Как найти 3 значное простое число

Эта страница содержит список первых 500 простых чисел (от 2 до 3571), а также списки некоторых специальных типов простых чисел.

Первые простые числа[править | править код]

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571

(последовательность A000040 в OEIS).

Проект по проверке проблемы Гольдбаха сообщает, что были вычислены все простые числа до 10^{18}. Это составляет 24 739 954 287 740 860 простых чисел, но они не были сохранены. Существуют известные формулы, позволяющие вычислить количество простых чисел (до заданного значения) быстрее, чем вычисление самих простых чисел. Этот способ был использован, чтобы вычислить, что до 10^{{23}} находится 1 925 320 391 606 803 968 923 простых числа.

Простые числа Белла[править | править код]

Простые числа, которые являются числом разбиения множества с n элементами.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. Следующее число имеет 6539 цифр[1]. (последовательность A051131 в OEIS)

Кубические простые числа[править | править код]

Простые числа вида {frac  {x^{3}-y^{3}}{x-y}},x=y+1

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (последовательность A002407 в OEIS).

а также {frac  {x^{3}-y^{3}}{x-y}},x=y+2

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249

(последовательность A002648 в OEIS).

Суперпростые числа[править | править код]

Простые числа, находящиеся на позициях последовательности простых чисел с простыми номерами, то есть 2-е, 3-е, 5-е и т. д.

Первые члены последовательности суперпростых чисел: 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, …
Последовательность OEIS:A006450

Простые, состоящие из единиц[править | править код]

Числа-репьюниты, состоящие из 19, 23, 317, 1031, 49081, 86453, 109297, 270343 единиц, являются простыми (последовательность A004023 в OEIS).

Простые, состоящие из единиц и нулей[править | править код]

Кроме простых чисел, состоящих только из единиц, можно отметить и простые числа, состоящие из единиц и нулей. В пределах первых десяти миллионов простыми являются следующие из таких чисел (последовательность A020449 в OEIS):

11, 101, 10111, 101111, 1011001, 1100101 и т. д.

Простые палиндромы[править | править код]

Палиндромами называются числа, которые справа налево и слева направо читаются одинаковым образом, например, 30103.
Среди таких чисел тоже встречаются простые. Ясно, что любой простой палиндром состоит из нечётного количества цифр (за исключением числа 11), так как любой палиндром с чётным количеством цифр всегда делится на 11.
Первыми простыми палиндромами являются такие числа:

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601

Простые числа Вильсона[править | править код]

Простые числа p, для которых (p-1)!+1 делится нацело на p^{2}.

Известные простые Вильсона: 5, 13, 563 (последовательность A007540 в OEIS).

Другие простые Вильсона неизвестны. Гарантированно не существует других простых Вильсона, меньших 2⋅1013[2].

Простые числа Вольстенхольма[править | править код]

Простые числа p, для которых биномиальный коэффициент {{2p-1} choose {p-1}}equiv 1{pmod  {p^{4}}}.

Известны только эти числа до миллиарда: 16843, 2124679 (последовательность A088164 в OEIS)

Простые числа Кэрола[править | править код]

Простые числа вида (2^{n}-1)^{2}-2.

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (последовательность A091516 в OEIS).

Простые числа Каллена[править | править код]

Простые числа вида n2^{n}+1.

Все известные числа Каллена соответствуют n, равному:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881 последовательность A005849 в OEIS.

Есть предположение, что имеется бесконечно много простых чисел Каллена.

Простые числа Маркова[править | править код]

Простые числа p, для которых существуют целые x и y такие, что x^{2}+y^{2}+p^{2}=3xyp.

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (последовательность A178444 в OEIS)

Простые числа Мерсенна[править | править код]

Простые числа вида 2^{n}-1. Первые 12 чисел:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
(последовательность A000668 в OEIS).

Простые числа Ньюмена — Шэнкса — Уильямса[править | править код]

Простым числом Ньюмена — Шэнкса — Уильямса (NSW) называется простое число p, которое можно записать в виде:

S_{{2m+1}}={frac  {left(1+{sqrt  {2}}right)^{{2m+1}}+left(1-{sqrt  {2}}right)^{{2m+1}}}{2}}.

Несколько первых NSW-простых: 7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679 (последовательность A088165 в OEIS).

Простые числа Прота[править | править код]

Простые числа вида P=kcdot 2^{n}+1, причём k нечётно и 2^{n}>k (последовательность A080076 в OEIS).

Простые числа Софи Жермен[править | править код]

Простые числа p такие, что {displaystyle 2p+1} также простые.

2, 3, 5, 7, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953
(последовательность A005384 в OEIS).

Простые числа Ферма[править | править код]

Это простые числа вида 2^{{2^{n}}}+1.

