Как можно найти гравитационную постоянную

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 октября 2021 года; проверки требуют 8 правок.

Гравитационная постоянная G лежит в основе закона всемирного тяготения.

Гравитацио́нная постоя́нная, постоянная Ньютона (обозначается обычно G, иногда GN или γ)[1] — фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами[2] m1 и m2, находящимися на расстоянии r, равна:

F=G{frac  {m_{1}m_{2}}{r^{2}}}.

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

Точность измерений гравитационной постоянной на несколько порядков ниже точности измерений других физических величин[3].

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2020 год значение гравитационной постоянной[4]:

G = 6,67430(15)⋅10−11 м3·с−2·кг−1, или Н·м²·кг−2.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Гравитационная постоянная является одной из основных единиц измерения в планковской системе единиц.

История измерения[править | править код]

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере, никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено[источник не указан 2082 дня].

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, которые предложил использовать для этого Джон Мичелл (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат[5] был уже достаточно близок к современному.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по её уточнению продолжают различаться[6][7].

В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени (неизменность гравитационной постоянной проверена с точностью до ΔG/G ~ 10−17), но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов[8]. В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено[9][10].

В 2013 году значение гравитационной постоянной было получено группой ученых, работавших под эгидой Международного бюро мер и весов:

G = 6,67554(16)⋅10−11 м3·с−2·кг−1 (стандартная относительная погрешность 25 ppm (или 0,0025 %), первоначальное опубликованное значение несколько отличалось от окончательного из-за ошибки в расчётах и было позже исправлено авторами)[11][12].

В июне 2014 года в журнале «Nature» появилась статья итальянских и нидерландских физиков, где были представлены новые результаты измерения G, сделанные при помощи атомных интерферометров[13]. По их результатам

G = 6,67191(99)⋅10−11 м3·с−2·кг−1 с погрешностью 0,015 % (150 ppm).

Авторы указывают, что поскольку эксперимент с применением атомных интерферометров основан на принципиально других подходах, он помогает выявить некоторые систематические ошибки, не учитывающиеся в других экспериментах.

В августе 2018 года в журнале «Nature» физиками из Китая и России были опубликованы[14] результаты новых измерений гравитационной постоянной с улучшенной точностью (погрешность 12 ppm, или 0,0012 %). Были использованы два независимых метода — измерение времени качаний торсионного подвеса и измерение углового ускорения, получены значения G, соответственно:

G = 6,674184(78)⋅10−11 м3·с−2·кг−1;
G = 6,674484(78)⋅10−11 м3·с−2·кг−1.

Оба результата в пределах двух стандартных отклонений совпадают с рекомендованным значением CODATA, хотя отличаются друг от друга на ~2,5 стандартных отклонения.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, скорость её относительного изменения (dG/dt)/G не превышает нескольких единиц на 10−11 в год[15][16][17].

См. также[править | править код]

  • Постоянная Гаусса
  • Планковские единицы
  • Ускорение свободного падения

Примечания[править | править код]

