Как найди работу физика

У этого термина существуют и другие значения, см. Работа.

Работа
{displaystyle A,W}
Размерность L2MT−2
Единицы измерения
СИ Дж
СГС эрг
Примечания
скалярная величина
Механическая работа
Ключевые статьи

Работа в физике

Механическая работа Закон сохранения энергии Термодинамическая работа Первое начало термодинамики

Размерность

Джоуль Эрг

См. также: Портал:Физика

Механи́ческая рабо́та — физическая величина — скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел)[1].

При постоянной силе и прямолинейном движении материальной точки, работа рассчитывается как произведение величины силы на перемещение и на косинус угла между векторами перемещения и силы: {displaystyle A=Fscos(F,s)}. В более сложных случаях (непостоянная сила, криволинейное движение) это соотношение применимо к малому промежутку времени, а для вычисления полной работы необходимо суммирование по всем таким промежуткам.

В механике совершение работы над телом является единственной причиной изменения его энергии; в других областях физики энергия изменяется и за счёт иных факторов (например, в термодинамике — теплообмена).

Определение работы[править | править код]

По определению, «элементарная» (совершаемая за бесконечно малое время) работа — скалярное произведение действующей на материальную точку силы vec{F} на перемещение {displaystyle d{vec {s}}}, то есть

{displaystyle delta A={vec {F}}cdot d{vec {s}}}.

Использование символа δ (а не d) обусловлено тем, что дифференциал работы не обязательно полный.
Работа за конечный промежуток времени — интеграл элементарной работы:

{displaystyle A=int delta A}.

Если имеется система материальных точек, выполняется суммирование по всем точкам. При наличии нескольких сил их работа определяется как работа равнодействующей (векторной суммы) этих сил.

Обозначения, размерность[править | править код]

Работа обычно обозначается заглавной буквой A (от нем. Arbeit — работа, труд) или заглавной буквой W (от англ. work — работа, труд).

Единицей измерения (размерностью) работы в Международной системе единиц (СИ) является джоуль, в СГС — эрг. При этом

1 Дж = 1 кг·м²/с² = 1 Н·м;
1 эрг = 1 г·см²/с² = 1 дин·см;
1 эрг = 10−7 Дж.

Вычисление работы[править | править код]

Случай одной материальной точки[править | править код]

Mehaaniline töö.png

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы, работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A=F_{s}s=Fs {mathrm  {cos}}(F,s)={vec  F}cdot {vec  s}

Здесь «{displaystyle ,cdot ,}» обозначает скалярное произведение, {vec  s} — вектор перемещения.

Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа этой силы равна нулю.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки[2]:

{displaystyle A=int {vec {F}}cdot d{vec {s}}}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из перемещений {displaystyle d{vec {s}}}, если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат[3], интеграл определяется[4] следующим образом:

{displaystyle A=int limits _{{vec {r}}_{0}}^{{vec {r}}_{1}}{vec {F}}left({vec {r}}right)cdot d{vec {r}}},

где {vec  r}_{0} и {vec  r}_{1} — радиус-векторы начального и конечного положения тела. Например, если движение происходит в плоскости xy, а {displaystyle {vec {F}}=F_{x}{vec {e}}_{x}+F_{y}{vec {e}}_{y}} и {displaystyle d{vec {r}}=dx{vec {e}}_{x}+dy{vec {e}}_{y}} (vec{e}_x, vec{e}_y — орты), то последний интеграл обретёт вид {displaystyle A=int (F_{x}+F_{y}|dy/dx|)dx}, где производная {displaystyle dy/dx} берётся для кривой y(x), по которой движется точка.

Если сила vec{F} является консервативной (потенциальной), результат вычисления работы будет зависеть только от начального и финального положения точки, но не от траектории, по которой она перемещалась.

Случай системы точек или тела[править | править код]

Работа сил по перемещению системы из N материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой):

{displaystyle A=sum A_{n},quad n=1,2,..,N}.

Если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл:

{displaystyle A=int delta A({vec {r}}')=iint {frac {d{vec {F}}({vec {r}}')}{dV'}}cdot d{vec {r}}({vec {r}}')dV'},

где {displaystyle dA({vec {r}}')} — работа по перемещению бесконечно малого фрагмента объёма тела {displaystyle dV'}, локализованного около координаты {displaystyle {vec {r}}'} (в системе отсчёта тела), от начального до финального положения, {displaystyle d{vec {F}}/dV'} (Н/м3) — плотность действующей силы, а интегрирование проводится по всему объёму тела.

