Как можно найти силу архимеда

Видеоурок: закон Архимеда

Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).

Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.

В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:

{displaystyle F_{A}=rho gV,}

где:

Описание[править | править код]

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.

Плавание тела. Сила Архимеда (F_{A}) уравновешивает вес тела (F_{p}):

{displaystyle F_{A}=F_{p};}
ρж g Vж = ρт g Vт

Например, воздушный шарик объёмом V, наполненный гелием, летит вверх из-за того, что плотность гелия ({displaystyle rho _{He}}) меньше плотности воздуха ({displaystyle rho _{air}}):

{displaystyle F_{A}>F_{p};}

{displaystyle rho _{air}gV>rho _{He}gV.}

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление ({displaystyle P_{A}}) и сила давления ({displaystyle F_{A}}), действующие на верхнюю грань тела, равны:

{displaystyle P_{A}=rho gh_{A};}
{displaystyle F_{A}=rho gh_{A}S,}

где:

Давление ({displaystyle P_{B}}) и сила давления ({displaystyle F_{B}}), действующие на нижнюю грань тела, равны:

{displaystyle P_{B}=rho gh_{B};}
{displaystyle F_{B}=rho gh_{B}S,}

где:

Сила давления жидкости или газа на тело определяется разностью сил {displaystyle F_{B}} и {displaystyle F_{A}}:

{displaystyle F_{B}-F_{A}=rho gh_{B}S-rho gh_{A}S=rho gleft(h_{B}-h_{A}right)S=rho ghS=rho gV,}

где:

Разница давлений:

{displaystyle P_{B}-P_{A}=rho gh_{B}-rho gh_{A}=rho gh.}

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.

Обобщения[править | править код]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править код]

Вывод через мысленный эксперимент[править | править код]

Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной {displaystyle mg=rho gV}[4][5][6].

Расчёт силы[править | править код]

Гидростатическое давление p на глубине h, оказываемое жидкостью с плотностью rho на тело, есть {displaystyle p=rho gh}. Пусть плотность жидкости (rho ) и напряжённость гравитационного поля (g) — постоянные величины, а h — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости, направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{displaystyle {vec {F}}_{A}=-int limits _{S}{p,d{vec {S}}}=-int limits _{S}{rho gh,d{vec {S}}}=-rho gint limits _{S}{h,d{vec {S}}}=^{*}-rho gint limits _{V}{operatorname {grad} (h),dV}=^{**}-rho gint limits _{V}{{vec {e}}_{z}dV}=-rho g{vec {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{displaystyle {}^{*}h(x,y,z)=z;}
{displaystyle ^{**}operatorname {grad} h=nabla h={vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен {displaystyle rho gV}, и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Вывод через закон сохранения энергии[править | править код]

Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:

{displaystyle  A=-F*(h_{1}-h_{2})=-Delta E_{p}=-m_{text{ж}}gDelta h,}

где {displaystyle m_{text{ж}}} — масса вытесненной части жидкости, Delta h — перемещение её центра масс. Отсюда модуль вытесняющей силы:

{displaystyle  F=m_{text{ж}}g.}

По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:

{displaystyle  m_{text{ж}}=rho _{text{ж}}V_{text{т}},} где {displaystyle V_{text{т}}} — объем погружённой части тела.

Таким образом, для силы Архимеда имеем:

{displaystyle  F_{A}= F=m_{text{ж}}g=rho _{text{ж}}gV_{text{т}}.}

Условие плавания тел[править | править код]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle F_{T}} и силы Архимеда {displaystyle F_{A}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle F_{T}>F_{A}} — тело тонет;
  • {displaystyle F_{T}=F_{A}} — тело плавает в жидкости или газе;
  • {displaystyle F_{T}<F_{A}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую тело погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

Примечания[править | править код]

  1. Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
  2. Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
  3. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
  4. Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
  5. Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
  6. Buoyancy (англ.). Архивировано 14 июля 2007 года.

