугольника подобны, если они имеют по два равных угла.
Доказательство. Если в двух треугольниках ABC и DEF два угла равны (черт. 153).
то и третьи углы тоже равны, а в таком случае треугольники подобны (теорема 89).
Теорема 91 (третий случай подобия). Два треугольника подобны, если они имеют по равному углу, заключающемуся между пропорциональными сторонами.
Дано. В треугольниках ABC и DEF (черт. 153) углы B и E равны, и стороны, их содержащие, пропорциональны, т. е.
∠B = ∠E и AB/DE = BC/EF.
Требуется доказать, что треугольники подобны.
Доказательство. Совместим угол E с углом B, и отложим BD’ = ED, BE’ = EF, тогда ∆ BD’E’ = ∆ DEF, следовательно,
Так как имеет место пропорция
то сторона D’E’ || AC (теорема 87).
Поэтому ∠D’ = ∠A, ∠C = ∠E’.
т. е. три угла одного равны трем углам другого треугольника.
В этом же случае треугольники ABC и DEF подобны (ЧТД).
Теорема 92 (четвертый случай подобия). Два треугольника подобны, если стороны одного пропорциональны сторонам другого.
Дано. В треугольниках ABC и abc (черт. 154) стороны пропорциональны:
AB/ab = BC/bc = AC/ac (1)
Требуется доказать, что у них углы равны, т. е.
Доказательство. Отложим на стороне BA отрезок Ba’, равный ba, и проведем отрезок a’c’, параллельный AC, тогда будут иметь место отношения:
AB/Ba’ = BC/Bc’ = AC/a’c’
Так как Ba’ = ba, то рядом с этими имеют место отношения:
AB/ab = BC/Bc’ = AC/a’c’ (2)
Сопоставляя отношения (1) и (2), заключаем, что
следовательно, два треугольника a’Bc’ и abc равны, откуда
∠B = ∠b, ∠Ba’c’ = ∠a, ∠Bc’a’ = ∠c
∠A = ∠a’, ∠C = ∠c’, то
B = b, A = a, C = c,
следовательно, углы двух треугольников ABC и abc равны (ЧТД).
Теорема 93 (пятый случай подобия). Два треугольника подобны, если стороны одного параллельны сторонам другого.
Доказательство. Здесь могут быть два случая:
1-й случай. Если углы двух треугольников с параллельными сторонами обращены в одну сторону. В таком случае в двух таких треугольниках ABC и abc (черт. 155) все углы одного соответственно равны углам другого, и, следовательно, треугольники подобны.
2-й случай. Когда углы с параллельными сторонами обращены в разные стороны. Так в треугольниках ABC и a’b’c’ стороны параллельны.
AB || a’b’, AC || a’c’, BC || b’c’.
Углы же между параллельными сторонами обращены в разные стороны.
В таком случае, продолжив стороны a’c’ и a’b’, откладываем на продолжении их части a’b” = a’b’ и a’c” = a’c’.
Треугольники a’b”c” и a’b’c’ равны. Треугольник a’b”c” подобен треугольнику ABC, ибо у него стороны параллельны и углы, направленные в одну сторону, равны, следовательно,
a’b”c”, следовательно, ∆ ABC
a’b’c’ и
AB/a’b’ = AC/a’c’ = BC/b’c’
Теорема 94 (шестой случай подобия). Два треугольника подобны, если стороны одного перпендикулярны к сторонам другого.
Даны два треугольника ABC и abc (черт. 156), стороны которых перпендикулярны:
ab ⊥ AB, ac ⊥ AC, bc ⊥ BC
Требуется доказать, что треугольники подобны.
Доказательство. Продолжим стороны ac и bc до пересечения их со сторонами AC и BC в точках n и p. Тогда в двух треугольниках mcn и mCp все углы равны, ибо
n = p как прямые
Углы при точке m равны как вертикальные,
а следовательно, и третьи углы равны ∠pCm = ∠mcn.
∠pCm = ∠ACB, ∠mcn = ∠acb
Подобным же образом можно доказать, что A = a, B = b, следовательно, треугольники ABC и abc подобны и имеет место пропорция
AB/ab = AC/ac = BC/bc
Подобие прямоугольных треугольников
Теорема 95. Два прямоугольных треугольника подобны, если они имеют по равному острому углу.
Дано. У прямоугольных треугольников ABC и abc (черт. 157) острые углы C и c равны.
Требуется доказать, что треугольники ABC и abc подобны.
