Как найди площадь боковой поверхности прямоугольного параллелепипеда

Площадь поверхности прямоугольного параллелепипеда

{S_{полн} = 2(ab+bc+ac)}

Прямоугольный параллелепипед

Чтобы найти площадь поверхности параллелепипеда необходимо знать длины трех его ребер. Для вычисления площади поверхности прямоугольного параллелепипеда используется формула, в которой сумма попарных произведений ребер параллелепипеда умножается на 2. По другому формулу можно трактовать как произведение площадей трех граней параллелепипеда (так как произведение ребер – это площадь грани). Кроме того на странице вы найдете калькулятор, с помощью которого в режиме онлайн можно найти площадь полной и боковой поверхности прямоугольного параллелепипеда.

В дополнение на сайте можно найти объем параллелепипеда.

Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.

Ребро — сторона прямоугольного параллелепипеда. Длина, ширина и высота – это ребра прямоугольного параллелепипеда.

Содержание:
  1. калькулятор площади поверхности прямоугольного параллелепипеда
  2. формула площади поверхности прямоугольного параллелепипеда
  3. формула площади боковой поверхности прямоугольного параллелепипеда
  4. примеры задач

Формула площади поверхности прямоугольного параллелепипеда

Площадь поверхности прямоугольного параллелепипеда

{S_{полн} = 2(ab+bc+ac)}

a – длина прямоугольного параллелепипеда

b – ширина прямоугольного параллелепипеда

c – высота прямоугольного параллелепипеда

Формула площади боковой поверхности прямоугольного параллелепипеда

Площадь боковой поверхности прямоугольного параллелепипеда

{S_{бок} = 2(ac+bc)}

a – длина прямоугольного параллелепипеда

b – ширина прямоугольного параллелепипеда

c – высота прямоугольного параллелепипеда

Примеры задач на нахождение площади поверхности прямоугольного параллелепипеда

Задача 1

Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 2 4 и 5.

Решение

Для нахождения площади поверхности воспользуемся первой формулой. Подставим в нее значения длины, ширины и высоты параллелепипеда и произведем вычисления.

S_{полн} = 2(ab+bc+ac) = 2(2 cdot 4 + 4 cdot 5 + 2 cdot 5) = 2(8 + 20 + 10) = 2(38) = 76 : см^2

Ответ: 76 см²

Проверим ответ с помощью калькулятора .

Задача 2

Найдите площадь поверхности прямоугольного параллелепипеда, если его измерения равны 3см 5см и 6см.

Решение

Задача аналогична предыдущей, поэтому повторим действия, подставив новые значения измерений параллелепипеда.

S_{полн} = 2(ab+bc+ac) = 2(3 cdot 5 + 5 cdot 6 + 3 cdot 6) = 2(15 + 30 + 18) = 2(63) = 126 : см^2

Ответ: 126 см²

Для проверки ответа используем калькулятор .

Задача 3

Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 9м 24м 11м.

Решение

Еще одна типовая задача. Для ее решения также воспользуемся первой формулой.

S_{полн} = 2(ab+bc+ac) = 2(9 cdot 24 + 24 cdot 11 + 9 cdot 11) = 2(216 + 264 + 99) = 2(579) = 1158 : см^2

Ответ: 1158 см²

Проверка .

Задача 4

Найдите площадь боковой поверхности прямоугольного параллелепипеда у которого a=4см, b=5см, c=7см.

Решение

В этой задаче нам необхожимо найти площадь боковой поверхности. Поэтому мы будем использовать для ее решения вторую формулу.

S_{бок} = 2(ac+bc) = 2(4 cdot 7 + 5 cdot 7) = 2(28 + 35) = 2(63) = 126 : см^2

Ответ: 126 см²

Как всегда ответ можно проверить с помощью калькулятора .

Площадь поверхности параллелепипеда

Содержание:

  • Что такое площадь поверхности параллелепипеда
  • Формула нахождения полной площади
  • Вычисление площади боковой поверхности прямоугольного параллелепипеда
  • Примеры решения задач

Что такое площадь поверхности параллелепипеда

Определение

Параллелепипед — четырехугольная призма, основаниями которой являются параллелограммы. Частный случай этой геометрической фигуры — прямой параллелепипед, у которого все грани являются прямоугольниками.

В общем случае площадь — это численное значение, характеризующее размер двумерной геометрической фигуры.