Ссылки[править | править код]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

Сила Архимеда

Вместе с преподавателем физики разбираемся, в чем измеряется и от чего зависит сила Архимеда. А в конце статьи вспомним известную легенду о том, как был открыт закон Архимеда, и узнаем, действует ли он в условиях невесомости

Сила Архимеда. Фото: pexels.com

Как объяснить, почему плавают огромные корабли из стали, которая тяжелее воды? Да еще и перевозят тонны грузов. Это происходит благодаря открытию, сделанному за два с лишним столетия до нашей эры изобретателем и ученым Архимедом.

История сохранила нам немного имен ученых-практиков, чьи изобретения изменили мир. Навсегда забыт гений, который придумал колесо. Но любой современный школьник назовет Архимеда, даже если знает о нем только легенду про мокрого голого философа, бежавшего по улице Сиракуз с криком: «Эврика!», то есть «Нашел!». А ведь ученый заслужил вечную благодарную память человечества благодаря многим изобретениям и открытиям:

  • Теория рычага и способы его расчета. На этой основе построены боевые машины для метания тяжелых камней и «коготь Архимеда» — машина для переворачивания римских трирем;
  • Шкив и многоступенчатый блок, полиспаст;
  • Червячная передача;
  • Архимедов винт и насосы, работающие на его принципе;
  • Одометр, машина для измерения пройденного пути;
  • «Архимедово число»: отношение длины окружности к ее диаметру

  • Фокусировка световых лучей при помощи зеркал. По легенде, так были сожжены римские корабли, осаждавшие Сиракузы. Недавно энтузиасты провели экспериментальную проверку и удалось поджечь деревянный баркас.

Однако самое знаменитое открытие — закон Архимеда, основа гидростатики. Удивительно, что он был почти забыт, пока корабли строили из дерева. И только когда они стали железными, а потом стальными, инженеры осознали важность силы Архимеда и стали применять ее формулу при расчетах водных и воздушных судов.

Определение закона Архимеда простыми словами

На тело, погруженное в жидкость или газ, действует подъемная, она же выталкивающая сила (сила Архимеда), равная весу вытесненного объема жидкости или газа.

Вектор силы Архимеда направлен против направления действия силы тяжести. Следствия закона Архимеда:

  • В невесомости закон Архимеда не действует.
  • Если сила Архимеда меньше силы тяжести, то тело утонет.
  • Если силы одинаковы по величине, тело «повисает» в окружающей среде.
  • Если сила Архимеда больше силы тяжести, то тело всплывает, пока они не уравновесятся. В воде этот момент наступит на поверхности.

Принцип Архимеда

Принцип Архимеда. Фото: shutterstock.com

Формула силы Архимеда

Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее

Где: FA — сила Архимеда;
ρ — плотность жидкости или газа, в которое погружают тело;
g — ускорение свободного падения, которое зависит от того, на какой планете или спутнике мы находимся. Для поверхности Земли, например, ускорение примерно равно 9,8 м/с2;
V — объем погруженной в среду части тела.

Закон Паскаля

Объяснение закона простыми словами и его формула

подробнее

В чем измеряется сила Архимеда

Единица измерения силы Архимеда в системе СИ — ньютон (Н).

1Н = 1 кг·м/с2

Архимед и наше время

В перечне военных трофеев, взятых римлянами в Сиракузах, есть некий «Планетарий Архимеда» — механическая модель движения планет. Он не сохранился, но есть подозрение, что загадочное устройство, случайно обнаруженное в затонувшем корабле у острова Антикитера, тоже сделано золотыми руками Архимеда. Прямых доказательств этого факта нет, но уже выяснено, что время изготовления приблизительно соответствует годам жизни гениального инженера.

Популярные вопросы и ответы

Отвечает Николай Герасимов, старший преподаватель по физике Домашней школы «ИнтернетУрок».

От чего зависит сила Архимеда?

Например, для определения выталкивающей силы, действующей на камень, лежащий на дне озера, нужно брать весь его объем. Если же определяем силу Архимеда, действующую на мяч, плавающий по этому озеру, то нужно брать лишь объем той части, которая находится под водой. Зависимость выталкивающей силы от ускорения свободного падения позволяет сделать интересный вывод о том, что в невесомости силы Архимеда нет.

Зная, что сила Архимеда зависит от плотности жидкости, можно объяснить следующее явление: куриное яйцо, помещенное в обычную воду, утонет и будет лежать на дне банки. Но стоит добавить в эту банку насыщенный раствор поваренной соли и тем самым изменить плотность воды — и яйцо начинает всплывать.