  1. В общей теории относительности обозначения, использующие букву G, применяются редко, поскольку там эта буква обычно используется для обозначения тензора Эйнштейна.
  2. По определению массы, входящие в это уравнение, — гравитационные массы, однако расхождения между величиной гравитационной и инертной массы какого-либо тела до сих пор не обнаружено экспериментально. Теоретически в рамках современных представлений они вряд ли отличаются. Это в целом было стандартным предположением и со времен Ньютона.
  3. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию Архивная копия от 25 августа 2017 на Wayback Machine // Элементы.ру, 13.09.2013
  4. CODATA Internationally recommended values of the Fundamental Physical Constants (англ.). Дата обращения: 7 марта 2020. Архивировано 27 августа 2011 года.
  5. Разные авторы указывают разный результат, от 6,754⋅10−11 м²/кг² до (6,60 ± 0,04)⋅10−11м³/(кг·с³) — см. Эксперимент Кавендиша#Вычисленное значение.
  6. Gillies G. T. The Newtonian Gravitational Constant Архивная копия от 12 апреля 2019 на Wayback Machine // Sevres (France), Bureau Intern. Poids et Mesures, 1983, 135 p.
  7. Ляховец В. Д. Проблемы метрологического обеспечения измерений гравитационной постоянной. // Проблемы теории гравитации и элементарных частиц. Выпуск 17. – М., Энергоатомиздат, 1986. – с. 122-125.
  8. Игорь Иванов. Новые измерения гравитационной постоянной ещё сильнее запутывают ситуацию (13 сентября 2013). Дата обращения: 14 сентября 2013. Архивировано 21 сентября 2013 года.
  9. Так ли постоянна гравитационная постоянная? Архивная копия от 14 июля 2014 на Wayback Machine Новости науки на портале cnews.ru // публикация от 26.09.2002
  10. Brooks, Michael Can Earth’s magnetic field sway gravity? NewScientist (21 сентября 2002). Архивировано 8 мая 2015 года.
  11. Quinn Terry, Parks Harold, Speake Clive, Davis Richard. Improved Determination of G Using Two Methods (англ.) // Physical Review Letters. — 2013. — 5 September (vol. 111, no. 10). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.111.101102. Архивировано 29 января 2019 года.
  12. Quinn Terry, Speake Clive, Parks Harold, Davis Richard. Erratum: Improved Determination of G Using Two Methods [Phys. Rev. Lett. 111, 101102 (2013)] (англ.) // Physical Review Letters. — 2014. — 15 July (vol. 113, no. 3). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.113.039901. Архивировано 7 октября 2021 года.
  13. Rosi G., Sorrentino F., Cacciapuoti L., Prevedelli M., Tino G. M. Precision measurement of the Newtonian gravitational constant using cold atoms (англ.) // Nature. — 2014. — June (vol. 510, no. 7506). — P. 518—521. — ISSN 0028-0836. — doi:10.1038/nature13433. Архивировано 26 мая 2019 года.
  14. Li Qing, Xue Chao, Liu Jian-Ping, Wu Jun-Fei, Yang Shan-Qing, Shao Cheng-Gang, Quan Li-Di, Tan Wen-Hai, Tu Liang-Cheng, Liu Qi, Xu Hao, Liu Lin-Xia, Wang Qing-Lan, Hu Zhong-Kun, Zhou Ze-Bing, Luo Peng-Shun, Wu Shu-Chao, Milyukov Vadim, Luo Jun. Measurements of the gravitational constant using two independent methods (англ.) // Nature. — 2018. — August (vol. 560, no. 7720). — P. 582—588. — ISSN 0028-0836. — doi:10.1038/s41586-018-0431-5. Архивировано 31 мая 2019 года.
  15. van Flandern T. C. Is the Gravitational Constant Changing (англ.) // The Astrophysical Journal. — IOP Publishing, 1981. — September (vol. 248). — P. 813. — doi:10.1086/159205. — Bibcode: 1981ApJ…248..813V.
    Результат: (dG/dt)/G = (−6,4 ± 2,2)×10−11 год−1
  16. Verbiest J. P. W., Bailes M., van Straten W., Hobbs G. B., Edwards R. T., Manchester R. N., Bhat N. D. R., Sarkissian J. M., Jacoby B. A., Kulkarni S. R. Precision Timing of PSR J0437−4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant (англ.) // The Astrophysical Journal. — IOP Publishing, 2008. — 20 May (vol. 679, no. 1). — P. 675—680. — ISSN 0004-637X. — doi:10.1086/529576.
    Результат: |Ġ/G| ≤ 2,3 × 10−11 год−1
  17. Взрыв звезд доказал неизменность Ньютоновской гравитации в космическом времени. Дата обращения: 24 марта 2014. Архивировано 24 марта 2014 года.

Ссылки[править | править код]

  • Гравитационная постоянная // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Милюков В. К. Гравитационная постоянная // Физическая энциклопедия. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 523.
  • Speake C., Quinn T. The search for Newton’s constant // Physics Today. — 2014. — Vol. 67, № 7. — P. 27—33.
  • Иванов И. Гравитационная постоянная измерена новыми методами // Элементы. — 22.01.2007.
  • Измерение гравитационной постоянной (большой G) как повод для дебатов!