Известные простые числа Ферма: 3, 5, 17, 257, 65537 (последовательность A019434 в OEIS).

Простые числа Фибоначчи[править | править код]

Простые числа в последовательности Фибоначчи F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (последовательность A005478 в OEIS)

Простые числа Чена[править | править код]

Такие простые числа p, что p+2 либо простое, либо полупростое:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (последовательность A109611 в OEIS).

Простые числа Пелля[править | править код]

В теории чисел числами Пелля называется бесконечная последовательность целых чисел, являющихся знаменателями подходящих дробей для квадратного корня из 2. Эта последовательность приближений начинается с 1/1, 3/2, 7/5, 17/12, и 41/29, так что последовательность чисел Пелля начинается с 1, 2, 5, 12 и 29. Несколько первых простых чисел Пелля: 2, 5, 29, 5741, … (последовательность A086383 в OEIS).

Простые числа в форме {displaystyle n^{4}+1}[править | править код]

[3][4]

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (последовательность A037896 в OEIS).

Сбалансированные простые числа[править | править код]

Простые числа, которые являются средним арифметическим предыдущего простого числа и следующего простого числа:

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (последовательность A006562 в OEIS).

Уникальные простые числа[править | править код]

Простые числа p, длина периодической дроби которых от {frac  {1}{p}} уникальна (ни одно другое простое число не даёт такое же):

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991
(последовательность A040017 в OEIS).

Факториальные простые[править | править код]

Это простые числа вида n!pm 1 для некоторого {displaystyle nin {mathbb {N} }}:

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (последовательность A088054 в OEIS).

Праймориальные простые числа[править | править код]

Простые числа вида p# ± 1:

pn# − 1 является простым для n = 2, 3, 5, 6, 13, 24, … последовательность A057704 в OEIS
pn# + 1 является простым для n = 1, 2, 3, 4, 5, 11, … последовательность A014545 в OEIS

Центрированные квадратные простые числа[править | править код]

Числа вида n^{2}+(n+1)^{2}:

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (последовательность A027862 в OEIS).

Центрированные треугольные простые числа[править | править код]

Числа вида (3n^{2}+3n+2)/2:

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (последовательность A125602 в OEIS).

Центрированные десятиугольные простые числа[править | править код]

Простые числа, которые можно представить в виде 5(n^{2}-n)+1:

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (последовательность A090562 в OEIS).

Примечания[править | править код]

  1. 93074010508593618333…(6499 other digits)…83885253703080601131 Архивная копия от 6 февраля 2015 на Wayback Machine, The Largest Known Primes — primes.utm.edu
  2. A Search for Wilson primes. Дата обращения: 20 декабря 2012. Архивировано 7 апреля 2018 года.
  3. Lal, M. Primes of the Form n4 + 1 (англ.) // Mathematics of Computation  (англ.) (рус. : journal. — American Mathematical Society, 1967. — Vol. 21. — P. 245—247. — ISSN 1088-6842. — doi:10.1090/S0025-5718-1967-0222007-9. Архивировано 13 января 2015 года.
  4. Bohman, J. New primes of the form n4 + 1 (англ.) // BIT Numerical Mathematics  (англ.) (рус. : journal. — Springer, 1973. — Vol. 13, no. 3. — P. 370—372. — ISSN 1572-9125. — doi:10.1007/BF01951947.

Литература[править | править код]

  • Генри С. Уоррен, мл. Глава 16. Формулы для простых чисел // Алгоритмические трюки для программистов = Hacker’s Delight. — М.: Вильямс, 2007. — 288 с. — ISBN 0-201-91465-4.

Ссылки[править | править код]

  • Списки простых и факторизованных составных чисел

Here are all the 3 digit prime numbers, i.e. all prime numbers between 101-1,000.

100s

One Hundred One

One Hundred One

One Hundred Three

One Hundred Three

One Hundred Seven

One Hundred Seven

One Hundred Nine

One Hundred Nine

One Hundred Thirteen

One Hundred Thirteen

One Hundred Twenty-Seven

One Hundred Twenty-Seven

One Hundred Thirty-One

One Hundred Thirty-One

One Hundred Thirty-Seven

One Hundred Thirty-Seven

One Hundred Thirty-Nine

One Hundred Thirty-Nine

One Hundred Forty-Nine

One Hundred Forty-Nine

One Hundred Fifty-One

One Hundred Fifty-One

One Hundred Fifty-Seven

One Hundred Fifty-Seven

One Hundred Sixty-Three

One Hundred Sixty-Three

One Hundred Sixty-Seven

One Hundred Sixty-Seven

One Hundred Seventy-Three

One Hundred Seventy-Three

One Hundred Seventy-Nine

One Hundred Seventy-Nine

One Hundred Eighty-One

One Hundred Eighty-One

One Hundred Ninety-One

One Hundred Ninety-One

One Hundred Ninety-Three

One Hundred Ninety-Three

One Hundred Ninety-Seven

One Hundred Ninety-Seven

One Hundred Ninety-Nine

One Hundred Ninety-Nine

101 103 107 109 113
127 131 137 139 149
151 157 163 167 173
179 181 191 193 197
199