Как был открыт закон Архимеда?

Открытие закона Архимеда связано с интересной легендой. Древнегреческий царь Герон II приказал ювелирам изготовить золотую корону, что и было вскоре выполнено. Царь заподозрил, что ювелиры его обманули и сделали корону из электрона, сплава золота и серебра. Отличить подделку на глаз не удалось. Для проверки пригласили ученого из Сиракуз по имени Архимед. Достаточно было сравнить объем короны с объемом куска золота такой же массы.

Сложность состояла в определении объема короны, так как она была сложной формы, и вычислить объем по математическим формулам было невозможно. Долгие размышления не увенчались успехом, и Архимед решил сходить отдохнуть в баню. Именно там ученому пришла гениальная идея: погружаясь в воду, тело вытесняет ее в объеме, который равен объему погруженной части тела. «Эврика!» («Нашел!») — закричал Архимед и побежал к царю.

Сравнив объемы воды, вытесненной короной и куском золота такой же массы, он уличил ювелиров в нечестности и алчности. Так Архимедом был открыт закон, который позволяет нам объяснить, почему ходят по морям и океанам огромные корабли, изготовленные из железа, а маленькая металлическая гайка тонет.

Какой буквой обозначают силу Архимеда?

Как и большинство сил, сила Архимеда обозначается буквой F. Это первая буква английского слова force – сила. В индексе пишут букву А или В, которые позволяют отличить силу Архимеда FA или выталкивающую силу FВ от других сил в природе.

Определение

Архимедова сила (выталкивающая сила, подъемная сила) — сила, с которой жидкость или газ выталкивают погруженное в них тело.

Полезно знать и понимать!

  • Причина возникновения выталкивающей силы: нижняя грань тела находится на большей глубине, чем верхняя, поэтому давление жидкости снизу больше, чем сверху. Из-за разницы в давлениях возникает выталкивающая сила.
  • Архимедова сила всегда направлена вертикально вверх.
  • Архимедова сила равна разности сил давления на нижнюю и верхнюю грани:

FA = FH – FB

  • Также выталкивающая сила равна разности веса тела в воздухе и веса тела в жидкости:

FA = Pвозд – Pж

  • Модуль выталкивающей силы определяется с помощью закона Архимеда.

Закон Архимеда

Выталкивающая сила равна весу вытесненной жидкости.

FA = Pж

Частные случаи определения архимедовой силы

Полное погружение

Архимедова сила равна произведению плотности жидкости, объема тела и ускорения свободного падения:

FA = ρжVтg

Vт — объем погруженного в жидкость тела.

Неполное погружение

Архимедова сила равна произведению плотности жидкости, объема погруженной части тела и ускорения свободного падения:

FA = ρжVп.ч.g

Vп.ч. — объем погруженной в жидкость части тела.

Внимание! Если тело погружено в газ, то в формуле нужно использовать плотность этого газа.

Пример №1. При взвешивании груза в воздухе показание динамометра равно 1 Н. При опускании груза в воду показание динамометра уменьшается до 0,6 Н. Найдите значение выталкивающей силы.

Выталкивающая сила равна разности веса тела в воздухе и веса тело в воде. Следовательно:

FA = Pвозд – Pж = 1 – 0,6 = 0,4 (Н)

Воздухоплавание

Подъемной силой воздушного шара служит архимедова сила, равная:

FA = ρвоздVшg

Подъемной силе противостоят сила тяжести и сила сопротивления воздуха:

Fтяж = (Mшара + mгаза + mкорз + mгруза)g

Fсопр

Управление шаром:

  •  чтобы взлететь, шар заполняют нагретым воздухом или газом, плотность которого меньше плотности окружающего воздуха;
  • чтобы увеличить высоту полета, с шара сбрасывают балласт;
  •  чтобы спуститься на землю, газ охлаждают.

Пример №2. Аэростат объемом 1000 м3 заполнен гелием. Плотность гелия 0,18 кг/м3, плотность воздуха 1,29 кг/м3. Какая выталкивающая сила действует на аэростат?