Параллелепипед может существовать только в трех измерениях, поэтому для него вводится понятие площади поверхности. В геометрическом смысле площадь поверхности объемной фигуры является совокупностью площадей ее граней.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Формула нахождения полной площади

В задачах чаще всего имеется дело с прямоугольным параллелепипедом. Для него полная площадь поверхности вычисляется следующим образом:

(S=2cdot(acdot b+acdot c+bcdot c))

где a, b и c — длины ребер, исходящих из любой вершины параллелепипеда.

Рассмотрим то, как данная формула выводится. Как уже упоминалось выше, площадь поверхности объемной фигуры является совокупностью площадей ее граней. Для наглядности возьмем параллелепипед ABCDA1B1C1D1.

Параллелепипед

Рисунок 1

Полная площадь его поверхности равняется сумме площадей всех граней: (S_{пар}=S_{AA_1D_1D}+S_{DD_1C_1C}+S_{CC_1B_1B}+S_{BB_1A_1A}+S_{ABCD}+S_{A_1B_1C_1D_1})

Согласно свойствам параллелепипеда, его противоположные грани равны между собой. Следовательно, нет необходимости вычислять площадь всех шести граней, можно ограничиться тремя, а затем их сумму умножить на 2:

(S_{пар}=2cdotleft(S_{AA_1D_1D}+S_{BB_1A_1A}+S_{ABCD}right))

Грани прямого параллелепипеда являются прямоугольниками. Площадь данной фигуры равняется произведению ее сторон:

(S_▭=acdot b)

У выбранных нами для расчета площади граней есть три общие стороны: AB, AD и AA1. Для удобства обозначим их как a, b и c соответственно.

Параллелепипед 2

Рисунок 2

Таким образом:

 (S_{ABCD}=acdot b)

(S_{AA_1D_1D}=acdot c)

(S_{BB_1A_1A}=bcdot c)

Подставим данные значения в обозначенную выше формулу площади параллелепипеда:

(S_{пар}=2cdotleft(acdot b+acdot c+bcdot cright))

Вычисление площади боковой поверхности прямоугольного параллелепипеда

Кроме полной площади поверхности, в расчетах иногда необходимо вычислить площадь боковой поверхности, то есть совокупность площадей боковых граней, без учета оснований.

Для этого есть три взаимосвязанные формулы:

  1. (S_{бок}=P_{осн}cdot h,) где (P_{осн}) — периметр основания параллелепипеда; h — высота. На рисунке выше она равняется стороне, обозначенной как c.
  2. (S_{бок}=2cdot acdot c+2cdot bcdot c), где a, b и c — длины ребер, исходящих из любой вершины параллелепипеда.
  3. (S_{бок}=2cdot ccdot(a+b).)

Примеры решения задач

Задача

Вычислить полную площадь поверхности прямоугольного параллелепипеда ABCDA1B1C1D1.

Диагональ

Рисунок 3

Дано: AB = 3, A1B = 6, AD = 5.

Решение

Для расчета полной площади необходимо знать длины трех сторон. В данном случае нам понадобится вычислить длину стороны AA1. Так как длина диагонали A1B известна, сделать это нетрудно.

Воспользуемся теоремой Пифагора:

(A_1B=sqrt{{AA_1}^2+{AB}^2})

Соответственно, ({AA_1}=sqrt{{A_1B}^2-{AB}^2}=sqrt{6^2-3^2}=sqrt{36-9}=sqrt{25}=5)

Подставим известные значения в формулу расчета площади поверхности:

(S=2cdot(acdot b+acdot c+bcdot c))

(S=2cdot(ABcdot AD+ABcdot AA_1+ADcdot AA_1)=2cdot(3cdot5+3cdot5+5cdot5)=2cdot(15+15+25)=2cdot55=110)

Ответ: S=110.

Задача 2

Вычислить длину стороны прямого параллелепипеда ABCDA1B1C1D1.

Задача 2

Рисунок 4

Дано: Sпов=96, Sбок=60, b=6.

Решение

Так как нам известна одна из сторон основания — b а в основании параллелепипеда лежит прямоугольник, найти вторую сторону проще всего будет через площадь этого основания:

(S=acdot b)

Отличие площади боковой поверхности от полной в том, что в ней не учитываются нижняя и верхняя грани фигуры. Следовательно, их разность будет равняться двум площадям основания. Вычислим это значение:

(S_{пов}-S_{бок}=2cdot acdot b+2cdot acdot c+2cdot bcdot c-2cdot acdot c-2cdot bcdot c=2cdot acdot b)

Преобразуем выражение так, чтобы вычислить длину неизвестной стороны:

(2cdot acdot b=S_{пов}-S_{бок})

(a=frac{S_{пов}-S_{бок}}{2cdot b}=frac{96-60}{2cdot6}=frac{36}{12}=3)

Ответ: a=3.

