Как можно найти объем треугольной пирамиды

Объем пирамиды

{V= S cdot h}

На этой странице собраны формулы и калькуляторы для нахождения объема пирамиды. Просто введите известные данные в калькулятор и получите результат. Либо рассчитайте объем пирамиды по приведенным формулам самостоятельно.

Пирамида — многогранник, в основании которого лежит многоугольник, а остальные грани представляют собой треугольники, имеющие общую вершину.

Содержание:
  1. калькулятор объема пирамиды
  2. формула объема пирамиды
  3. объем правильной треугольной пирамиды
  4. объем правильной четырехугольной пирамиды
  5. объем правильной шестиугольной пирамиды
  6. объем правильной n-угольной пирамиды
  7. объем тетраэдра
  8. примеры задач

Формула объема пирамиды

Объем пирамиды

{V= dfrac{1}{3} S cdot h}

S – площадь основания пирамиды

h – высота пирамиды

Формула объема правильной треугольной пирамиды

Правильная треугольная пирамида – пирамида, в основании которой лежит равносторонний треугольник, а грани являются равнобедренными треугольниками.

Объем правильной треугольной пирамиды

{V= dfrac{h cdot a^2}{4 sqrt{3}}}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной четырехугольной пирамиды

Правильная четырехугольная пирамида – пирамида, в основании которой лежит квадрат, а грани являются равнобедренными треугольниками.

Объем правильной четырехугольной пирамиды

{V= dfrac{1}{3} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной шестиугольной пирамиды

Правильная шестиугольная пирамида – пирамида, в основании которой лежит правильный шестиугольник, а грани являются равнобедренными треугольниками.

Объем правильной шестиугольной пирамиды

{V= dfrac{sqrt{3}}{2} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной n-угольной пирамиды

Правильная пирамида имеет в основании правильный многоугольник (все стороны и углы равны между собой), а высота проходит через центр этого основания.

Объем правильной n-угольной пирамиды

{V= dfrac{n cdot h cdot a^2}{12 cdot tg(dfrac{180°​}{n} )}}

a – длина стороны основания пирамиды

h – высота пирамиды

n – число сторон многоугольника в основании пирамиды

Формула объема тетраэдра

Тетраэдр – правильный многогранник (четырехгранник), имеющий четыре грани, каждая из которых является правильным треугольником. У тетраэдра кроме четырех граней также 4 вершины и 6 ребер.

Объем тетраэдра

{V= dfrac{sqrt{2} a^3}{12}}

a – длина стороны тетраэдра

Примеры задач на нахождение объема пирамиды

Задача 1

Найдите объем пирамиды с высотой 2м, а основанием ее служит квадрат со стороной 3м.

Решение

Так как в основании пирамиды лежит квадрат, то воспользуемся формулой объема правильной четырехугольной пирамиды и подставим в нее значения высоты и стороны основания.

V= dfrac{1}{3} cdot h cdot a^2 = dfrac{1}{3} cdot 2 cdot 3^2 = dfrac{1}{3} cdot 2 cdot 9 = dfrac{1}{3} cdot 18 = 6 : м^3

Ответ: 6 м³

Используем калькулятор для проверки полученного ответа.

Задача 2

Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1см, а высота равна √3см.

Решение

Из условия следует, что пирамида правильная треугольная. Это значит, что для решения задачи необходимо воспользоваться формулой для правильной треугольной пирамиды. Подставим в нее значения и рассчитаем объем.

V= dfrac{h cdot a^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1}{4 sqrt{3}} = dfrac{sqrt{3}}{4 sqrt{3}} = dfrac{cancel{sqrt{3}}}{4 cancel{sqrt{3}}} = dfrac{1}{4} = 0.25 : м^3

Ответ: 0.25 см³

Для проверки с помощью калькулятора извлечем квадратный корень из 3: √3 = 1.73205. Теперь можем подставить значения в калькулятор и проверить полученный ответ.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2022 года; проверки требуют 4 правки.

Пирами́да (от др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину[1]. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Пирамида является частным случаем конуса[2].

История развития пирамиды в геометрии[править | править код]

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объём пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит
[3], а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12[4]).

Элементы пирамиды[править | править код]

SO — высота
SF — апофема
OF — радиус вписанной в основание окружности

  • вершина пирамиды — общая точка боковых граней, не лежащая в плоскости основания;
  • основание — грань, которой не принадлежит вершина пирамиды;
  • боковые грани — треугольные грани, сходящиеся в вершине;
  • боковые рёбра — рёбра, являющиеся сторонами двух боковых граней (и, соответственно, не являющиеся сторонами основания);
  • высота пирамиды — перпендикуляр из вершины пирамиды на её основание;
  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через её вершину и диагональ основания.

Развёртка пирамиды[править | править код]

Развёртка правильной пятиугольной пирамиды:
1. в плоскости основания («звезда»)
2. в плоскости одной из боковых граней

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.