В современной формулировке закона всемирного тяготения присутствует коэффициент , называющийся гравитационной постоянной и стоящий перед формулой особняком. Интересно, что Ньютон, открывший закон притяжения, не использовал явную форму константы, численно она была определена больше века спустя со дня смерти учёного.

G - гравитационная постоянная

Содержание

  1. Что такое и чему равна гравитационная постоянная
  2. В чём измеряется гравитационная постоянная
  3. Как найти гравитационную постоянную – история открытия
  4. Работы Ньютона
  5. Как была экспериментально определена гравитационная постоянная – эксперимент Кавендиша
  6. Измерение гравитационной постоянной
  7. Современная история изменений гравитационной постоянной

Что такое и чему равна гравитационная постоянная

Формула закона всемирного тяготения, известная по курсу школьной механики:

формула закона всемирного тяготения

формула закона всемирного тяготения

G – коэффициент пропорциональности или гравитационная постоянная;

m1, m2 – массы двух тел, испытывающих взаимное притяжение;

r – расстояние между ними.

Коэффициент пропорциональности G обозначает силу, с которой притягивается пара килограммовых объектов, расположенных друг от друга на метровом расстоянии. Значение константы обычно принимается равным:

гравитационная постоянная

значение гравитационной постоянной

Столь маленькое число объясняет, почему несмотря на постоянное действие гравитации люди, находящиеся рядом, не чувствуют силу тяготения – она проявляется на объектах огромных масс, имеющих высокие порядки, например, массе планет, Солнца, других звёзд.

гравитационная постоянная в законе всемирного тяготения

гравитационная постоянная в законе всемирного тяготения

В чём измеряется гравитационная постоянная

Несмотря на то, что гравитационная постоянная численно равна силе, её единицы измерения не ньютоны. Размерность коэффициента может показаться страшной – размерность гравитационной постоянной

, но её возникновение легко объясняется.

Согласно Международной системе единиц (системе интернациональной или СИ), сила измеряется в ньютонах, причём

вывод размерности гравитационной постоянной

то есть 1 ньютон – сила, изменяющая скорость килограммового объекта на 1 м/с за одну секунду.

После открытия закона тяготения определено: пара килограммовых тел притягивается друг к другу силой со значением, зависящим обратно пропорционально от квадрата расстояния между объектами.

То есть единица измерения гравитационной силы –

вывод размерности гравитационной постоянной 2

и размерность не совпадает с привычной вывод размерности 3 . Требуется коэффициент, который должен уравнять единицы измерения привычной силы и силы гравитационного взаимодействия.

Проведём математические вычисления самостоятельно.

Нужно уравнять вывод размерности 3

и вывод размерности 4.

Для этого вывод размерности 4 нужно разделить на 1с2 и 1кг, а также умножить на м3, получим:

вывод размерности 5

Получилась требуемая размерность.

Следовательно, постоянная имеет размерность размерность гравитационной постоянной.

Как найти гравитационную постоянную – история открытия

Коэффициент G – универсальная константа, измерение которой осуществляется экспериментальным путём. Доподлинно неизвестно, кто открыл значение гравитационной постоянной, первое употребление в «Трактате по механике» Пуассона датируется 1811 годом.

Работы Ньютона

При публикации закона тяготения в трактате Ньютона отсутствовало явное обозначение константы, характеризующее гравитацию и её действие. Коэффициент не появлялся в работах по физике вплоть до конца восемнадцатого века, его точное значение не было вычислено.

Исаак Ньютон

Исаак Ньютон

Вместо известной сегодня постоянной присутствовал гравитационный параметр:

гравитационный параметр

M – масса объекта, причём, масса планеты или звезды, так как гравитационный параметр нашёл широкое распространение в астрофизике.

Сегодня для объектов Солнечной системы значение параметра рассчитано точнее, чем гравитационная постоянная G и масса по отдельности, так как она не требует серьёзных экспериментов, вычисляется на основании астрономических наблюдений.

Например:

  • для Земли гравитационный параметр земли;
  • Луны гравитационный параметр луны;
  • Солнца гравитационный параметр солнца.

