Как найди количество теплоты

Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры. 

Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.

Количество теплоты

Единица измерения – джоуль. Другой распространенной формой измерения является использование калорий.

Количество теплоты

Обозначается латинской буквой Q.

Удельная теплоемкость вещества

Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу. 

Удельная теплоемкость

Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).

Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества. 

Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.

Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:

110

где:

Q – передача тепловой энергии между системой и средой (Дж);

m – масса системы (кг);

Δt или (t2 – t1) – повышение температуры, которой она подвергается (°C).

Формула для нахождения количества теплоты Q:

Q = c∗m(t2 – t1)

Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).

Уравнение теплового баланса:

Q отданное + Q полученное = 0.

Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:

Таблица теплоемкости

Примеры решения задач

Следующие задачи покажут примеры расчета необходимого количества теплоты.

Задача №1

Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?

109

Решение:

111

Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.

Задача №2

В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?

Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 1000С — 100С = 900С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов. 

Количества теплоты, которые получили оба объекта (Q1
– для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.

111

На практике часто приходится проводить различные тепловые расчёты. Для увеличения эргономичности тепловой системы жилых домов измеряют количество тепловой энергии, рассеиваемой через вентиляцию, окна, расщелины.

Для расчёта количества тепловой энергии нужно измерить массу (m), разность температуры в начале и в конце процесса

Δt=tкон−tнач

, а также знать теплоёмкость (c) данного вещества.

Чтобы нагреть некоторое вещество массой (1) кг на (1°C), необходимо затратить количество теплоты, равное удельной теплоёмкости (c) данного вещества.

Количество теплоты, получаемое веществом при нагревании, прямо пропорционально удельной теплоёмкости вещества, его массе и разности температур, то есть:

Q=cmΔt

или

Данная формула даёт возможность найти и выделяемую при охлаждении вещества теплоту.

Чтобы рассчитать количество теплоты, необходимое для нагревания вещества (или выделяемое им при охлаждении), следует удельную теплоёмкость вещества умножить на его массу и на разность между конечной и начальной температурой вещества.

Так как конечная температура остывающего вещества меньше его начальной температуры:

то изменение температуры оказывается отрицательным числом:

Значит, и выделяемое веществом количество теплоты выражается отрицательным числом:

Последний факт обозначает не рост, а убыль внутренней энергии вещества.

Содержание:

  • Определение и формула количества теплоты
  • Формула расчета теплоты при изменении температуры
  • Формула количества теплоты при фазовых переходах
  • Единицы измерения количества теплоты
  • Примеры решения задач

Определение и формула количества теплоты

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем,
что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом
случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система
микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии,
которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой).
Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики.
Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как $delta Q$. Обратим внимание,
что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом.
Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

$$delta Q=C d T(1)$$

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

$$delta Q=c m d T=nu c_{mu} d T(2)$$

где $c=frac{C}{m}$ – удельная теплоемкость тела, m – масса тела,
$c_{mu}=c cdot mu$ – молярная теплоемкость,
$mu$ – молярная масса вещества,
$nu=frac{m}{mu}$ – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты
($Delta Q$), которое получает тело при увеличении его температуры на величину
$Delta t = t_2 – t_1$ можно вычислить как:

$$Delta Q=c m Delta t(3)$$

где t2, t1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности
($Delta t$) в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты,
которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты
($delta Q$) равное:

$$delta Q=lambda d m$$

где $lambda$ – удельная теплота плавления, dm – элемент массы тела.
При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества.
При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

$$delta Q=r d m$$

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура
одной массы воды t1=10С, второй массы воды t2=60С?

Решение. Запишем уравнение теплового баланса в виде:

$$Q=Q_{1}+Q_{2}(1.1)$$

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q1=cm1t1
количество теплоты части воды температурой t1 и массой m1;
Q2=cm2t2– количество теплоты части воды температурой t2 и массой m2.