Свойства[править | править код]

Если все боковые рёбра равны, то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами[править | править код]

Описание сферы вокруг правильной пирамиды:
SD — высота пирамиды.
AD — радиус окружности, описывающей основание.
В — середина ребра боковой грани
С — точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS — радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D — центр основания
SF — апофема
ASD — биссекторная плоскость угла между боковыми гранями
BCE — биссекторная плоскость угла между основанием и боковой гранью
С — точка пересечения всех биссекторных плоскостей
CK=CD — радиус сферы вписанной в пирамиду

Сфера[править | править код]

  • около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие)[5]. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
  • в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Конус[править | править код]

  • Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие);[6]
  • Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
  • Высоты у таких конусов и пирамид равны между собой.

Цилиндр[править | править код]

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой[править | править код]

  • Объём пирамиды может быть вычислен по формуле:
V={frac {1}{3}}Sh,
где  S — площадь основания и  h — высота;[7]
V={frac {1}{6}}V_{p},
где {textstyle  V_{p}} — объём параллелепипеда;
  • Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[8]:
V={frac {1}{6}}a_{1}a_{2}dsin varphi ,
где a_{1},a_{2} — скрещивающиеся рёбра , d — расстояние между a_{1} и a_{2} , varphi  — угол между a_{1} и a_{2};
  • Боковая поверхность — это сумма площадей боковых граней:
S_{b}=sum _{i}^{}S_{i}
  • Полная поверхность — это сумма площади боковой поверхности и площади основания:
 S_{p}=S_{b}+S_{o}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
{displaystyle S_{b}={frac {1}{2}}Pa={frac {n}{2}}b^{2}sin alpha }
где a — апофема ,  P — периметр основания,  n — число сторон основания,  b — боковое ребро, alpha  — плоский угол при вершине пирамиды.

Особые случаи пирамиды[править | править код]

Правильная пирамида[править | править код]

Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами:

Прямоугольная пирамида[править | править код]

Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

Тетраэдр[править | править код]

Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.

См. также[править | править код]

  • Усечённая пирамида
  • Бипирамида

Примечания[править | править код]

  1. Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  2. Математика в понятиях, определениях и терминах. Ч. 1. Пособие для учителей. Под ред. Л. В. Сабинина. М., Просвещение, 1978. 320 с. С. 253.
  3. Б. Л. ван дер Варден. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — 3-е изд.. — М.: КомКнига, 2007. — 456 с. — ISBN 978-5-484-00848-3.
  4. М. Е. Ващенко-Захарченко. Начала Евклида с пояснительным введением и толкованиями. — Киев, 1880. — С. 473. — 749 с.
  5. Саакян С. М., Бутузов В. Ф. Изучение геометрии в 10—11-х классах: книга для учителя. — 4-е изд., дораб.. — М.: Просвещение, 2010. — 248 с. — (Математика и информатика). — ISBN 978-5-09-016554-9.
  6. Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.
  7. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, §357.
  8. Кушнир И. А. Триумф школьной геометрии. — К.: Наш час, 2005. — 432 с. — ISBN 966-8174-01-1.
  9. Готман Э. Свойства правильной пирамиды, вписанной в сферу Архивная копия от 22 января 2012 на Wayback Machine // Квант. — 1998. — № 4.

Литература[править | править код]

  • Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  • Калинин А. Ю., Терешин Д. А. Стереометрия. 11 класс. — 2-е изд. — М.: Физматкнига, 2005. — 332 с. — ISBN 5-89155-134-9.
  • А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
  • Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.

Ссылки[править | править код]

  • Бумажные модели пирамид Архивная копия от 4 января 2010 на Wayback Machine (англ.)
  • «Начала» Евклида.

Как рассчитать объем пирамиды

На данной странице калькулятор поможет рассчитать объем пирамиды онлайн. Для расчета задайте площадь, высоту, сторону или количество сторон. Вычисления производятся в миллиметрах, сантиметрах, метрах. Результат выводится в кубических сантиметрах, литрах и кубических метров.

Пирамида – многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. Пирамида является частным случаем конуса. Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основания.

Пирамида


Объем пирамиды через высоту высоте


Формула объема пирамиды через высоту и площадь основания:

S – площадь основания; h – высота пирамиды.


Правильная пирамида


Объем правильной пирамиды


Правильная пирамида — пирамида, в основании которой лежит правильный многоугольник, а высота проходит через центр основания.

Формула объема правильной пирамиды через сторону основания, высоту и количество сторон:

a – сторона основания; h – высота пирамиды; n – количество сторон многогранника в основании.


Правильная треугольная пирамида


Объем треугольной пирамиды


Правильная треугольная пирамида — пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Формула объема правильной треугольной пирамиды через сторону основания и высоту:

a – сторона основания; h – высота пирамиды.


Правильная четырехугольная пирамида


Объем четырехугольной пирамиды


Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Формула объема правильной четырехугольной пирамиды через сторону основания и высоту:

a – сторона основания; h – высота пирамиды.


Тетраэдр


Объем тетраэдра


Тетраэдр — пирамида, у которой все грани равносторонние треугольники.

Формула объема тетраэдра:

a – ребро тетраэдра.

Добавить комментарий