Как найди площадь круга если известен радиус

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Формула (формулы) площади круга

Найти площадь круга можно разными способами, в зависимости от известных данных.

По радиусу

Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):

Формула площади круга по радиусу

Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).

Через диаметр

Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d – диаметр, а π – константа, равная 3,1415…):

Формула площади круга по диаметру

К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).

Через длину окружности

Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L – длина окружности, а π – константа, равная 3,1415…):

Формула площади круга по длине окружности

Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202  / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).

Какие термины используются для поиска площади круга?

Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.

Окружность, круг, радиус, диаметр

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней. 

Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.

Площадь круга и размеры пицц

Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:

Площадь круга и размеры пицц

Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?

Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:

  • 252 + 252 = 625 + 625 = 1250
  • 402 = 1600

Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.

Площади усеченных частей круга

А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:

Хорда, сектор, сегмент и их площади

Хорда — отрезок, соединяющий любые две точки окружности.

Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.

Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:

S = sr/2

где S — площадь сектора, r — радиус круга.

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.

Площадь сегмента можно найти по формулам:

S = r2sinα/ 2

где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.

Часто задаваемые вопросы о площади круга?

И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.

Входит ли окружность (периметр) в площадь круга?

Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.

Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?

Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Кто впервые научился вычислять площадь круга?

Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Определение окружности

Окружность – это замкнутая линия, причем расстояние от любой точки, находящейся на этой линии, до центра окружности одинаково. Кругом является внутренняя часть окружности.

Онлайн-калькулятор площади круга

Площадь круга.png

Тот самый отрезок, который соединяет выбранную точку на окружности с ее центром, называется радиусом RR.
Длина радиуса, взятая в двойном размере, называется диаметром окружности DD.

То есть D=2RD=2R.

Как найти площадь круга

Площадь круга можно найти двумя способами:

  • используя радиус круга,
  • используя диаметр круга.

Остановимся чуть подробнее на каждом способе и рассмотрим несколько примеров.

Формула площади круга через радиус круга

Сначала разберем общий случай.

Пусть нам дана окружность OO произвольного радиуса R.R. Площадь круга через радиус вычисляется при помощи формулы

S=πR2S=pi R^2,

где πpi – число «Пи», выражающее отношение длины окружности к ее диаметру и численно равное около 3,143,14,

RR – радиус нашей окружности.

Теперь, чтобы было более понятно, рассмотрим пару практических примеров.

Пример

Найдите площадь круга, радиус которого равен 6 см.
Ответ дайте, округленный до целого числа.

Решение:

Пользуемся нашей формулой для вычисления площади круга и получаем:

S=πR2=3,14⋅6⋅6=3,14⋅36=113.S=pi R^2=3,14cdot 6 cdot 6=3,14 cdot 36=113.

Ответ: 113 см2.

Формула площади круга через диаметр

Рассмотрим сначала обобщенный случай без использования цифр.

Формула вычисления площади круга с помощью диаметра немного отличается от формулы, в которой мы использовали радиус. Но ответ остается, безусловно, таким же.

Итак, наша формула выглядит следующим образом:

S=πD24S=pi frac{D^2}{4}

Давайте разберемся, откуда она вообще взялась.

Для начала выразим радиус через диаметр. Получаем R=D2R=frac{D}{2}, затем подставляем полученное выражение в нашу исходную формулу S=πR2S=pi R^2 и получаем результат: S=πD222S=pi frac{D^2}{2^2}, далее упрощаем и выходим на окончательный ответ S=πD24S=pi frac{D^2}{4}.

Пример

Найти площадь круга, если известно, что четвертая часть диаметра равна 2,5 см.

Решение:

Находим диаметр:

D4=2,5.frac{D}{4} =2,5.

Отсюда,

D=2,5⋅4=10.D=2,5 cdot 4=10.

Подставляем значения в формулу:

S=πD24=3,14⋅1024=3,14⋅1004=3,14⋅25=78,5S=pi frac{D^2}{4} =3,14 cdot frac{10^2}{4} =3,14 cdot frac{100}{4} =3,14 cdot 25=78,5

Ответ: 78,5 см2.