Эти формулы могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Работа и кинетическая энергия[править | править код]

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

С использованием второго закона Ньютона, позволяющего выразить силу через ускорение как {displaystyle {vec {F}}=m{vec {a}}} (где m — масса материальной точки), а также соотношений {displaystyle d{vec {s}}=d{vec {r}}={vec {v}}dt} и {displaystyle d(v^{2})/dt=d({vec {v}}cdot {vec {v}})/dt=2{vec {a}}cdot {vec {v}}}, элементарная работа может быть переписана как

{displaystyle delta A=m{vec {a}}cdot {vec {v}}dt={frac {d}{dt}}left({frac {mv^{2}}{2}}right)dt}.

При интегрировании от начального до финального момента получится

{displaystyle A=Delta left({frac {mv^{2}}{2}}right)=Delta E_{k}},

где E_k — кинетическая энергия. Для материальной точки она определяется как половина произведения массы этой точки на квадрат её скорости и выражается[5] как {displaystyle E_{k}=mv^{2}/2}. Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Работа и потенциальная энергия[править | править код]

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E_{p}, такая, что

{displaystyle {vec {F}}=-nabla E_{p}}.

Здесь nabla — оператор набла. Если все силы, действующие на частицу, консервативны, и E_{p} является полной потенциальной энергией, полученной суммированием потенциальных энергий, соответствующих каждой силе, то

{displaystyle {vec {F}}cdot d{vec {s}}=-nabla E_{p}cdot d{vec {s}}=-dE_{p}Rightarrow -dE_{p}=dE_{k}Rightarrow d(E_{k}+E_{p})=0}.

Данный результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия

{displaystyle E=E_{k}+E_{p}}

в замкнутой системе, в которой действуют консервативные силы, является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа силы в теоретической механике[править | править код]

Пусть материальная точка M движется по непрерывно дифференцируемой кривой G={r=r(s)}, где s — переменная длина дуги, 0leq sleq S, и на неё действует сила F(s), направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F(s) проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее).

Величина F(xi _{i})triangle s_{i},triangle s_{i}=s_{i}-s_{{i-1}},i=1,2,...,i_{{tau }}, называется элементарной работой силы F на участке G_{i} и принимается за приближённое значение работы, которую производит сила F, воздействующая на материальную точку, когда последняя проходит кривую G_{i}. Сумма всех элементарных работ sum _{{i=1}}^{{i_{{tau }}}}F(xi _{i})triangle s_{i} является интегральной суммой Римана функции F(s).

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма sum _{{i=1}}^{{i_{{tau }}}}F(xi _{i})triangle s_{i} всех элементарных работ, когда мелкость |tau | разбиения tau стремится к нулю, называется работой силы F вдоль кривой G.

Таким образом, если обозначить эту работу буквой A, то, в силу данного определения,

{displaystyle A=lim _{|tau |rightarrow 0}sum _{i=1}^{i_{tau }}F(xi _{i})triangle s_{i}=int limits _{0}^{s}F(s)ds}.

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t (например, времени) и если величина пройденного пути s=s(t), aleq tleq b является непрерывно дифференцируемой функцией, то из последней формулы получится

{displaystyle A=int limits _{a}^{b}F[s(t)]s'(t)dt}.

Работа в термодинамике[править | править код]

В термодинамике работа, совершённая газом при расширении[6], рассчитывается как интеграл давления по объёму:

{displaystyle A_{1rightarrow 2}=int limits _{V_{1}}^{V_{2}}PdV}.

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула непосредственно связана с механической работой, хотя, казалось бы, относится к другому разделу физики. Сила давления газа направлена ортогонально к каждой элементарной площадке и равна произведению давления P на площадь dS площадки.
При расширении сосуда, работа, совершаемая газом для смещения h одной такой элементарной площадки, составит

{displaystyle dA=PdSh}.

Это и есть произведение давления на приращение объёма вблизи элементарной площадки. После суммирования по всем dS, получится результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

См. также[править | править код]

  • Закон сохранения энергии
  • Теорема о кинетической энергии системы
  • Механические приложения криволинейных интегралов

Примечания[править | править код]