Доказательство. Углы B и b равны как прямые, углы C и c равны по условию, следовательно, они подобны (теорема 90).
Теорема 96. Два прямоугольных треугольника подобны, если катет и гипотенуза одного пропорциональна катету и гипотенузе другого.
Дано. В прямоугольных треугольниках ABC и abc (черт. 157)
Требуется доказать, что ∠A = ∠a, ∠C = ∠c.
Доказательство. Отложим на отрезке BA отрезок Bm, равный ba и из точки m проведем отрезок mn, параллельный ac, тогда имеет место пропорция:
Так как Bm = ab по построению, то, сравнивая две пропорции (a) и (b), заключаем, что ac = mn, следовательно, два прямоугольных треугольника Bmn и abc, имея по равному катету и равной гипотенузе, равны.
Действительно, у них Bm = ab, mn = ac. У равных треугольников и углы равны:
∠m = ∠a = ∠A и ∠n = ∠c = ∠C
следовательно, два треугольника ABC и abc подобны.
Теорема 97. В подобных треугольниках высоты пропорциональны сторонам.
Даны два подобных треугольника ABC и FED (черт. 158), следовательно,
∠A = ∠F, ∠B = ∠E, ∠C = ∠D и
AB/FE = BC/ED = AC/DF
и проведены высоты BH и Eh.
Требуется доказать, что AB/FE = BH/Eh.
Доказательство. Прямоугольные треугольники ABH и FEh подобны, ибо ∠A = ∠F по условию, ∠AHB = ∠FhE как прямые, следовательно,
Теорема 98. Прямая, разделяющая угол треугольника пополам, делит его противоположную сторону на части пропорциональные двум другим сторонам.
Дано. Отрезок BD делит угол B треугольника ABC пополам (черт. 159).
∠ABD = ∠DBC или ∠ α = ∠ β
Требуется доказать, что AB/BC = AD/DC.
Доказательство. Проведем из точки A отрезок AF параллельный BD до пересечения его с прямой BC в точке F. В треугольнике FBA
∠AFB = ∠ β как соответственные углы,
∠FAB = ∠ α как внутренние накрест-лежащие углы от пересечения параллельных AF и BD третьей прямой AB.
Так как ∠ α = ∠β по условию, то
∠AFB = ∠FAB, т. е. треугольник FAB равнобедренный, поэтому FB = AB.
Из того, что AF || BD вытекает пропорция:
Заменяя FB равным отрезком AB, получим пропорцию:
Теорема 99 (обратная 98). Прямая, проведенная из вершины треугольника и делящая противоположную сторону на части, пропорциональные двум другим сторонам, делит угол при вершине пополам.
Дано. В треугольнике ABC (черт. 159) прямая BD рассекает противоположную сторону так, что имеет место пропорция:
Требуется доказать, что ∠ α = ∠β .
Доказательство. Проведем отрезок AF параллельно BD, тогда из треугольника AFC вытекает пропорция:
Сравнивая две пропорции (a) и (b), заключаем, что FB = AB, следовательно,
Так как ∠ α = ∠ FAB, ∠β = ∠ AFB, то и
Отношения в прямоугольном треугольнике
Теорема 100. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, среднепропорционален между частями гипотенузы.
Дано. В треугольнике ABC угол ABC прямой (черт. 160) и BD ⊥ AC.
Требуется доказать, что AD/BD = BD/DC.
Доказательство. Треугольники ABD и BDC подобны, ибо углы при точке D равны как прямые; кроме того из равенств ∠A + ∠ α = d, ∠ α + ∠β = d вытекает
A + α = α + β, или A = β, следовательно и C = α.
Из подобия треугольников ABD и BDC вытекает пропорция
Примечание. Если составляют одно отношение из сторон одного треугольника, то другое отношение составляется из соответственных сторон другого треугольника. При этом рассуждают следующим образом: против стороны AD лежит угол α , которому в подобном треугольнике BCD равен угол C, а против него лежит сходственная сторона BD треугольника BCD и т. д.
Теорема 101. Каждый катет среднепропорционален между целой гипотенузой и отрезком, прилежащим катету.
Доказательство. a) Треугольники ABC и ABD (черт. 160) подобны, ибо ∠ ABC = ∠ADB как прямые, ∠A общий, следовательно,
Из подобия треугольников вытекает пропорция:
b) Треугольники ABC и BCD подобны, ибо ∠ABC = ∠BDC как прямые, ∠C общий, следовательно,
∠A = ∠ β, откуда
DC/BC = BC/AC (b)
Теорема 102. Квадрат гипотенузы равен сумме квадратов катетов.