Пример решения задачи посложнее.

Пример

Имеется два круга. Площадь первого 153,86153,86 см2. Найдите площадь второго круга, радиус которого в 22 раза больше радиуса первого круга.

Решение:
Для решения задачи нам в первую очередь нужно найти радиус первого круга. Из формулы S=πR2S=pi R^2 находим, что R=SπR=sqrt{frac{S}{pi}}.

R=153.863.14=49=7.R=sqrt{frac{153.86}{3.14}}=sqrt{49} = 7.

Радиус второго круга равен 7⋅2=14.7 cdot 2=14.

Наконец, найдем площадь этого круга: S=πR2=3.14⋅142=3,14⋅196=615,44.S=pi R^2=3.14cdot14^2=3,14 cdot 196=615,44.

Ответ: 615,44615,44 см2.

Ищете специалиста, который сможет написать контрольную работу на заказ для вас? Наши эксперты подбирают индивидуальный подход к каждому клиенту!

Тест по теме “Площадь круга”

Площадь Круга через Радиус

Калькулятор рассчитывает Площадь круга по Радиусу. Расчет производится автоматически при вводе величины Радиуса. Подробное решение показывает формулу и порядок вычислений

Площадь Круга через Радиус

Радиус Окружности:

Десятичных знаков – 

Десят. знаков – 

Справка

 Схема - Площадь Круга через Радиус

0

Посчитать
Показать решение
Сохранить

П.н.

Сохраненные результаты

Нет сохраненных результатов

Формула площади круга через Радиус

Площадь круга через Радиус

S – площадь круга,

r – радус круга,

π ≈ 3,141592653589

Определения и термины

Круг – множество точек плоскости, расстояние до которых от данной точки (центра круга) не превышает заданного расстояния (радиуса круга).

Радиус круга – отрезок, соединяющий центр круга с любой точкой, которая лежит на внешней окружности круг

Число Пи (π) – математическая константа, которая выражает отношение длины окружности к её диаметру.
Равно приблизительно 3,141592653589…

Площадь круга через Диаметр

S – площадь круга,

d – диаметр круга,

π ≈ 3,141592653589

Площадь круга через Радиус

S – площадь круга,

r – радиус круга,

π ≈ 3,141592653589

Площадь круга через Длину Окружности

S – площадь круга,

l – длина окружности,

π ≈ 3,141592653589

Определения и термины

Круг – множество точек плоскости, расстояние до которых от данной точки (центра круга) не превышает заданного расстояния (радиуса круга).

Радиус круга – отрезок, соединяющий центр круга с любой точкой, которая лежит на внешней окружности круг

Диаметр круга – отрезок, соединяющий любые две точки, лежащие на внешней окружности круга, и проходящий через центр круга

Окружность – замкнутая плоская кривая состоящия из всех точек полскости равноудаленных от заданной точки (центра окружности)

Число Пи (π) – математическая константа, которая выражает отношение длины окружности к её диаметру.
Равно приблизительно 3,141592653589…

Площадь окружности

Окружность, по своей сути, является границей круга – замкнутой плоской кривой. Из определения следует, что площади окружности не существует,
а существует Площадь круга.

назад к списку всех задач


Условие задачи:

Радиус окружности 2 см. Найти площадь круга, ограниченного этой окружностью.


Рисунок круга для задачи

Дано:
Радиус окружности, R = 2 см

Пояснение к рисунку:
O – -центр окружности


Найти площадь круга: S


Решение

Используем формулу площади круга через радиус.

Формула  площади круга

Подставим значения и вычислим результат.

Полученный результат


Ответ:

ответ



Число пи приблизительноеРезультат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14



Калькулятор для расчета площади круга



назад к списку всех задач

Подробности

Опубликовано: 04 сентября 2017

Обновлено: 13 августа 2021

Добавить комментарий