Выталкивающая сила зависит только от плотности окружающей среды и объема погруженного в него тела. Так как аэростат погружен в воздух полностью:

FA = ρвVтg = 1,29∙1000∙10 = 12,9 (кН)

Архимедова сила и законы Ньютона

Если тело полностью погружено в жидкость (или газ):

  • Архимедова сила равна: FA = ρжVтg.
  • Сила тяжести, действующая на тело: Fтяж = mg = ρтVтg.

Частный случай

Определить минимальную массу груза, который следует положить на плоскую однородную льдину площадью S, чтобы она полностью погрузилась в воду. Толщина льдины h, а плотность льда ρл, плотность воды ρв.

Второй закон Ньютона в векторной форме для льдины, полностью погруженной в воду (она не тонет и не всплывает):

FA+Fтяж=0

Так как эти силы направлены в противоположные стороны:

FA = Fтяж

Архимедова сила, действующая только на льдину, равна:

FA = ρвVлg

Сила тяжести равна сумме масс льдины и груза:

Fтяж = (mл + mгр)g

Массу льдины можно выразить через произведение ее плотности на объем, равные произведению ее площади на толщину:

mл = ρлSh

Пример №3. Какую силу надо приложить, чтобы поднять под водой камень, масса которого 30 кг, а объем 12 000 см3?

12 000 куб. см = 0,012 куб. м

Чтобы поднять под водой камень, потребуется сила, равная разности силе тяжести и архимедовой силы, действующей на этот камень:

F = Fтяж – FA = mg – ρвVтg = 30∙10 – 1000∙0,012∙10 = 180 (Н)

Условия плавания тел

На любое тело, погруженное в жидкость или газ, действуют две противоположно направленные силы: сила тяжести и архимедова сила. Направление движения тела зависит от того, какая из этих сил больше по модулю:

  • Тело тонет, если: mg > FA; ρт > ρж.
  • Тело плавает в толще среды, если: mg = FA; ρт = ρж.
  • Тело всплывает, если: mg < FA; ρт < ρж.

Внимание! Тело, имеющее плотность меньшую, чем плотность жидкости, в которой оно плавает, будет находиться на поверхности, погрузившись в жидкость частично.

Если тело плавает на поверхности:

  • Архимедова сила и сила тяжести, действующие на него, равны: FA= Fтяж.
  • Сила тяжести равна: Fтяж = mg = ρтVтg.
  • Архимедова сила равна: FA = ρжVп.ч.g.
  • Взаимосвязь между объемом и высотой тела правильной формы: V = Sh.

Варианты условий задач на условия плавания тел

Сплошное тело объемом Vт плавает в воде. Причем под водой находится 3/4 его объема. Определите силу тяжести, действующую на тело. Плотность воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Fтяж = 3ρвVтg/4

Какая часть (в процентах) айсберга находится под водой? Плотность льда ρл, а воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Отсюда:

ρлVлg = ρвVп.ч.g

Ускорение свободного падения взаимоуничтожается. Чтобы найти погруженную часть айсберга в процентах, нужно:

Vп.ч.Vл=ρлρв

Найденное отношение остается умножить на 100%.

Полое тело плотностью ρт плавает в воде, погрузившись на 1/5 своего объема. Найдите объем полости Vп, если объем тела Vт, а плотность воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Отсюда:

ρвVп.ч.g = ρт(Vт – Vп)g

Преобразовав выражение, получим:

Vп=Vт(5ρтρв)5ρт

Пример №4. Кубик массой 40 г и объемом 250 см3 плавает на поверхности воды. Найдите значение выталкивающей силы, действующей на кубик.

40 г = 0,04 кг

250 см3 = 250∙10–6 м3

Так как тело плавает, Архимедова сила будет равна по модулю силе тяжести, которая определяется формулой:

FA = Fтяж = 0,04∙10 = 0,4 (Н)

Задание EF18524

Деревянный шарик плавает в стакане с водой. Как изменятся сила тяжести и архимедова сила, действующие на шарик, если он будет плавать в подсолнечном масле?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится.
  2. Уменьшиться.
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать условие плавания тел.
  2. На основании условия плавания тел сделать вывод о том, как изменятся указанные физические величины.