  1. Тарг С. М. Работа силы // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 193-194. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Это делается исходя из того, что можно разбить суммарное конечное перемещение на маленькие последовательные перемещения {displaystyle d{vec {s}}}, на каждом из которых сила будет почти постоянной, а значит можно будет воспользоваться определением для постоянной силы, введённым выше. Затем работы на всех этих перемещениях {displaystyle d{vec {s}}} суммируется, что и даёт в результате интеграл.
  3. Как это очень часто бывает. Например, в случае кулоновского поля, растягивающейся пружины, силы тяготения планеты итд.
  4. По сути через предыдущий, поскольку здесь {vec  F}(t)={vec  F}({vec  r}(t)); вектор же малого перемещения {displaystyle d{vec {s}}} совпадает с d{vec  {r}}.
  5. Тарг С. М. Кинетическая энергия // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  6. Работа, совершаемая газом при его сжатии, очевидно отрицательна, но вычисляется по той же формуле. Работа, совершаемая газом (или над газом) без его расширения или сжатия (например, в процессе перемешивания мешалкой), в принципе может быть выражена подобной формулой, но всё же не прямо этой, так как она требует обобщения: дело в том, что в формуле int PdV давление подразумевается одинаковым по всему объёму (что часто выполняется в термодинамике, поскольку речь там часто идёт о процессах, близких к равновесным), что и приводит к наиболее простой формуле (в случае же вращающейся мешалки, например, давление будет разным на передней и задней стороне лопасти, что приведёт к необходимому усложнению формулы, если мы захотим применить её к такому случаю; эти соображения относятся и ко всем другим неравновесным случаям, когда давление неодинаково в разных частях системы).

Литература[править | править код]

  • История механики с древнейших времён до конца XVIII в. В 2 т. М.: Наука, 1972.
  • Кирпичёв В. Л. Беседы о механике. М.-Л.: Гостехиздат, 1950.
  • Льоцци М. История физики. М.: Мир, 1970.
  • Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
  • Мах Э. Механика. Историко-критический очерк её развития. Ижевск: РХД, 2000.
  • Тюлина И. А. История и методология механики. М.: Изд-во МГУ, 1979.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа – мера воздействия силы.

Определение механической работы

Определение 1

Работа А, совершаемая постоянной силой F→, – это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

A=Fs cos α.

Работа – это скалярная величина. Единица измерения работы по системе СИ – Джоуль (Дж).

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Определение механической работы

Рисунок 1. Работа силы F→: A=Fs cos α=Fss

При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsi суммируется и производится по формуле:

A=∑∆Ai=∑Fsi∆si.

Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.

Определение механической работы

Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Определение механической работы

Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.

F→упр=-F→

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Определение механической работы

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

A=kx22.

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

N=At.

Определение 4

Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт – это мощность, которую совершает работу в 1 Дж за время 1 с.

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.  

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Механическая работа – это одна из основных скалярных величин в физике. В рамках стандартной школьной программы она изучается в седьмом классе в разделе механики. Механическая работа – один из способов изменения внутренней энергии тела или субстанции (например, газа или жидкости) наряду с такими формами теплопередачи, как теплопроводность, конвекция и излучение, которые изучаются в разделе тепловых явлений.

Что такое работа в физике – определение и формула

Механическая работа – это количество энергии, которое нужно затратить для того, чтобы тело начало равномерно замедляющееся движение и прошло некоторую дистанцию. 

Определение механической работы в физике

В физике механической работой называется произведение силы, которая действует на некоторое тело, на расстояние, которое оно проходит под ее воздействием:

A = F * S

В более сложных случаях в формуле появляется и третья величина – косинус угла, под которым друг к другу расположены векторы движения и приложенной силы. Найти ее значение можно по формуле:

A = F * S * cosA

В чем измеряется работа

Физические единицы, в которых выражается механическая работа, – Джоули. 

Единица измерения механической работы

Существуют разные способы для ее практического измерения, которые зависят от типа произведенного движения. При этом в формулу работы подставляют значение силы в Ньютонах и расстояния в метрах. Угол между векторами измеряют в математических единицах – градусах. 

Работа силы трения

При условиях, существующих на Земле, на любое движущееся тело оказывает воздействие сила трения, замедляющая его движение. Чаще всего это трение поверхности, по которой движется объект. Это очевидно из того факта, что при воздействии постоянной силы на тело его скорость окажется переменной. 

Работа силы трения

Следовательно, должна быть и другая сила, противодействующая ей – и это сила трения. Если система координат выбрана по направлению движения тела, то ее числовое значение будет отрицательным.

Положительная и отрицательная работа

Числовое значение работы, которую совершает сила, может становиться отрицательным в случае если ее вектор противоположен вектору скорости. 

Положительная и отрицательная механическая работа

Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае она будет называться противодействующей. 

Полезная или затраченная работа

У тела, совершающего одно и то же действие, есть два значения работы. Первая из них, полезная, вычисляется по обычной формуле. 

Вторая, затраченная, по своему понятию не имеет общей формулы для вычисления и измеряется практически. Эта разница между совершенной в реальности работой и той, которая должна была быть совершена в теории, равна коэффициенту полезного действия – КПД. Он вычисляется так:

КПД = А полезная / А затраченная,

и выражается в процентах. КПД всегда меньше 100.