Насколько полезной была для вас статья?

Рейтинг: 4.00 (Голосов: 7)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Площадь поверхности параллелепипеда

Автор статьи

Алик Беникович Айрапетян

Эксперт по предмету «Калькуляторы»

Задать вопрос автору статьи

На этой странице вы узнаете, как выглядят формулы для расчёта полной и боковой площади поверхности параллелепипеда. Также на страницу добавлен онлайн-калькулятор для расчёта площади прямоугольного параллелепипеда.

Определение 1

Параллелепипед является разновидностью призмы, основания которой представляют собой параллелограммы. Также параллелепипедами называют призмы, в основании которых лежат многогранники, а все грани являются параллелограммами.

Наиболее знакомый всем вид параллелепипеда — это прямоугольный параллелепипед. Все его грани являются прямоугольниками.

Для расчёта полной площади прямоугольного параллелепипеда введите значение сторон и высоты в поля для ввода.

Площадь поверхности параллелепипеда через стороны

Площадь поверхности параллелепипеда через стороны

Для прямоугольного параллелепипеда площадь поверхности определяется по формуле:

$S = 2 cdot (a cdot b + b cdot h + a cdot h)$, здесь

$a, b$ — стороны основания параллелепипеда;

$h$ — высота параллелепипеда.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Разберём пример на нахождение полной площади параллелепипеда.

Пример 1

Задача

Стороны основания прямоугольного параллелепипеда равны $a = 3$ см и $b = 7$ см, а его высота $h$ равна $4$ см. Чему равна полная площадь поверхности параллелепипеда?

Решение:

Воспользуемся вышеприведённой формулой:

$S = 2 cdot (3 cdot 4 + 7 cdot 4 + 3 cdot 7) = 122$ кв. см.

Результаты совпадают с решением онлайн-калькулятора, а значит, ответ найден верно.

Также используя следующий онлайн-калькулятор, вы сможете рассчитать площадь боковой поверхности прямоугольного параллелепипеда.

Площадь боковой поверхности прямоугольного параллелепипеда через стороны

Площадь боковой поверхности прямоугольного параллелепипеда через стороны

Площадь боковой поверхности прямоугольного параллелепипеда определяется по формуле:

$S = 2 cdot h cdot (a + b)$, где

$h$ — длина ребра параллелепипеда;

$a, b$ — стороны основания.

Рассчитаем для примера площадь боковой поверхности для параллелепипеда из предыдущей задачи.

Пример 2

Задача

$a = 3$ см, $b = 7$ см, а высота $h = 4$ см. Чему равна боковая площадь поверхности прямоугольного параллелепипеда?

Решение:

$S_б = 2 cdot 4 cdot (3 + 7) = 80$ кв. см.

Решение соответствует решению, полученному с помощью онлайн-калькулятора, а значит, ответ правильный.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата написания статьи: 18.06.2019

Площадь поверхности прямоугольного параллелепипеда


Площадь поверхности прямоугольного параллелепипеда

4.6

Средняя оценка: 4.6

Всего получено оценок: 493.

4.6

Средняя оценка: 4.6

Всего получено оценок: 493.

В 5 классе в курсе математики изучается тема прямоугольного параллелепипеда. Сегодня мы поговорим о формулах для нахождения площади боковой поверхности и площади полной поверхности этой фигуры, которые наиболее часто вызывают затруднения у учеников.

Материал подготовлен совместно с учителем первой категории Камушковой Натальей Владимировной.

Опыт работы учителем математики – 27 лет.

Определения

Параллелепипед – это фигура в пространстве, которая состоит из шести четырехугольников.

Каждый четырехугольник – это грань параллелепипеда. Среди граней различают четыре боковые и два основания. Если в основании фигуры находится прямоугольник, то многогранник называется прямоугольным параллелепипедом.

Стороны граней – это ребра. У параллелепипеда всего 12 ребер.

Параллелепипед имеет 8 вершин, для их обозначения используют заглавные латинские буквы.

Если две грани не имеют общего ребра, то они называются противоположными. Так как каждая грань прямоугольного параллелепипеда – это прямоугольник, у которого противоположные стороны равны, то и противоположные грани прямоугольного параллелепипеда также равны.

Длина ребер определяет основные характеристики прямоугольного параллелепипеда: площадь, периметр, объем.

Рис. 1. Прямоугольный параллелепипед

Примеры таких фигур мы часто встречаем в нашей жизни: кирпич, коробка, системный блок компьютера.

Математическая фигура – прямоугольный параллелепипед активно используется в искусстве, архитектуре и прочих областях.