Решение

По условию задачи деревянный шарик плавает на поверхности воды. Но это возможно, лишь когда архимедова сила равна силе тяжести:

FAв = Fтяж

Если шарик будет плавать в подсолнечном масле, также можно применить условие плавания тел:

FAм = Fтяж

Сила тяжести зависит только от массы тела, которая остается неизменной. Поэтому сила тяжести тоже не меняется. Но из этого следует:

FAв = FAм

Это возможно благодаря тому, что объем погруженной части шарика в масло будет больше объема погруженной части шарика в воду. Этим компенсируется разница в плотностях жидкостей, но архимедова сила при этом остается неизменной.

Верный ответ: 33.

Ответ: 33

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18477

Ученик изучает силу Архимеда, действующую на тела, полностью погружённые в жидкость. В его распоряжении имеется установка, состоящая из ёмкости с водой и сплошного деревянного шарика объёмом 30 см3. Какая из следующих установок необходима ещё ученику для того, чтобы на опыте обнаружить зависимость силы Архимеда от объёма тела?

 установки Жидкость, налитая в ёмкость Объём шарика Материал, из которого сделан шарик
1 вода 30 см3 сталь
2 вода 20 см3 дерево
3 керосин 20 см3 дерево
4 подсолнечное масло 30 см3 сталь

Ответ:

а) установка  1

б) установка  2

в) установка  3

г) установка  4


Алгоритм решения

  1. Сделать анализ задачи. Определить, какие величины в опыте остаются постоянными.
  2. Определить, какие величины должны быть в опыте переменными.

Решение

Ученик изучает силу Архимеда, действующую на тела, полностью погружённые в жидкость. В формулировке слово «жидкость» используется в единственном числе. Следовательно, жидкость во всех опытах будет одной и той же (плотность жидкости будет постоянной). У ученика уже есть установка, в которую входит емкость с водой. Поэтому во второй установке в качестве жидкости тоже должна использоваться вода. Варианты 3 и 4 исключаются.

В формулировки задачи также говорится о «телах». Они могут быть выполнены из разных материалов, и они могут иметь разный объем. Но известно, что архимедова сила зависит только от объема тела. Поэтому во второй установке нужно использовать тело другого объема. В вариантах 1 и 2 этому условию соответствует деревянный шарик объемом 20 куб. см (так как в первой установке используется шарик объемом 30 куб. см).

Отсюда верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22696

Необходимо экспериментально изучить зависимость силы Архимеда, действующей на тело, погружённое в жидкость, от плотности жидкости.

Какие две установки следует использовать для проведения такого исследования?


Алгоритм решения

  1. Установить цели опыта.
  2. Сделать вывод о том, какие величины в опыте должны быть постоянными, а какие — переменными.
  3. Выбрать установки, соответствующие выводу.

Решение

В опыте нужно изучить зависимость силы Архимеда, действующей на тело, погружённое в жидкость, от плотности жидкости. Это значит, что плотность жидкости — величина переменная. Все остальные величины при этом должны оставаться постоянным. Поэтому нам нужны установки с разными жидкостями, но одинаковыми телами. Этому условию соответствуют две установки: «а» и «д».

Ответ: ад

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18057

На границе раздела двух несмешивающихся жидкостей, имеющих плотности ρ1 = 400 кг/м3 и ρ2 = 2ρ1, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ, чтобы выше границы раздела жидкостей была одна четверть его объёма?


Алгоритм решения

1.Записать исходные данные.

3.Записать второй закон Ньютона в векторной форме.

4.Записать второй закон Ньютона в проекции на ось ординат.

5.Выполнить общее решение.

6.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Плотность первой жидкости: ρ1 = 400 кг/м3.

 Плотность второй жидкости: ρ2 = 2ρ1.

 Объем шарика выше границы раздела двух жидкостей: V1 = V/4.

 Объем шарика выше границы раздела двух жидкостей: V2 = 3V/4.