Из предыдущих пропорций (a) и (b) вытекают равенства:
AB 2 = AD · AC
BC 2 = DC · AC
Складывая их, получим:
AB 2 + BC 2 = AD · AC + DC · AC или
AB 2 + BC 2 = AC (AD + DC) = AC · AC = AC 2 , т. е.
AC 2 = AB 2 + BC 2
a) Гипотенуза равна корню квадратному из суммы квадратов катетов.
b) Катет равен корню квадратному из квадрата гипотенузы без квадрата другого катета.
Теорема 103. Диагональ квадрата несоизмерима с его стороной, или гипотенуза равнобедренного прямоугольного треугольника несоизмерима с катетом.
Дано. В квадрате ABCD проведена диагональ AC (черт. 161).
Требуется доказать, что отношение AC/AD есть величина несоизмеримая.
Доказательство. Станем сравнивать больший отрезок AC с меньшим BC по обыкновенным приемам нахождения общей меры, т. е. наложим меньший отрезок на больший, первый остаток на меньший и т. д.
a) Наложим отрезок BC на отрезок AC. Отложив отрезок AE, равный AB или BC, мы видим, что отрезок BC уложился один раз, ибо
Так как AB = BC, то 2BC > AC и BC > ½AC, следовательно, первый остаток EC 2 = AB 2 + BC 2 .
Так как AB = BC, то AC 2 = 2AB 2 , откуда AC = AB √ 2 и AC/AB = √ 2 величина несоизмеримая.
Соотношение между сторонами остроугольного и тупоугольного треугольника
Теорема 104. Квадрат стороны, лежащей против острого угла, равен сумме квадратов прочих двух сторон треугольника без удвоенного произведения основания на отрезок, заключающийся между вершиной острого угла и высотой.
Здесь могут быть два случая: 1) когда перпендикуляр, выражающий высоту, пойдет внутри и 2) когда он пойдет вне треугольника.
Первый случай. Перпендикуляр BD (черт. 162), опущенный из вершины B на основание AC треугольника ABC, пойдет внутри треугольника.
Требуется доказать, что AB 2 = BC 2 + AC 2 – 2AC · DC.
Доказательство. Для прямоугольного треугольника ABD имеем равенство:
AB 2 = BD 2 + AD 2 (a)
AD = AC – DC, AD 2 = (AC – DC) 2 = AC 2 + DC 2 – 2AC · DC
Из прямоугольного треугольника BDC имеем:
BD 2 = BC 2 – DC 2
Вставляя величины BD 2 и AD 2 в равенство (a), получим:
AB 2 = BC 2 – DC 2 + AC 2 + DC 2 – 2AC · DC, откуда
AB 2 = BC 2 + AC 2 – 2AC · DC (ЧТД).
2-й случай. Перпендикуляр BD (черт. 163) лежит вне треугольника ABC.
Доказательство. Из прямоугольного треугольника ABD имеем:
AB 2 = BD 2 + DA 2
Из прямоугольного треугольника BCD имеем:
BD 2 = BC 2 – CD 2
AB 2 = BC 2 – CD 2 + DA 2 .
DA = CD – AC
DA 2 = (CD – AC) 2 = CD 2 + AC 2 – 2CD · AC, то
AB 2 = BC 2 – CD 2 + CD 2 + AC 2 – 2CD · AC, откуда
AB 2 = BC 2 + AC 2 – 2CD · AC (ЧТД).
Теорема 105. Квадрат стороны, лежащей против тупого угла, равен сумме квадратов прочих двух сторон треугольника с удвоенным произведением основания на отрезок его от вершины тупого угла до высоты.
Дано. В тупоугольном треугольнике ABC отрезок CD (черт. 164) есть отрезок, лежащий между вершиной тупого угла и высотой.
Требуется доказать, что
AB 2 = AC 2 + BC 2 + 2AC · CD
Доказательство. Из тупоугольного треугольника ABC имеем:
AB 2 = BD 2 + AD 2 (a)
AD = AC + CD, AD 2 = AC 2 + CD 2 + 2AC · CD
Из прямоугольного треугольника BCD вытекает, что
BD 2 = BC 2 – CD 2
Заменяя AD 2 и BD 2 в равенстве (a), получим:
AB 2 = BC 2 – CD 2 + AC 2 + CD 2 + 2AC · CD
AB 2 = BC 2 + AC 2 + 2AC · CD (ЧТД).