Различают несколько видов параллелепипедов, с основанием в виде квадрата, параллелограмма или прямоугольника.

Формула для нахождения площади

Для того, чтобы найти площадь боковой поверхности прямоугольного параллелепипеда, необходимо вычислить по отдельности площадь каждой боковой грани, а затем просуммировать получившиеся значения.

$S = ab$;

$S = ac$; где a, b, c – стороны фигуры.

Рис. 2. Прямоугольный параллелепипед

А так как противоположные грани равны, то есть $AMPD = BNKC$, $AMNB = DPKC$, их сумма и будет площадью боковой поверхности многоугольника.

$S= 2(ab + ac)$

Соответственно, чтобы вычислить площадь полной поверхности прямоугольного параллелепипеда необходимо сложить площадь боковой поверхности и две площади основания. В итоге получится формула площади прямоугольного параллелепипеда.

$S = 2(ab + ac) + 2 bc = 2(ab + ac + bc)$

Иногда для уточнения возле знака площади пишут краткое обозначение например, S п.п. – площадь полной поверхности, либо S б.п. – площадь боковой поверхности. Это помогает во время выполнения задания не перепутать нужные данные.

Пример задания

Найти площадь полной поверхности прямоугольного параллелепипеда, если длина и ширина основания 4 см и 3 см соответственно, а высота равна 2 см.

Рис. 3. Прямоугольный параллелепипед со сторонами a, b, c

Решение:

S п.п. = 2(ab + ac + bc)

S п.п. = 2(4*3 + 4*2 + 3*2) = 52 см2

Таким образом, S п.п. = 52 см2.

Для площади поверхности прямоугольного параллелепипеда используют те же единицы измерения, в которых были приведены длины ребер. Если длины ребер прямоугольного параллелепипеда даны в разных единицах измерения, то их нужно перевести в одинаковые.

Заключение

Что мы узнали?

Мы познакомились с элементами прямоугольного параллелепипеда: грани, ребра, основание. А также ознакомились с формулами для нахождения площади его боковой и полной поверхности, которые можно использовать для решения заданий.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Марина Яговцева

    8/10

  • Розочка Ангелиночка

    10/10

  • Слава Сироткин

    10/10

  • Тома Зимина

    7/10

  • Artem Sevastanov

    10/10

  • Влад Чибиряев

    10/10

  • Александр Селезнев

    10/10

  • Акрам Сафарбеков

    10/10

  • Вера Машковцева

    10/10

  • Александр Семёнов

    9/10

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 493.


А какая ваша оценка?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2022 года; проверки требуют 4 правки.

Параллелепи́пед (др.-греч. παραλληλ-επίπεδον[1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — четырёхугольная призма, все грани которой являются параллелограммами.

Типы параллелепипеда[править | править код]

Прямоугольный параллелепипед

Различается несколько типов параллелепипедов:

  • Наклонный — боковые грани не перпендикулярны основанию.
  • Прямой — боковые грани перпендикулярны основанию.
  • Прямоугольный — все грани являются прямоугольниками.
  • Ромбоэдр — все грани являются равными ромбами.
  • Куб — все грани являются квадратами.

Основные элементы[править | править код]

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства[править | править код]

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы[править | править код]

Прямой параллелепипед[править | править код]

Площадь боковой поверхности
Sбо*h, где Ро — периметр основания, h — высота

Площадь полной поверхности
Sп=Sб+2Sо, где Sо — площадь основания

Объём
V=Sо*h

Прямоугольный параллелепипед[править | править код]

Площадь боковой поверхности
Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности
Sп=2(ab+bc+ac)

Объём
V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб[править | править код]

Площадь поверхности: S=6a^{2}

Объём: V=a^{3}, где a — ребро куба.

Произвольный параллелепипед[править | править код]

Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]:215.

В математическом анализе[править | править код]

В математическом анализе под n-мерным прямоугольным параллелепипедом B понимают множество точек x=(x_{1},ldots ,x_{n}) вида B={x|a_{1}leqslant x_{1}leqslant b_{1},ldots ,a_{n}leqslant x_{n}leqslant b_{n}}

Сечение параллелепипеда плоскостью[править | править код]

В зависимости от расположения секущей плоскости и параллелепипеда сечение параллелепипеда может быть треугольником, четырехугольником, пятиугольником и шестиугольником.

Примечания[править | править код]

  1. Древнегреческо-русский словарь Дворецкого «παραλληλεπίπεδον»
  2. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Ссылки[править | править код]

  • Прямоугольный параллелепипед Архивная копия от 21 февраля 2020 на Wayback Machine

Добавить комментарий