Подробнее о использовании закона всемирного тяготения в астрономии вы можете прочитать в нашей статье.

Как была экспериментально определена гравитационная постоянная – эксперимент Кавендиша

Естествоиспытатель Джон Митчел придумал эксперимент для определения массы Земли при помощи крутильных весов, однако не реализовал его. После его смерти идея опыта и аппаратура перешли к английскому физику и химику Генри Кавендишу, который, усовершенствовав прибор, провёл ряд экспериментов и осуществил задумку своего предшественника.

крутильные весы Кавендиша

крутильные весы Кавендиша

Главенствующая роль в опытах отводилась установке. На метровой нити из меди подвешивалось коромысло длиной 1,8 метра, на его концах устанавливалась пара свинцовых шариков диаметром 5 сантиметров, массой 775 грамм. Чуть выше крепилась поворотная ферма, причём тщательно соблюдалось требование совпадения оси вращения фермы с медной нитью. На концах поворотной штанги находилось по одному большому свинцовому шару диаметром 20 сантиметров, массой 49,5 килограмм. Чтобы избежать влияния конвекционных воздушных потоков, вся установка накрывалась плотным деревянным кожухом. Вследствие взаимодействия лёгкие шарики притягивались к тяжёлым, закручивая нить и отклоняя коромысло. Угол отклонения фиксировался двумя телескопами, а сила упругости нити приравнивалась гравитационному взаимодействию шаров.

опыт с крутильными весами

Величина определённой силы притяжения составляла 0,17 микроньютона. Если сравнивать это значение с весом маленького шара, то оно меньше последнего примерно в 45 миллионов раз.

В результате своего эксперимента Генри Кавендиш рассчитал среднюю плотность Земли, причём его эксперимент был точным – погрешность измеренного значения в сравнении с современным значением составляет всего 0,7%. Именно Кавендишу приписывают открытие значения гравитационной постоянной, однако он никогда не задавался подобной целью при проведении своих опытов. Очевидно, величина константы определена на основании результатов его эксперимента, но кто сделал это первым, неизвестно.

Генри Кавендиш

Генри Кавендиш

Измерение гравитационной постоянной

Значение константы, полученное по измеренной Кавендишем плотности, по разным источникам разнится. Британская энциклопедия называет число, равное численное значение гравитационной постоянной, с каковым некоторые современные физики. Леон Нил Купер утверждает, что экспериментально полученное число равно значение гравитационной постоянной по Леон Нил Купер, а Олег Павлович Спиридонов в сборнике  постоянных приводит значение значение гравитационной постоянной по Олег Павлович Спиридонов.

Коэффициент пропорциональности определяли после Генри Кавендиша, причём зачастую его установку модернизировали новыми материалами. Например, в 1872 году Корню и Байль для измерения гравитационной постоянной использовали платиновые маленькие шарики и стеклянные, наполненные ртутью, большие. Результаты опыта показали значение

гравитационная постоянная с относительной погрешностью 5*10-3.

Современная история изменений гравитационной постоянной

Гравитационная постоянная – десятичная дробь, её значение постоянно уточняется, причём измерение коэффициента G происходит путём усовершенствования прибора Митчела и улучшения методов наблюдения. Например, в 2018 году учёные из России и Китая проводили опыты на установках разной конструкции. В первой группе применялся метод «time of swing» (TOS), где коэффициент пропорциональности зависит от колебательной частоты весов. Во второй – метод «angular acceleration feedback» (AAF), где угловое ускорение независимо вращающихся коромысел шаров измеряется системой управления с обратной связью, при этом нить поддерживается незакрученной.

современные методы измерения гравитационной постоянной

По результатам команды первый метод продемонстрировал значение гравитационной постоянной уточненное значение гравитационной постоянной, второй метод – уточненное значение гравитационной постоянной 2. Относительная погрешность составила 11,6*10-6

Комитет по данным для науки и техники (CODATA) рекомендовал на 2020 год значение коэффициента пропорциональности, равное:

гравитационная постоянная на 2020 год

Таким образом, гравитационная постоянная всё время уточняется, требуя новые, более точные способы измерения и вычисления.