Построим рисунок и укажем все силы, действующие на шарик:

Запишем второй закон Ньютона в векторном виде:

mg+FA1+FA2=0

Запишем второй закон Ньютона в виде проекции на ось ординат:

mg=FA1+FA2

Выразим массу тела через его объем и плотность, выразим выталкивающие силы через закон Архимеда и получим:

ρVg=ρ1gV1+ρ2gV2

Преобразуем выражение, сократив ускорение свободного падения и подставив выражения для объемов погруженных в жидкости частей тела, а также выражение для плотности второй жидкости:

ρV=ρ1V4+2ρ13V4

Объемы сокращаются. Остается:

ρ=ρ14+2ρ134=7ρ14=7·4004=700 (кгм3)

Ответ: 700

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 8.9k

Статьи

Линия УМК А.В. Перышкина. Физика (7-9)

Физика

Закон Архимеда, или Как распознать ложь?


Придворный ювелир изготовил для царя Гиерона золотую корону. Но царь, который не привык никому доверять, попросил Архимеда определить, золотая ли корона на самом деле, или золотых дел мастер подворовывает и подмешал к золоту львиную долю серебра.

Из статьи вы узнаете, сумел ли Архимед вывести лжеца на чистую воду? И что же открыл изобретатель благодаря своим опытам? 

02 июля 2019

История открытия

В древних Сиракузах жил инженер, математик и физик по имени Архимед. Образование он получил отличное, изобретения его ценились и в средствах он не нуждался. И периодически к нему обращались сильные мира для решения всяких сложных задач. И одной из таких задач было определить подлинность короны царя Гиерона. 

Казалось бы, что в этом сложного?

Используй формулу

ρт = mт / Vт             (1).

Раздели mт массу слитка, что был выдан ювелиру на объем короны Vт, получишь плотность короны ρт. Сравни полученный результат с известной плотностью золота, и дело в шляпе. А ювелир получит либо плату за работу, либо близкое знакомство с придворным палачом.

Однако эта формула хорошо работает с объектами простой формы: шар, куб, параллелепипед. А мы то помним, что исследуем корону, у которой множество зубцов, выпуклостей и ажурных плетений.

Как можно определить объем предмета столь сложной формы? Не знаете? Вот и Архимед тоже не знал.

Физика. 7 класс. Учебник

Физика. 7 класс. Учебник

Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования. Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Купить

Долгое время ученый думал над задачей, и в один из дней, в задумчивости опускаясь в наполненную водой ванну, обратил внимание, что часть воды выплеснулась через край. Современники рассказывают, что именно в этот момент Архимед закричал: «Эврика!», что по-гречески значит «Нашел!» и, даже не одеваясь, побежал в царский дворец.

Еще пару дней понадобилось исследователю, чтобы изобрести прибор, с помощью которого он мог бы измерить объем воды, вылившейся при погружении короны. Этот прибор, названный впоследствии ведерком Архимеда, можно увидеть на странице 145 учебника «Физика 7 класс» под редакцией А.В.Перышкина.

Затем, с помощью опытов с золотыми и серебряными слитками, доказать, что объем жидкости равен объему слитка, а следовательно будет равен и объему короны. И последним этапом определить плотность короны.

Говорят, что царь был прав в своих подозрениях, и ювелир был нечист на руку. А всю плату, что причиталась за корону мастеру, получил Архимед.

Действие жидкости и газа на погруженное в них тело

Что же открыл Архимед благодаря своим опытам?

Ученый определил некую силу, которая действую в обратном направлении силе притяжения и позволяет предметам плавать в воде и воздухе. Эту силу по праву назвали силой Архимеда или выталкивающей силой.

Определение закона Архимеда: тело погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Формулы

На планете Земля на все предметы действует сила земного притяжения. Для объектов на земной поверхности силу притяжения можно рассчитать по формуле:

Fт = mтg,                  (2)

где mт — масса тела, а g — ускорение свободного падения, равное 9,8 м/с2.

Когда же объект погружается в жидкость или газ, на него начинает действовать выталкивающая сила или сила Архимеда, которая рассчитывается по формуле:

FА = mжg,                 (3)

где mж — масса жидкости, вытесненной целым объектом или его частью, находящейся в жидкости.

Массу вытесненной жидкости в свою очередь можно определить используя формулу:

mж = ρжVж,               (4)

и соответственно преобразовать формулу закона Архимеда:

FА = ρжVжg.              (5)

Как же соотносятся между собой сила тяжести и сила выталкивания. Все просто:

  • если сила притяжения больше силы выталкивания, предмет утонет;
  • если силы примерно равны — предмет будет плавать в толще жидкости или газа;
  • а если сила выталкивания больше силы притяжения, предмет всплывет.