Теорема 106. Сумма квадратов диагоналей равна сумме квадратов всех четырех сторон параллелограмма.
Дан параллелограмм ABCD (черт. 165) и проведены его диагонали AC и BD.
Требуется доказать, что
AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2
Доказательство. Опустив перпендикуляры BE и CF, имеем из косоугольного треугольника ABD равенство:
BD 2 = AB 2 + AD 2 – 2AD · AE (1)
Из тупоугольного треугольника ACD равенство:
AC 2 = CD 2 + AD 2 + 2AD · DF (2)
Отрезки AE и DF равны, ибо прямоугольные треугольники ABE и DCF равны, так как они имеют по равному катету и равной гипотенузе.
Сложив равенства (1) и (2), имеем:
BD 2 + AC 2 = AB 2 + AD 2 + CD 2 + AD 2
Так как AD = BC, то
BD 2 + AC 2 = AB 2 + BC 2 + CD 2 + AD 2 (ЧТД).
Теорема 107. Сумма квадратов двух сторон треугольника равна сумме удвоенного квадрата отрезка, соединяющей вершину с серединой основания, с удвоенным квадратом половины основания.
Дано. Соединим вершину B с серединой основания D треугольника ABC так, что AD = DC (черт. 166).
Требуется доказать, что
AB 2 + BC 2 = 2AD 2 + 2BD 2
Доказательство. Проведем высоту BE.
Из прямоугольных треугольников ABE и BCE вытекают равенства:
AB 2 = BE 2 + AE 2
BC 2 = BE 2 + CE 2
Сложив их, находим:
AB 2 + BC 2 = 2BE 2 + AE 2 + CE 2 (a)
Так как AE = AD + DE = CD + DE, CE = CD – DE, то
AE 2 = (CD + DE) 2 = CD 2 + DE 2 + 2CD · DE
CE 2 = (CD – DE) 2 = CD 2 + DE 2 – 2CD · DE
AE 2 + CE 2 = 2CD 2 + 2DE 2 (b)
Заменяя в равенстве (a) сумму AE 2 + CE 2 из равенства (b), имеем:
AB 2 + BC 2 = 2BE 2 + 2CD 2 + 2DE 2 .
Из прямоугольного треугольника BDE видно, что
BE 2 = BD 2 – DE 2
AB 2 + BC 2 = 2BD 2 – 2DE 2 + 2CD 2 + 2DE 2
Подобные треугольники
Определение
Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.
Математическое представление двух подобных треугольников A1B1C1 и A2B2C2 , показанных на рисунке, записывается следующим образом:
Два треугольника являются подобными если:
1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A1 = ∠A2, ∠B1 = ∠B2 и∠C1 = ∠C2
2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$frac=frac=frac$
3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$frac=frac$ и $angle A_1 = angle A_2$
или
$frac=frac$ и $angle B_1 = angle B_2$
или
$frac=frac$ и $angle C_1 = angle C_2$
Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:
Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.
Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:
1) три угла каждого треугольника (длины сторон треугольников знать не нужно).
Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 – угол1 – угол2)
2) длины сторон каждого треугольника (углы знать не нужно);
3) длины двух сторон и угол между ними.
Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.
Практические задачи с подобными треугольниками
Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.
Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:
Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR.
Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R(так как ∠C = 180 – ∠A – ∠B и ∠R = 180 – ∠P – ∠Q)
Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$frac=frac=frac$
Пример №3: Определите длину AB в данном треугольнике.
Решение:
∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.
$frac = frac<3> <6>= frac = frac = frac = frac<1> <2>Rightarrow 2times AB = AB + 4 Rightarrow AB = 4$
Пример №4:Определить длину AD (x) геометрической фигуры на рисунке.
Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.
AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC
Исходя из вышеизложенного и учитывая наличие общего угла C, мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.
Следовательно:
$frac = frac<7> <11>= frac = frac<15> Rightarrow CA = frac<15 times 11> <7>= 23.57$
x = AC – DC = 23.57 – 15 = 8.57
Практические примеры
Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.
Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.
Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.
Решение:
Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.
Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,
$frac = frac<3> <9>= frac = frac<8> Rightarrow AB = frac<8 times 9> <3>= 24 м$
x = AB – 8 = 24 – 8 = 16 м
Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.
А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:
Аналогично, $AC = sqrt = sqrt <24^2 + 9^2>= 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.
y = AC – AE = 25.63 – 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.
Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.
Решение:
Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.
Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$frac = frac = frac$
В условии задачи сказано, что:
AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км
Используя эту информацию, мы можем вычислить следующие расстояния:
Стив может добраться к дому своего друга по следующим маршрутам:
A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км
F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км
F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км
F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км
Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.
Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.
Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.
Решение:
Геометрическое представление задачи показано на рисунке.
Сначала мы используем подобность треугольников ΔABC и ΔADE.
$frac = frac<1.6> <2.8>= frac = frac <5 + AC>Rightarrow 2.8 times AC = 1.6 times (5 + AC) = 8 + 1.6 times AC$
$(2.8 – 1.6) times AC = 8 Rightarrow AC = frac<8> <1.2>= 6.67$
Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.
Подобные треугольники
Определение
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Свойства подобных треугольников
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
[spoiler title=”источники:”]
http://www.math10.com/ru/geometria/podobnye-treugolniki.html
[/spoiler]
Подобные треугольники
3 октября 2022
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.
План такой:
- Основное определение
- Лемма о подобных треугольниках
- Свойства подобных треугольников
- Разбор задач
1. Основное определение
Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Рассмотрим треугольники $ABC$ и $MNK$:
У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:
[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]
Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:
[Delta ABCsim Delta MNK]
Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.
Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».
Дальше идёт очень важное замечание.
1.1. Обозначение подобных треугольников
В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.
Но в подобных треугольниках есть негласное правило:
При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.
Вернёмся к нашим треугольникам $ABC$ и $MNK$:
Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.
Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.
Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:
[Delta ABCsim Delta MNK]
Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.
Приравниваем полученные три дроби:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.
В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.
2. Лемма о подобных треугольниках
Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.
Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.
Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:
Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.
Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.
Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.
Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AC}{MC}=frac{BC}{NC}]
Это равенство — второе в искомом:
[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]
Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:
Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.
Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AB}{AK}=frac{BC}{NC}]
Учитывая, что $AK=MN$, получаем
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников
[Delta ABCsim Delta MNC]
Что и требовалось доказать.
Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.
Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».
Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:
Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда
[Delta ABCsim Delta MNC]
3. Свойства подобных треугольников
Два важнейших свойства: связь периметров и связь площадей.
3.1. Периметры подобных треугольников
Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.
Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:
Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]
Периметр треугольника $MNK$:
[{{P}_{Delta MNK}}=MN+NK+MK]
Периметр треугольника $ABC$:
[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]
Итого получаем равенство
[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]
Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:
[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]
В любом случае, мы получили отношение, которое и требовалось доказать.
3.2. Площади подобных треугольников
Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:
Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:
[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]
Кроме того, стороны подобных треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
В частности, из этого равенства следует, что
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]
Площадь треугольника $MNK$:
[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]
Площадь треугольника $ABC$:
[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]
Получаем равенство
[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]
Перепишем в виде отношения:
[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]
Что и требовалось доказать.
Для доказательства теоремы мы использовали формулу площади треугольника:
[{{S}_{Delta }}=frac{1}{2}absin alpha ]
Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.
Впрочем, ничто не мешает взять уже известную формулу:
[{{S}_{Delta }}=frac{1}{2}ah]
Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)
3.3. Элементы подобных треугольников
Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.
Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:
В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как
[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]
Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.
4. Задачи на подобие
Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)
Задача 1. Готовые треугольники
Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.
Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:
Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Подставим в это равенство всё, что нам известно:
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]
Опустим последнюю дробь и получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]
Найдём сторону $NK$:
[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]
Аналогично, убирая среднюю дробь, получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]
Найдём сторону $MK$:
[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]
Ответ: $NK=10,5$, $MK=15$.
Задача 2. Прямая, параллельная стороне
Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:
а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.
б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.
Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.
Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:
Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:
[Delta ABCsim Delta DBE]
Из подобия треугольников $ABC$ и $DBE$ следует равенство
[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]
Решаем пункт а). Подставляем в это равенство всё, что нам известно:
[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]
Вычёркиваем среднюю дробь и получаем пропорцию
[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]
Отсюда легко найти $DB$ (или, что то же самое, $BD$):
[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]
Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:
[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]
Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]
Осталось найти $AD$:
[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]
Ответ: а) $BD=12$; б) $AD=16$.
Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.
Напротив: нужно разложить их на множители и сократить!
Взгляните:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]
Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.
Задача 3. Доказательство подобия
Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.
Решение. Сделаем первоначальный рисунок по условию задачи:
Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.
Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.
Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:
[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]
Дополнительное построение: диагональ квадрата $color{red}{AC}$:
Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство
[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]
Но тогда выполняется следующее равенство:
[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]
А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:
[Delta MDKsim Delta BCD]
Доказательство завершено.
Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.
Задача 4. Вписанный ромб
В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.
Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:
Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:
[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]
Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:
[Delta ABCsim Delta AKE]
В подобных треугольниках подобные стороны пропорциональны, поэтому
[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]
Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]
Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]
Применяем основное свойство пропорции и уравнение:
[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]
Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.
Ответ: $BD=6$.
Задача 5. Свойства биссектрисы
В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.
Решение. Из условия задачи можно сделать вот такой рисунок:
Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:
[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]
Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.
Дополнительное построение: прямая $DMparallel AB$:
Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что
[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]
Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда
[BC=BM+MC=color{blue}{5y}=color{red}{12}]
Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:
[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]
Далее заметим, что если угол $ABC$ равен 120°, то
[angle ABD=angle CBD={60}^circ ]
С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.
Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому
[angle BDM=angle ABD={60}^circ ]
Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:
[BD=BM=color{red}{4,8}]
Мы нашли длину отрезка $BD$. Задача решена.
Ответ: $BD=4,8$.
Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)
Смотрите также:
- Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
- Теорема менелая
- Комбинаторика в задаче B6: легкий тест
- Введение системы координат
- Четырехугольная пирамида: как найти координаты вершин
- Нестандартная задача B5 на площадь круга
Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:
- Найти все стороны треугольника.
- Найти все углы треугольника.
- Найти площадь (S) и периметр (P) треугольника.
- Найти радиус (r) вписанной окружности.
- Найти радиус (R) описанной окружности.
- Найти высоту (h) треугольника.
Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
Сторона треугольника (или длина сторон) может быть найдена различными методами.
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.
Как найти длину стороны треугольника?
Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.
Для прямоугольного треугольника:
1) Найти катет через гипотенузу и другой катет
где a и b – катеты, с – гипотенуза.
2) Найти гипотенузу по двум катетам
где a и b – катеты, с – гипотенуза.
3) Найти катет по гипотенузе и противолежащему углу
где a и b – катеты, с – гипотенуза,α° и β° – углы напротив катетов.
4) Найти гипотенузу через катет и противолежащий угол
где a и b – катеты, с – гипотенуза,α° и β°- углы напротив катетов.
Для равнобедренного треугольника:
1) Найти основание через боковые стороны и угол между ними
где a – искомое основание, b – известная боковая сторона,α° – угол между боковыми сторонами.
2) Найти основание через боковые стороны и угол при основании
где a – искомое основание,b – известная боковая сторона,β° – угол при осноавнии.
3) Найти боковые стороны по углу между ними
где b – искомая боковая сторона, a – основание,α° – угол между боковыми сторонами.
4) Найти боковые стороны по углу при основании
где b – искомая боковая сторона, a – основание,β° – угол при осноавнии.
Для равностороннего треугольника:
1) Найти сторону через площадь
где a – искомая сторона, S – площадь треугольника.
2) Найти сторону через высоту
где a – искомая сторона,h – высота треугольника.
3) Найти сторону через радиус вписанной окружности
где a – искомая сторона,r – радиус вписанной окружности.
4) Найти сторону через радиус описанной окружности
где a – искомая сторона,R – радиус описанной окружности.
Для произвольного треугольника:
1) Найти сторону через две известные стороны и один угол (теорема косинусов)
где a – искомая сторона, b и с – известные стороны, α° – угол напротив неизвестной стороны.
2) Найти сторону через одну известную сторону и два угла (теорема синусов)
где a – искомая сторона, b – известная сторона, α° и β° известные углы.
Скачать все формулы в формате Word
Содержание
Отношение. Пропорция
Отношение
Отношение — частное двух чисел. Отношение показывает во сколько раз одно число больше другого или какую часть составляет одно число от другого.
Слова отношение
и частное
— математические синонимы. Разница в том, что члены отношения не могут быть нулями. Частное – термин из математики, отношение – слово из обычной жизни.
$$ 90 : 60 = frac{90} {60} = frac{3} {2} = 1,5$$
Первый способ записи более компактный, особенно он удобен, когда нужно записать отношение двух дробей:
$$ frac{frac{3} {2}} {frac{7} {8}} = frac{3} {2} : frac{7} {8}$$
Многоэтажные дроби – отношения между дробями.
Два вида сравнения величин – абсолютное приращение и относительное – на сколько, во сколько.
Зарплату повысили на 1000 рублей – это много или мало?
Если две величины измерены одной и той же единицей измерения, то отношением этих величин называется отношение их числовых значений.