На чтение 8 мин Просмотров 2.2к.

Наблюдая за перемещением небесных объектов, люди пытались найти объяснение происходящим на небе событиям. У древних людей преобладали версии мистического характера. Но в 17-м веке Исааком Ньютоном было предложено первое научное объяснение перемещению астрономических тел. Теория гравитации совершенствовалась еще несколько столетий, пока не приобрела современный вид.

Гравитация Земли

Однако, несмотря на наблюдения и опыт, в современной астрофизике есть много пробелов и нестыковок, которые ученые затрудняются объяснить. Например, гравитационная константа, значение которой до сих пор не получается определить с достаточной степенью точности. А в последнее время появились предположения, что эта величина не совсем и константа. В этой статье мы и рассмотрим данный вопрос.

Содержание

  1. Что такое гравитационная постоянная
  2. Единица измерения гравитационной постоянной
  3. Как найти гравитационную постоянную, история открытия
  4.  Работы Ньютона
  5. Экспериментальное определение гравитационной постоянной, эксперимент Кавендиша
  6.  Измерение гравитационной постоянной
  7.  Современная история изменений гравитационной постоянной

Что такое гравитационная постоянная

Гравитационной постоянной (постоянной Ньютона) называют коэффициент, входящий в формулу закона всемирного тяготения. Численное значение константы гравитации (G, GN или g) равно:

Формула константы гравитации

Постоянная Ньютона не зависит от характеристик взаимодействующих объектов и внешних критериев. Данный показатель активно используется практиками при вычислении орбит небесных объектов, в геолого-разведывательных процессах, в геодезии и геофизике.

Единица измерения гравитационной постоянной

Сила в физике сила измеряется в ньютонах:

Сила в физике

Гравитационная постоянная численно равна силе, но при этом имеет другую размерность:

Размерность гравитационной постоянной

Данная единица измерения выводится при помощи несложных расчетов. Два тела весом по 1кг будут взаимно притягиваться с силой, обратно пропорциональной квадрату расстояния между ними:

Выведение формулы

Коэффициент, уравнивающий Н и единицу измерения гравитационной постоянной, вычисляется следующим образом:

Коэффициент

Как найти гравитационную постоянную, история открытия

Открытию явления гравитации предшествовали труды многих исследователей. Еще в древней Греции были предложены гипотезы, которые пытались объяснить, почему материальные тела падают на землю, а не летят в произвольном направлении. История открытия гравитации представлена в таблице.

Николай Коперник Обосновал модель мира, в которой Солнце занимает центральное место, а остальные объекты вращаются вокруг него (гелиоцентрическая модель).
Уильям Гилберт Высказал предположение, что наша планета и ее спутник являются магнитами друг для друга, при этом магнитная сила Земли больше из-за того, что больше ее масса.
Иоганн Кеплер Сформулировал ряд законов, в том числе 3-й, который был использован при разработке теории гравитации: период обращения планет в квадрате соотносится как большие полуоси орбит в кубе.
Галилео Галилей Обосновал, что если на тело не оказывать никаких воздействий, то оно будет оставаться в бездействии. Сформулировал закон, смысл которого заключался в том, что все тела, независимо от их тяжести, падают вниз с одинаковой скоростью, при этом пройденный путь пропорционален квадрату времени, за которое тело достигло поверхности Земли.
Роберт Гук Сформулировал закон всемирного тяготения для некруговых орбит и предложил Ньютону обосновать его математически. Создал теорию об универсальной силе тяжести.
Эдмунд Галлей Просчитал обратно пропорциональную зависимость силы тяжести и квадрата расстояния.
Исаак Ньютон На основании работ предшественников вывел закон всемирного тяготения.
Генри Кавендиш Собрал приспособление, с помощью которого можно определить величину константы гравитации.
Симеон Дени Пуассон В его трудах впервые появляется понятие  гравитационной константы.

Ньютона интересовало выведение научных правил, а не чистота искомых значений. Экспериментаторы, которые применяли формулу Ньютона на практике, столкнулись с необходимостью введения поправочного коэффициента, который позже получил название ньютоновская константа. Возник вопрос, чему равна гравитационная постоянная. Последовавшие в данном направлении работы показали, что найти гравитационную постоянную можно только опытным путем.