Мощность и КПД

Мощность

Среднее количество работы, совершаемой за единицу времени (секунду), характеризует такую величину, как мощность. Формула для ее вычисления выглядит так:

Р = A / t

В качестве работы можно подставить люблю известную формулу для ее вычисления в зависимости от ситуации. Ответ будет выражен в Ваттах.

Однако при равномерном движении можно использовать и другую формулу:

Р = F * v

Подставив вместо обычной скорости мгновенную, можно получить значение мгновенной мощности.

Примеры решения задач

Рассмотрим несколько простых задач на нахождение механической работы.

Знайка

Задача 1

Какую работу совершает подъемный механизм, поднимающий десятикилограммовый блок на высоту 50 метров.

Решение:

Для того, чтобы поднять тело, необходимо преодолеть действующую на него силу тяжести. То есть F, с которой поднимают блок, равна той, с которой он притягивается к земле. Так как последняя равна m * g, то для нахождения конечного результата понадобится только одна измененная версия стандартной формулы, упомянутой выше: A = S * m * g.

При помощи простой математики найдем числовой ответ:

A = 50 м * 10 кг * 10 Н/кг;

A = 5000 Дж.

Ответ: 5000 Дж.

Впрочем, не всегда речь идет о силе тяжести.

Задача 2

Какая работа совершается силой упругости, когда пружина с жесткостью 10 Н/м, сжатая на 20 см, возвращается в исходное состояние? Система замкнута, нет никаких внешних сил, воздействующих на пружину.

Решение:

Для начала нужно найти саму F упругости, которая совершает работу. Ее формула – F = x * |k|, где x – это длина, на которую сжимается или растягивается пружина, а k – коэффициент ее жесткости. Перемещение пружины равно ее деформации, и следовательно, конечная формула в этом случае будет выглядеть так: A = S * x * k = x * x * k = x^2 * k.

Далее при помощи элементарных вычислений рассчитаем ответ:

A = (0,2 м)^2 * 10 Н/м = 0,04 * 10 = 0,4 Дж.

Ответ: 0,4 Дж.

Но во всех задачах по данной теме траектория движения тела прямая.

Задача 3

Рассчитайте, какова сила, действующая на колесо, если на то, чтобы совершить полный оборот, ему требуется 10 кДж. Диаметр диска равен 40 см, а толщина шины – 10 см.

Решение:

В этом случае нам нужно найти не А, а F, но сделать это можно при помощи все той же формулы. Возьмем точку на поверхности колеса. Предположим, что при вращательном движении ее вектор будет противоположен вектору приложения силы, а значит косинусом в формуле вновь можно пренебречь. Таким образом, за один оборот колеса точка пройдет расстояние, равное длине окружности, которую можно вычислить как 2πr или πd. Диаметр окружности можно найти из предоставленных данных: он равен сумме диаметра диска и удвоенной толщины шины, то есть 40 см + 2 * 10 см = 40 см + 20 см = 60 см = 0,6 м.

Теперь, когда мы можем вычислить расстояние, у нас есть все данные для того, чтобы приступить к нахождению силы.

Формула работы для этого случая будет такой: A = F * π * d, то силу, соответственно, можно будет выразить как F = A / (π * d).

В таком случае:

F = 10 кДж / (3,14 * 0,6 м) = 10000 Дж / 1,884 м = ~ 5308 Н.

Ответ: 5308 Н.

В завершение решим самый сложный вариант задачи, включающий в себя все, о чем говорилось выше.

Задача 4

Автомобиль Фольксваген весом 2500 кг заезжает на гору. Какова должна быть его минимальная скорость, чтобы удержаться на горе, если сила тяги равна 10 кН, время работы двигателя – 10 с, КПД – 30%, а угол наклона горы – 60 градусов. Трением и прочими силами пренебречь.

Решение:

На первый взгляд задача может показаться сложной, но для ее решения используются только простые известные формулы. 

Запишем условие в более наглядном виде.

Дано:

m = 2500 кг;

F = 10000 H;

t = 10 с;

КПД = 30%;

угол A = 1500 (60+90, т. к. сила тяжести приложена под углом 90 к горизонтали);

V – ?

Выведение формулы:

Шаг 1. По условию A1 (силы тяжести) = А2 (тяги).

A1 = mg;

A2 = P * t / КПД.

То есть mg = P * t / КПД.

Шаг 2. P = F * V * cosA.

Шаг 3. Общая формула: mg = F * V * cosA * t / КПД.

V = (m * g * КПД) / (F * t * cosA).