Многочисленные опыты, благодаря которым мы можем пользоваться формулами силы выталкивания, подробно разобраны в § 50 учебника «Физика 7 класс» под редакцией А.В.Перышкина.

Несмотря на то, что Архимед впервые открыл силу выталкивания в воде, сила Архимеда характерна также и для газов, и именно благодаря ей смог подняться в воздух первый воздушный шар, а вдохновленный и восхищенный этим событием писатель Жюль Верн написал свой роман «Вокруг света за 80 дней».

А теперь давайте поможем царю решить его задачу с короной.

Предположим, что корона царя Гиерона в воздухе весит 22 Н, а в воде 19,75 Н, вычислите плотность вещества короны.

Как мы узнали в начале статьи, плотность вещества находится по формуле:

ρт = mт/Vт.                     (1)

Глядя на формулу, понимаем, что для решения задачи нам не известны ни масса короны, ни ее объем.

Из предыдущего курса физики (§ 27 учебника «Физика 7 класс» под редакцией А.В.Перышкина.), помним, что для неподвижного тела вес P равен силе тяжести Fт и рассчитывается по формуле:

P = Fт = mтg,                   (2)

где g — ускорение свободного падения и его значение равно g = 9,8 Н/кг. Однако, если не требуется большая точность в расчетах, значение можно округлить до 10 Н/кг

  1. Зная вес короны в воздухе, мы используя формулу (2) можем найти массу короны.

    Pт = Fт = mтg,

  2. Мы также знаем, что вес тела в воде отличается от веса тела в воздухе на силу Архимеда.

    FA = 22 — 19,75 Н = 2,25 Н

  3. Согласно формуле (5) сила Архимеда равна FА = ρжVжg

    где ρж = ρводы = 1000 кг/м3

    Из нее находим объем вытесненной жидкости и соответственно объем короны

  4. Остается финальный штрих: рассчитать плотность.

    ρт = mт/Vт

    ρт = 2,2 кг / 0,000225 м3 = 9778 кг/м3 или 9,8 г/см3

  5. Зная, что плотность золота 19,3 г/см3 или 19 300 кг/м3, можем сказать, что корона царя Гиерона сделана из какого-то сплава, но не из чистого золота. Увы, царь был прав, подозревая мастера в нечестности. И мне даже немного жаль нерадивого ювелира. Ведь никто не любит, когда воруют его собственность, а цари особенно.

    Теперь попробуйте самостоятельно решить задачу № 5 на странице 147 учебника «Физика 7 класс» под редакцией А.В.Перышкина.

    Методические советы

    Тест «Закон Архимеда»

    1. Сила Архимеда это:

    • сила, с которой Архимед передвигал ванну;
    • сила, которая поднимает вверх тело находящееся в жидкости или газе; (+)
    • сила мышц Архимеда;
    • сила, с которой твердое тело действует на поверхность.

    2. Сила Архимеда действует:

    • на тела погруженные только в газ;
    • на тела погруженные только в жидкость;
    • на тела погруженные в газ или в жидкость; (+)
    • на тела находящиеся в невесомости.

    3. Чему равно ускорение свободного падения g?

    • 9,8 м/с3;
    • 9,8 Н/кг; +
    • 9,8 км/ч;
    • 8,9 м/с2.

    4. К пружине подвешено некое тело. Если тело погрузить в емкость с жидкостью, что произойдет с пружиной?

    • растянется больше;
    • сожмется; (+)
    • не изменится;
    • зависит от веса тела.

    5. Два друга пошли плавать в реке. Один из них при погружении вытесняет объем 60 дм3, второй 40 дм3. На кого из ребят будет действовать большая сила Архимеда?

    • на того, кто лучше умеет плавать;
    • на того, кто вытеснил больше воды; (+)
    • на того, то не умеет плавать;
    • на того, кто вытеснил меньше воды.

    6. Формула силы выталкивания это:

    • FА = ρжVжg; (+)
    • FА = ρтVжg;
    • FА = ρжVтg;
    • FА = mтg.