Из уравнения (1.1) следует:

$$
begin{array}{l}
mathrm{cmt}=mathrm{cm}_{1} t_{1}+mathrm{~cm}_{2} t_{2} rightarrow mathrm{mt}=mathrm{m}_{1} t_{1}+mathrm{~m}_{2} t_{2} rightarrow \
rightarrow rho mathrm{Vt}=rho V_{1} t_{1}+rho mathrm{V}_{2} t_{2} rightarrow mathrm{Vt}=V_{1} t_{1}+V_{2} t_{2}(1.2)
end{array}
$$

При объединении холодной (V1) и горячей (V2) частей воды в единый объем (V) можно принять то, что:

$$$
V=V_{1}+V_{2}(1.3)
$$$

Так, мы получаем систему уравнений:

$$
left{begin{array}{c}
V t=V_{1} t_{1}+V_{2} t_{2} \
V=V_{1}+V_{2}
end{array}right.
$$

Решив ее получим:

$$
begin{array}{l}
V_{1}=frac{left(t_{2}-tright)}{t_{2}-t_{1}} V \
V_{2}=frac{left(t-t_{1}right)}{t_{2}-t_{1}} V
end{array}
$$

Проведем вычисления (это можно сделать, не переходя в систему СИ):

$$
begin{array}{l}
V_{1}=frac{(60-40)}{60-10} 200=80 text { (л) } \
V_{2}=frac{(40-10)}{60-10} 200=120 text { (л) }
end{array}
$$

Ответ. V1=80 л, V2=120 л.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Теплоемкость тела изменяется по линейному закону (рис.1) в зависимости от абсолютной температуры в
рассматриваемом интервале $T_{1} leq T leq T_{2}$ .
Какое количество теплоты получает тело, если T1=300 К, T2=400 К.

Решение. Исследуя график функции теплоемкости (C(T)) (рис.1) запишем его аналитическое выражение, оно получится:

$C(T)=10+2 cdot 10^{-2} T$ (Дж/К)

Основой для решения задачи послужит формула для количества теплоты в виде:

$$delta Q=C d T(2.2)$$

Подставим полученное выражение для теплоемкости (2.1) в формулу (2.2) поведем интегрирование в заданном интервале температур:

$$
begin{array}{c}
Delta Q=int_{300}^{400}left(10+2 cdot 10^{-2} Tright) d T=left.left(10 cdot T+10^{-2} T^{2}right)right|_{300} ^{400}= \
=left(10 cdot 400+10^{-2} cdot(400)^{2}right)-left(10 cdot 300+10^{-2} cdot(300)^{2}right)=1700left(mathrm{~A}^{*}right)
end{array}
$$

Ответ. $Delta Q$=1700 Дж

Читать дальше: Формула напряженности магнитного поля.

Для начала несколько определений:

  • Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется количеством теплоты или просто теплотой. Единица измерения в Международной системе единиц (СИ) — джоуль. Как единица измерения теплоты используется также калория.
  • Удельная теплоёмкость — отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.

Формула расчета удельной теплоемкости
c={frac  {Q}{mDelta T}},
где c — удельная теплоёмкость,
Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),
m — масса нагреваемого (охлаждающегося) вещества,
ΔT — разность конечной и начальной температур вещества.

Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда, более или менее сильно, зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) delta T и delta Q:

c(T)={frac  1{m}}left({frac  {delta Q}{delta T}}right)

Кроме того, на значение удельной теплоёмкости влияют и другие термодинамические параметры. например то, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т.д.)

В школьных задачах по физике обычно используют постоянное значение теплоемкости того или иного вещества, и формула для расчета количества теплоты выглядит следующим образом:

Q=cm(T-T_0)

Нахождение количества теплоты по этой формуле – это так называемая прямая задача, но неизвестной может быть также и любая другая величина в формуле: удельная теплоемкость, масса тела, начальная температура, конечная температура. Формулы для их нахождения выводятся тривиально.

Калькулятор ниже позволяет задать какую именно величину вы ищете и рассчитывает ее по остальным введенным параметрам.

PLANETCALC, Формула количества теплоты

Формула количества теплоты

Ко­ли­че­ство теп­ло­ты, Дж

Удель­ная теп­ло­ём­кость ве­ще­ства, Дж/кг*С

Точность вычисления

Знаков после запятой: 1

Ко­ли­че­ство теп­ло­ты, Дж

Удель­ная теп­ло­ём­кость ве­ще­ства, Дж/кг*С

На­чаль­ная тем­пе­ра­ту­ра, С

Расчет количества теплоты при нагревании и охлаждении:

Вы уже знаете, что изменить внутреннюю энергию тела можно передачей ему количества теплоты. Как связано изменение внутренней энергии тела, т. е. количество теплоты, с характеристиками самого тела?