 Работы Ньютона

Научная почва для обоснования закона всемирного тяготения была основательно подготовлена предшественниками Ньютона. Большая часть расчетов базировалась на 3-м законе Кеплера. Сила, благодаря которой планеты удерживаются на орбитах, соизмерима с центростремительным ускорением, и должна быть обратно пропорциональна квадрату расстояния от центра планеты до центра Солнца. Сила, вызывающая падение предметов (пресловутого яблока) на землю, была сопоставлена ученым с силой,  удерживающей Луну на ее орбите. Кроме того, физик установил центростремительное ускорение Луны относительно Земли.

Ранее опытным путем было установлено значение ускорения свободного падения объектов. Ученый применил удобные для вычислений цифры: дистанция от Луны до центра Земли в 60 раз больше, чем дистанция от объекта, находящегося на поверхности Земли. Если объект направить к центру Земли, то он за 1 секунду пролетит такой же путь, который пройдет Луна за 1 минуту. Эксперименты подтвердили точность теоретических выкладок с погрешностью около 1%. Это указывало на общность природы происхождения сил тяготения.

Из этого можно заключить, что сила обоюдного притяжения должна соответствовать каждой из масс. Также было подтверждено, что гравитация обратно пропорциональна квадрату расстояния между объектами. Исходя из вышесказанного, формула закона всемирного тяготения будет иметь следующий вид:

Закон всемирного тяготения

где F – сила гравитационного тяготения, g – гравитационная постоянная,  m1 и m2 – массы объектов, R – расстояние между объектами.

Работы Ньютона внесли вклад в решение следующих вопросов:

  1. перемещения тел по космическим орбитам;
  2. ускорение свободного падения;
  3. приливы океанических вод;
  4. причины экваториальной выпуклости.

Эйнштейн использовал закон всемирного тяготения при разработке теории относительности. Постоянная гравитационная показывает соотношение между такими характеристиками уравнений поля, как геометрия пространства-времени и тензор энергии-импульса.

Вместо G Ньютон применял в расчетах «гравитационный параметр» µ.  Практические наблюдения за космическими телами позволили определить для ряда небесных объектов значение µ с минимальной погрешностью. Рассчитывают µ по формуле:

µ=GM;

где G – константа гравитации, M – масса объекта

гравитационный параметр

В трудах Кеплера также  фигурирует гравитационный параметр. В физике с его помощью упрощают некоторые громоздкие формулы.

Экспериментальное определение гравитационной постоянной, эксперимент Кавендиша

Британец Джон Мичелл увековечил свое имя как создатель крутильных весов, с помощью которых впервые смогли определить величину g. Экспериментальное определение гравитационной постоянной не входило в планы исследователя. Он хотел «взвесить» нашу планету. Однако воплотить свои планы Мичелл не успел, и сконструированное им устройство после его кончины досталось Генри Кавендишу.

Эксперимент Кавендиша

Установка для опыта Генри Кавендиша

Кавендиш доработал установку. Конструкция включала шестифутовый стержень, закрепленный на медном волокне длиной 1 м. К плечам коромысла ученый прикрепил два шара из свинца по 775 грамм каждый, соорудив таким образом гантельку. Затем рядом с маленькими шариками он разместил крупные шары по 49,5 кг, что привело к возникновению явления гравитации между объектами. Стержень конструкции отклонился от первоначального положения, что дало возможность найти величину угла поворота гантельки. Опыт Кавендиша оказался успешным: увязав упругие свойства волокна, массу шаров, размер установки и значение угла, он определил массу Земли и ее среднюю плотность. Сегодня эксперимент Кавендиша по-прежнему актуален, исследователями разрабатываются инновационные модификации прибора.

 Измерение гравитационной постоянной

С измерением степени точности гравитационной постоянной g сложилась парадоксальная ситуация. Последние многочисленные эксперименты определяют отклонение с точностью 10-4. Это хуже на несколько порядков по сравнению с точностью определения прочих базисных величин. Сравнительно аккуратные результаты можно получить в условиях лаборатории, измеряя силу гравитации между двумя телами с известной массой (модификации эксперимента Кавендиша). Новые атомно-интерферометрические устройства оказались непригодными в измерении гравитационной постоянной в связи с гораздо большей величиной погрешности, чем при эксперименте на механических устройствах.