Ошибкой будет сравнивать величины, выраженные в разных единицах измерения: 50 копеек в 50 раз больше 1 рубля.
Основное свойство отношения:
отношение не изменится, если каждый из членов отношения умножить или разделить на одно и то же, отличное от 0, число.
Практические примеры
-
Цена – отношение стоимости товара к количеству единиц его измерения (кг, шт, л, пачек, коробок и т.д.)
-
Масштаб карты – отношение расстояния на карте к соответствующему расстоянию на местности
-
Масштаб фото
-
Производительность труда – отношение объема выполненной работы ко времени, за которое была выполнена эта работа.
-
Скорость – отношение длины пройденного пути ко времени, за которое был пройден путь.
Пропорция
Пропорция – равенство двух отношений.
$$ a : b = c : d text{ или } frac{a} {b} = frac{c} {d}$$
Читается так: «отношение a к b равно отношению c к d» или – «a, деленное на b, равно c, деленному на d»
или – «a относится к b, как c относится к d»
a и d называются крайними членами. c и d называются средними членами пропорции.
Основное свойство пропорции:
В верной пропорции произведение крайних членов равно произведению средних членов (перекрестное правило).
Гармония (от греч – связь, стройность) – соразмерность отдельных частей, слияние объектов в единое целое. В математике слово соразмерность определяется таким понятием как пропорция.
Правило
-
Пропорция не нарушится, если поменять местами ее средние члены.
-
Пропорция не нарушится, если поменять местами ее крайние члены.
-
Что будет, если поменять местами одновременно и крайние и средние члены? [она перевернется вверх тормашками]
См. также. Задачи на пропорцию
Если члены какой-нибудь пропорции поместить в квадрат, то любое отношение чисел, стоящих по одной стороны квадрата, равно отношению стоящих против них чисел по другой стороне.
$$40 qquad 50 \
16 qquad 20$$
Таким образом, получается ряд пропорций из одних и тех же чисел:
$$
frac {40}{16} = frac {50}{20} qquad frac {16}{20} = frac {40}{50} \
frac {20}{50} = frac {16}{40} qquad frac {50}{40} = frac {20}{16} \
frac {50}{20} = frac {40}{16} qquad frac {40}{50} = frac {16}{20} \
frac {16}{40} = frac {20}{50} qquad frac {20}{16} = frac {50}{40} $$
Упражнение. Составьте всевозможные пропорции из чисел 4, 12, 10 и 30.
Упражнение. Составьте пропорции, у которых средними членами были бы 1) 6 и 9; 2) 15 и 7; 3) 0,5 и 1,1. Сколько решений имеет каждая из этих задач?
Тройное Правило. Даны три числа, чтобы найти четвёртое, умножают второе на третье и делят на первое.
Задача на пропорциональные части
Чтобы приготовить тесто для блинчиков, надо взять 8 мерок муки, 5 таких же мерок молока и 1 мерку масла.
Говорят, что продукты нужно взять в частях пропорционально числам 8, 5 и 1.
Сколько г муки надо взять, чтобы получилось 840 г теста.
Рассмотреть 2 способа решения (составить уравнение и решить по действиям)
Парадокс Арно
$$frac{1}{-1}=frac{-1}{1}$$
Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?
Давай рассуждать вместе «1» больше, чем «−1» верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс
Где используется пропорция
-
Задачи на проценты
-
Многие формулы заданы в виде пропорций: теорема синусов, отношение высот в треугольнике, теорема Фалеса
-
В задачах по геометрии в условии часто задаётся отношение сторон (или углов, или площадей), например 1:2, 2:3 и прочие.
-
Перевод единиц измерения – часы в минуты (и наоборот), мили в километры, градусы в радианы
Прямая пропорциональность
Зависимость двух величин наз. прямой пропорциональностью, если при увеличении (уменьшении) одной величины в несколько раз во столько же раз увеличивается (уменьшается) другая величина.
Если две величины являются прямо пропорциональными, то отношение значений одной величины равно отношению соответствующих значений другой величины.
Пример. 3 м ткани стоят 60 рублей, 6 м ткани стоят 120 рублей и т.д.
Коэффициент пропорциональности
Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой. Обычно обозначают буквой k. Связь между пропорциональными величинами можно записать так: x = k * y.
Контрпример: площадь квадрата не пропорциональна длине его стороны.
Обратно пропорциональные величины – скорость и время. Пропорциональные и прямо пропорциональные величины – одно и тоже понятие. Слово «прямо» используется, чтобы подчеркнуть, что бывают другие виды пропорциональности.