Внутренняя энергия тела есть суммарная энергия всех его частиц. Значит, если массу данного тела увеличить в два или три раза, то и количество теплоты, необходимое для его нагревания на одно и то же число градусов, увеличится в два или три раза. Например, на нагревание двух килограммов воды от 20 °C до 80 °C потребуется в два раза больше теплоты, чем на нагревание одного килограмма воды (рис. 40, а).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Очевидно также, что для нагревания воды на Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Из этих рассуждений следует подтвержденный опытами вывод. Количество теплоты, необходимое для нагревания тела, прямо пропорционально его массе и изменению температуры.

А зависит ли количество теплоты, идущее на нагревание, от рода вещества, которое нагревается?

Для ответа на этот вопрос проведем опыт. В два одинаковых стакана нальем по 150 г подсолнечного масла и воды. Поместим в них термометры и поставим на нагреватель (рис. 41).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Получив за одинаковое время от нагревателя равное с водой количество теплоты, масло нагрелось больше, чем вода. Значит, для изменения температуры масла на одну и ту же величину требуется меньше теплоты, чем для изменения температуры такой же массы воды.

Поэтому для всех веществ вводят специальную величину — удельную теплоемкость вещества. Эту величину обозначают буквой с (от лат. capacite — емкость, вместимость). Теперь мы можем записать строгую формулу для количества теплоты, необходимого для нагревания:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Выразим из этой формулы с:Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Удельная теплоемкость есть физическая величина, численно равная количеству теплоты, которое необходимо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C. Удельная теплоемкость измеряется в джоулях на килограмм-градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Для любознательных:

Часто формулу Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами записывают в виде Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Здесь величина Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами называется теплоемкостью тела (обратите внимание — не вещества). Она численно равна количеству теплоты, необходимому для нагревания всей массы тела на 1 °C. Измеряется теплоемкость тела в джоулях на градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

В таблице 1 представлены значения удельной теплоемкости различных веществ (в различных состояниях). Как следует из этой таблицы, среди жидкостей максимальное значение удельной теплоемкости имеет вода: для нагревания 1 кг воды на 1 °C требуется 4200 Дж теплоты — это почти в 2,5 раза больше, чем для нагревания 1 кг подсолнечного масла, и в 35 раз больше, чем для нагревания 1 кг ртути.

Формула Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами дает возможность найти и выделяемую при охлаждении тела теплоту. Так как конечная температура Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами остывшего тела меньше начальной Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то изменение температуры оказывается отрицательным числом. Значит, и выделяемое телом количество теплоты выражается отрицательным числом, что обозначает не рост, а убыль внутренней энергии тела.

В заключение заметим, что при теплообмене двух или нескольких тел абсолютное значение количества теплоты, которое отдано более нагретым телом (телами), равно количеству теплоты, которое получено более холодным телом (телами):
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Это равенство называется уравнением теплового баланса и выражает, по сути, закон сохранения энергии. Оно справедливо при отсутствии потерь теплоты.
Таблица 1. Удельная теплоемкость некоторых веществ

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Главные выводы:

  1. Количество теплоты, необходимое для нагревания тела (выделившееся при охлаждении), прямо пропорционально его массе, изменению температуры тела и зависит от вещества тела.
  2. Удельная теплоемкость вещества численно равна количеству теплоты, которое надо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C.
  3. При теплообмене количество теплоты, отданное более горячим телом, равно по модулю количеству теплоты, полученному более холодным телом, если нет потерь теплоты.
  • Заказать решение задач по физике

Пример решения задачи:

Для купания ребенка в ванночку влили холодную воду массой Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами= 20 кг при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 12 °C. Какую массу горячей воды при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 80 °C нужно добавить в ванночку, чтобы окончательная температура воды стала Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 37 °C? Удельная теплоемкость воды с = 4200 Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Дано:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Решение

По закону сохранения энергии Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Отдавала теплоту горячая вода, изменяя свою температуру от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Холодная вода получила эту теплоту и нагрелась от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Так как нас интересует только модуль Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то можно записать:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Тогда Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерамиРасчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

При решении мы пренебрегали потерями теплоты на нагревание ванночки, окружающего воздуха и т. д.

Возможен и другой вариант решения.

Рассчитаем сначала количество теплоты, которое было получено холодной водой:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Полагая, что эта теплота отдана горячей водой, запишем: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Выразим искомую массу:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Ответ: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике 
  • Испарение жидкостей в физике
  • Поверхностное натяжение жидкости
  • Излучение тепла в физике
  • Виды излучений в физике
  • Инфракрасные излучения
  • Количество теплоты в физике

Добавить комментарий