 Современная история изменений гравитационной постоянной

Неординарность ситуации с нахождением точного значения гравитационной константы привела к возникновению догадки, что G не является постоянной в классическом понимании и может с течением времени изменяться. В уравнениях общей теории относительности Эйнштейн увязал  гравитационную постоянную и космологическую константу – параметр, который влияет на устойчивость Вселенной.

Хаббл и Фридман обосновали опытным путем модель расширяющейся Вселенной, что противоречило теории стационарной Вселенной Эйнштейна. На долгое время ученые прекратили учитывать при вычислениях космологическую постоянную. В конце 1990-х годов было выявлено и подтверждено ускорение расширения Вселенной. Вновь открытые результаты не вписывались в теорию Хаббла-Фридмана, концепцию пришлось пересматривать, и космологическая постоянная вернулась в физику.

Современная Лямбда-CDM модель Вселенной учитывает космологическую постоянную. Данная концепция объясняет наличие антигравитации, «темной материи», реликтового излучения, и является стандартом в астрофизике с 1998-го года.

Интересно, что Лямбда-CDM модель хорошо коррелирует с космологией черной дыры. Все больше ученых склонны отказываться от Теории большого взрыва, поскольку накопившиеся научные данные противоречат общепринятому взгляду на образование Вселенной. В гипотезу, что видимое нами пространство-время (и мы вместе с ним) бесконечно «падает» в гигантскую черную дыру, отлично вписывается явление ускорения расширения Вселенной, «странности» реликтового излучения, наличие темной материи.

Современная история изменений гравитационной постоянной привела к попыткам астрономов переосмыслить данный физический параметр. Так, Филипп Мангейм считает, что константа g в зависимости от условий ее измерения может менять свое значение. В условиях нашей планеты постоянная g будет иметь известную ученым величину, а вот в космосе значение G будет гораздо меньше.

Космологическая постоянная,  описывающая скорость расширения Вселенной, имеет расчетное значение в 10120 раз превосходящее наблюдаемое. Если бы значение g было верным, то галактики не успели бы образоваться. По мнению Мангейма, в расчеты следует ввести новую величину, которая будет пропорциональна произведению космологической и гравитационной констант.

Такой подход позволит устранить существующие противоречия, но у него есть и свои недостатки: подвергаются сомнению основы теории относительности, не объясняется существование реликтового излучения и двойных пульсаров. Преимуществом идеи Мангейма является возможность синтеза теории гравитации и физики элементарных частиц в одну универсальную доктрину.

По вашему мнению, ньютоновская константа – это объективный параметр, или мы просто не все знаем о физических феноменах?

Значение гравитационной постоянной

Значение гравитационной постоянной

Содержание:

  • 1 Общие сведения
  • 2 Работы Ньютона
  • 3 Эксперимент Кавендиша
  • 4 Измерение гравитационной постоянной
  • 5 Материалы по теме

Общие сведения

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством гравитации, притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

Гравитационное взаимодействие двух тел

Гравитационное взаимодействие двух тел

Здесь:

  • m1 и m2 — тела, взаимодействующие посредством гравитации
  • F1 и F2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 - 1727)

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м3с−2.

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Установка Генри Кавендиша

Установка Генри Кавендиша

Более наглядное описание эксперимента доступно в видео ниже:

https://www.youtube.com/watch?v=iOgrSlzyFMA» frameborder=»0″ allowfullscreen>

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Материалы по теме

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10-17. Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10-11 – 10-12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10−11 м3·с−2·кг−1.

Гравитационная постоянная

Гравитационная постоянная (также известная как «универсальная гравитационная постоянная», «ньютоновская константа тяготения» или «гравитационная постоянная Кавендиша»), обозначенная буквой GG или малой греческой буквой γγ, является эмпирической физической константой, участвующей в вычислении гравитационных эффектов.