Числовое решение:

V = (2500 кг * 10 Н/кг * 30%) / (10000 H * 10 с * cos150);

V = (2500 кг * 10 Н/кг * 0,3) / (10000 H * 10 с * cos60);

V = 7500 / 50000;

V = 0,15 м/с.

Ответ: 0,15 м/с.

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:


Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

A = Fтs

Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство

Работа полезная и полная

КПД

Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Задание EF17557

Какую мощность развивает сила тяги трактора, перемещая прицеп со скоростью 18 км/ч, если она составляет 16,5 кН?

Ответ:

а) 916 Вт

б) 3300 Вт

в) 82500 Вт

г) 297000 Вт


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать формулу для расчета мощности.

3.Выполнить общее решение задачи.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Сила тяги, перемещающая прицеп, равна: Fт = 16,5 кН.

 Скорость перемещения прицепа под действием силы тяги: v = 18 км/ч.

Переведем единицы измерения в СИ:

16,5 кН = 16,5∙103 Н

18 км/ч = 18000/3600 м/с = 5 м/с

Мощность равна отношению работы ко времени, в течение которого эта работа совершалась:

N=At

Но работа равна произведению силы, перемещения и косинуса угла между векторами силы и перемещения. В данном случае будем считать, что угол равен нулю, следовательно косинус — единице. Тогда работа равна:

A = Fs

Тогда мощность равна:

N=Fst=Fv=16,5·103·5=82500 (Вт)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17574

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся время движения, ускорение и модуль работы силы трения, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой m/2? Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения

Ускорение

Модуль работы силы трения


Алгоритм решения

1.Установить наличие и характер зависимости кинематических характеристик движения от массы тела.

2.Вывести формулу для модуля работы силы трения.

3.Установить, как изменится модуль работы силы трения при уменьшении массы тела вдвое.

Решение

При скольжении с наклонной плоскости происходит равноускоренное движение. Положение тела в любой момент времени при таком движении можно определить с помощью кинематических уравнений:

x=xo+v0xt+axt22

y=yo+v0yt+ayt22

Из этих уравнений видно, что ускорение и время никак не зависят от массы тела. Следовательно, при уменьшении массы тела в 2 раза его время движения и ускорение не изменятся.

Чтобы выразить модуль работы силы трения, выберем такую систему отсчета, чтобы вектор силы трения был расположен вдоль оси Ox.Тогда сила трения будет равна:

Fтр = μmg

Известно, что работа определяется формулой:

A = Fs cosα

Тогда работа силы трения равна:

A = μmgs cosα

Вектор силы трения всегда направлен противоположно вектору перемещения. Поэтому косинус угла между ними равен –1. Но нас интересует только модуль работы. Поэтому будем считать, что он равен:

A = μmgs

Модуль работы силы трения и масса тела зависят прямо пропорционально. Следовательно, если массу тела уменьшить вдвое, то и модуль работы силы трения уменьшится вдвое.

Поэтому правильная последовательность цифр в ответе: 332.

Ответ: 332

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18646

В первой серии опытов брусок перемещают при помощи нити равномерно и прямолинейно вверх по наклонной плоскости. Во второй серии опытов на бруске закрепили груз, не меняя прочих условий.

Как изменятся при переходе от первой серии опытов ко второй сила натяжения нити и коэффициент трения между бруском и плоскостью?

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Сила натяжения нити Коэффициент трения

Алгоритм решения

  1. Определить, какая величина изменилась во второй серии опытов.
  2. Определить, как зависит от этой величины сила натяжения нити.
  3. Определить, как зависит от этой величины коэффициент трения.

Решение

Когда к бруску подвесили груз, увеличилась масса. Когда тело на нити перемещается вверх прямолинейно и равномерно, сила натяжения нити определяется модулем силы тяжести:

T = mg

Эта формула показывает, что сила натяжения нити и масса тела зависят прямо пропорционально. Если, добавив к бруску груз, масса увеличится, то сила натяжения нити тоже увеличится.

Коэффициент трения — это величина, которая зависит только от материалов и типа поверхности. Поэтому увеличение массы тела на него никак не повлияют.

Верная последовательность цифр в ответе: 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18271

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 23592U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.


Алгоритм решения

1.Записать исходные данные и перевести их в СИ.

2.Записать формулу для определения КПД атомной электростанции.

3.Решить задачу в общем виде.

4.Подставить известные данные и вычислить искомую величину.

5.Массовое число: A = 235.

6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.

 Масса урана-235: m = 1,4 кг.

 Время, в течение которого происходит деление: t = 1 неделя.

 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 11.7k

Добавить комментарий