Вопрос. Одна величина пропорциональна другой. Пропорциональна ли вторая величина первой? Приведите пример.
Задача
Пропорциональны ли величины, указанные в таблице?
Возраст отца | 1 | 2 | 3 | 4 | 5 | 6 |
Возраст сына | 31 | 32 | 33 | 34 | 35 | 36 |
Задача
Подбери четвертое слово так, чтобы оно «относилось» к третьему, как второе к первому:
Труд – награда, лень – …
Дружба – любовь, вражда – …
Кино – экран, театр – …
Человек – туловище, дерево – …
Тройная пропорция
Пример
$$20 : 10 : 3 = 60 : 30 : 9$$
Тройную пропорцию можно разбить на три обычные пропорции:
$$20 : 10 = 60 : 30$$
$$10 : 3 = 30 : 9$$
$$20 : 3 = 60 : 9$$
Реши задачу:
Периметр треугольника равен 48 см, а длины его сторон относятся как 7:9:8. Найдите стороны треугольника.
Подсказка 1: Периметр треугольника – это сумма всех сторон треугольника.
Подсказка 2: Запиши тройную пропорцию и разбей ее на три обычные пропорции.
Подсказка 3: Обозначь одну сторону треугольника через x, а остальные стороны найди из пропорций.
Подсказка 4: Запиши выражение для периметра и приравняй 48.
Подсказка 5: Реши полученное уравнение.
Пропорциональное деление на несколько частей
Пусть требуется число 414 разделить на 4 части пропорционально числам 7, 3, 4 и 9. Обозначим неизвестные части через $x_1, x_2, x_3, x_4$, зависимость записывается так:
$$x_1 : x_2 : x_3 : x_4 = 7 : 3 : 4 : 9$$
Надо, чтобы в $x_1$ содержалось 7 некоторых долей, в $x_2$ – 3 доли, в $x_3$ – 4 доли и в $x_4$ – 9 таких же долей. Тогда во всем числе будет $7 + 3 + 4 + 9 = 23$ таких доли, одна доля окажется равной $414:23 = 18$, вслед за чем можно найти все неизвестные части.
Если числа, пропорционально которым надо разделить данное число, дробные, то их можно заменить пропорциональными им целыми. Так, если надо, чтобы
$$x_1 : x_2 : x_3 : x_4 = frac23 : 1frac12 : frac34 : 4$$,
множим все данные числа на 12:
$$x_1 : x_2 : x_3 : x_4 = 8: 18: 9 : 36$$
Отношения между числами от этого не изменятся, а все числа станут целыми.
Задача
Для приготовления фарфора берут 25 частей белой глины, 2 части песка и 1 часть гипса. Сколько каждого из этих материалов в чашке, весящей 92 г?
Задача
Разверстайте оплату счета за воду: 6 руб 40 коп – между семействами из 4, 7, 5, 3 и 4 человека.
Учебники:
Янченко, Кравчук – 6 класс
Рабочая книга по математике для пятого года обучения в городской школе. (М.Ф. Берг. 1930 год)
См. также Золотое сечение
Свойства пропорции
Обращение пропорции
Если $frac{a}{b} = frac{c}{d}$, то $frac{b}{a} = frac{d}{c}$
Перемножение крест-накрест
Если $frac{a}{b} = frac{c}{d}$, то $ad = bc$
Увеличение и уменьшение пропорции
Если $frac{a}{b} = frac{c}{d}$, то $frac{a+b}{b} = frac{c+d}{d}$
Если $frac{a}{b} = frac{c}{d}$, то $frac{a-b}{b} = frac{c-d}{d}$
Составление пропорции сложением и вычитанием
Если $frac{a}{b} = frac{c}{d}$, то $frac{a+c}{b+d} = frac{a-c}{b-d} = frac{a}{b} = frac{c}{d}$
Перестановка средних и крайних членов
Если $frac{a}{b} = frac{c}{d}$, то $frac{a}{c} = frac{b}{d} $
Если $frac{a}{b} = frac{c}{d}$, то $frac{d}{b} = frac{c}{a} $
Если в верной пропорции поменять местами средние члены или крайние члены, то получившиеся новые пропорции верны.
Виды пропорций
Равенство отношений – геометрическая пропорция
Равенство разностей – арифметическая пропорция $a-b=c-d$
Гармоническая пропорция: Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: $a : b=b :(a-b)$. См. Золотое сечение