    7. Если сила тяжести больше силы Архимеда, тело:

    • взлетит;
    • всплывет;
    • утонет; (+)
    • поплывет.

    8. 4 одинаковых стальных шарика погрузили в 4 разные жидкости: чистая вода, вода мертвого моря, бензин, оливковое масло. В какой жидкости сила выталкивания будет наименьшей?

    Плотность масла 915 кг/м3, плотность бензина 750 кг/м3.

    • бензин; (+)
    • вода Мертвого моря;
    • оливковое масло;
    • чистая вода.

    9. Сила тяжести зависит:

    • от плотности жидкости;
    • от вытесненного объема жидкости;
    • от массы тела; +
    • от времени нахождения тела в жидкости.

    10. В двух емкостях плавают два шарика равного объема. Одинакова ли сила выталкивания?

    • одинакова, т.к. объем шариков одинаков;
    • сила выталкивания больше в емкости с керосином, потому что плотность меньше воды;
    • сила выталкивания больше в емкости с водой, потому что ее плотность больше керосина. (+)

#ADVERTISING_INSERT#

Сила Архимеда

Сила Архимеда — выталкивающая сила, которая действует на погруженное в жидкость (или газ) тело. При этом объём вытесненной жидкости будет равен объёму погруженного тела (или части тела).

Закон Архимеда — вес, который теряет погруженное в жидкость тело, равен весу вытесненной им жидкости.

Закон Архимеда — вес, который теряет погруженное в жидкость тело, сила равна весу вытесненного объёма жидкости

Эта сила равна весу вытесненного объёма жидкости и действует в направлении, противоположном весу погруженного тела.

Примером силы Архимеда из жизни можно считать ощущение некой невесомости в воде, которое мы чувствуем, когда купаемся (в ванне или озере).

Сила Архимеда (выталкивающая сила) зависит от:

  • плотности жидкости (p),
  • ускорения свободного падения (g),
  • объёма погруженного тела (V).

Согласно легенде, древнегреческий учёный и философ Архимед воскликнул “Эврика!” (“Я нашёл!”) именно в тот момент, когда открыл этот закон.

Сила Архимеда — это векторная величина и измеряется в ньютонах (Н). Ньютон — это интенсивность силы, приложенная к предмету массой 1 кг, при ускорении 1 метр в секунду в секунду (1 м/с²). Ньютоны обозначаются как “Н”, и 1 Н = 1 кг·м/с². Вообще сила — это мера взаимодействия тел, которая измеряется в ньютонах.

Формула силы Архимеда

Можно рассчитать силу Архимеда, которая действует на тело, погруженное в жидкость или газ, по формуле:

сила Архимеда Формула Fa = pgV
Где:
Fa — сила Архимеда (в Н);
p — плотность жидкости/газа (в кг/м³);
g — ускорение свободного падения (в м/с²);
V — объём погруженного тела/части тела (в м³ или см³).

Сила Архимеда рисунок закон Архимеда рисунок: V, Fa наверх, g вниз

Пример:

В ёмкости находится жидкость плотностью 2,58 г/см³. Внутри жидкости находится полностью погруженное тело объёмом 1000 см³. Учитывая, что ускорение свободного падения равно 10 м/с², чему равна выталкивающая сила?

Решение:

Решение пример Сила Архимеда закон Архимеда

Узнайте больше про Ускорение свободного падения (g)

Как узнать, утонет тело или останется на поверхности?

Сила выталкивания не зависит от плотности тела, но это можно использовать, чтобы узнать, будет ли тело плавать на поверхности жидкости, утонет или останется в равновесии. Если:

  • плотность тела < плотность жидкости = > тело плавает на поверхности,
  • плотность тела = плотность жидкости = > тело остаётся в равновесии с жидкостью,
  • плотность тела > плотность жидкости = > тело утонет.

Сила Архимеда и сила тяжести

На тело в жидкости всегда действуют сила тяжести (m × g), сила Архимеда (Fa), могут присутствовать и другие силы (сила упругости, сила натяжения).

Узнайте также про Закон сохранения энергии, Законы Ньютона и Аксиому.

Добавить комментарий