В законе Ньютона она представляет собой коэффициент пропорциональности, связывающий гравитационную силу между двумя телами с результирующей их масс и обратным квадратом их расстояния:

F=γmMR2,F=gamma frac{mM}{{{R}^{2}}},

где γγ – коэффициент пропорциональности, который называют гравитационной постоянной.

В уравнениях поля Эйнштейна она количественно определяет связь между геометрией пространства-времени и тензором энергии-импульса.

Физический смысл γ

Физический смысл γγ нетрудно установить. Для этого в выражении закона притяжения положим m1=m2=1m_1 = m_2 = 1 кг, r=1r = 1 м.

Тогда F=γF = γ, то есть гравитационная постоянная численно равна силе взаимодействия двух материальных точек с массами 1 кг, находящихся на расстоянии 1 м.

Оценка величины γγ на основе предположений о средней плотности Земли показала, что гравитационное притяжение между телами обычных размеров, то есть в лабораторных условиях, очень мало.

Это свидетельствует о том, что для определения γγ нужны достаточно точные и сложные эксперименты.

Опыт Кавендиша

Впервые экспериментально доказал справедливость закона гравитационного притяжения в земных условиях, а также определил гравитационную постоянную γγ английский ученый Г. Кавендиш (1731 – 1810). Для определения были использованы крутильные весы. Основная часть весов – однородный стержень-коромысло длиной ll, подвешенный на тонкой упругой нити аа:

Опыт Кавендиша.png

На концах стержня прикрепляли два одинаковых свинцовых шарика, массы которых m1m1 = m2m2 = 730г. С разных сторон этих шариков размещали две другие крупные свинцовые пули, массы которых M1M1 = M2M2 = 158 кг. Вследствие гравитационного взаимодействия между шарами коромысло начинает поворачиваться вокруг оси, проходящей через нить подвеса, на некоторый угол φ. Поскольку длина l стержня значительно больше расстояния между центрами масс шаров m1m1 и M1M1, m2m2 и M2M2, то гравитационным взаимодействием между шарами m1m1 и M2M2, m2m2 и M1M1 можно пренебречь.

Закручивания нити подвеса происходит до тех пор, пока момент пары сил гравитационного взаимодействий не уравновесится моментом упругой силы закручивания нити Μ = kφ.

Угол φφ определяли по отклонению отраженного луча от зеркала А. Модуль кручения kk определили в результате наблюдений за свободными колебаниями коромысла. Чтобы конвекционные потоки воздуха не влияли на результаты измерений, Г. Кавендиш разместил экспериментальную установку в закрытом ящике, который находился в закрытой комнате. Наблюдения и измерения проводились из другого помещения с помощью телескопа. Опыт Кавендиша не раз повторялся в разных вариантах.

Опыт Жолли

Точное значение γγ определено методом, который предложил немецкий физик Ф. Жолли (1809 – 1884). На одном из плеч рычажных весов подвешивали две чаши, между которыми располагали тяжелое свинцовое тело правильной геометрической формы:

Опыт Жолли.png

Когда на верхнюю чашу положить тело массой mm, то на него действует сила:

F1=mg+FF1 = mg + F,

где FF – сила гравитационного притяжения между телами массами mm и ММ. Если положить тело массой m в нижнюю чашку, то на него будет действовать сила F2=mg−FF2 = mg – F. Силы F1F1 и F2F2 определяют с помощью грузиков, которые нужны для уравновешивания весов. На основе этих измерений находят γγ:

γ=F1−F22Mmr2gamma =frac{{{F}_{1}}-{{F}_{2}}}{2Mm}{{r}^{2}}

где rr – расстояние между центрами масс mm и ММ.

По современным данным, гравитационная постоянная γγ = 6.67408 · 10-11 м3 кг-1 с-2

Поскольку значение гравитационной постоянной мало, то гравитационное притяжение может быть значительным для тел достаточно больших масс. В результате действия сил гравитационного притяжения осуществляется движение всех небесных тел.

Знание гравитационной постоянной дало возможность определить массу Луны, Солнца и других небесных тел.

Тест по теме «Гравитационная постоянная»

Добавить комментарий