200s

Two Hundred Eleven

Two Hundred Eleven

Two Hundred Twenty-Three

Two Hundred Twenty-Three

Two Hundred Twenty-Seven

Two Hundred Twenty-Seven

Two Hundred Twenty-Nine

Two Hundred Twenty-Nine

Two Hundred Thirty-Three

Two Hundred Thirty-Three

Two Hundred Thirty-Nine

Two Hundred Thirty-Nine

Two Hundred Forty-One

Two Hundred Forty-One

Two Hundred Fifty-One

Two Hundred Fifty-One

Two Hundred Fifty-Seven

Two Hundred Fifty-Seven

Two Hundred Sixty-Three

Two Hundred Sixty-Three

Two Hundred Sixty-Nine

Two Hundred Sixty-Nine

Two Hundred Seventy-One

Two Hundred Seventy-One

Two Hundred Seventy-Seven

Two Hundred Seventy-Seven

Two Hundred Eighty-One

Two Hundred Eighty-One

Two Hundred Eighty-Three

Two Hundred Eighty-Three

Two Hundred Ninety-Three

Two Hundred Ninety-Three

211 223 227 229 233
239 241 251 257 263
269 271 277 281 283
293

300s

Three Hundred Seven

Three Hundred Seven

Three Hundred Eleven

Three Hundred Eleven

Three Hundred Thirteen

Three Hundred Thirteen

Three Hundred Seventeen

Three Hundred Seventeen

Three Hundred Thirty-One

Three Hundred Thirty-One

Three Hundred Thirty-Seven

Three Hundred Thirty-Seven

Three Hundred Forty-Seven

Three Hundred Forty-Seven

Three Hundred Forty-Nine

Three Hundred Forty-Nine

Three Hundred Fifty-Three

Three Hundred Fifty-Three

Three Hundred Fifty-Nine

Three Hundred Fifty-Nine

Three Hundred Sixty-Seven

Three Hundred Sixty-Seven

Three Hundred Seventy-Three

Three Hundred Seventy-Three

Three Hundred Seventy-Nine

Three Hundred Seventy-Nine

Three Hundred Eighty-Three

Three Hundred Eighty-Three

Three Hundred Eighty-Nine

Three Hundred Eighty-Nine

Three Hundred Ninety-Seven

Three Hundred Ninety-Seven

307 311 313 317 331
337 347 349 353 359
367 373 379 383 389
397

400s

Four Hundred One

Four Hundred One

Four Hundred Nine

Four Hundred Nine

Four Hundred Nineteen

Four Hundred Nineteen

Four Hundred Twenty-One

Four Hundred Twenty-One

Four Hundred Thirty-One

Four Hundred Thirty-One

Four Hundred Thirty-Three

Four Hundred Thirty-Three

Four Hundred Thirty-Nine

Four Hundred Thirty-Nine

Four Hundred Forty-Three

Four Hundred Forty-Three

Four Hundred Forty-Nine

Four Hundred Forty-Nine

Four Hundred Fifty-Seven

Four Hundred Fifty-Seven

Four Hundred Sixty-One

Four Hundred Sixty-One

Four Hundred Sixty-Three

Four Hundred Sixty-Three

Four Hundred Sixty-Seven

Four Hundred Sixty-Seven

Four Hundred Seventy-Nine

Four Hundred Seventy-Nine

Four Hundred Eighty-Seven

Four Hundred Eighty-Seven

Four Hundred Ninety-One

Four Hundred Ninety-One

Four Hundred Ninety-Nine

Four Hundred Ninety-Nine

401 409 419 421 431
433 439 443 449 457
461 463 467 479 487
491 499

500s

Five Hundred Three

Five Hundred Three

Five Hundred Nine

Five Hundred Nine

Five Hundred Twenty-One

Five Hundred Twenty-One

Five Hundred Twenty-Three

Five Hundred Twenty-Three

Five Hundred Forty-One

Five Hundred Forty-One

Five Hundred Forty-Seven

Five Hundred Forty-Seven

Five Hundred Fifty-Seven

Five Hundred Fifty-Seven

Five Hundred Sixty-Three

Five Hundred Sixty-Three

Five Hundred Sixty-Nine

Five Hundred Sixty-Nine

Five Hundred Seventy-One

Five Hundred Seventy-One

Five Hundred Seventy-Seven

Five Hundred Seventy-Seven

Five Hundred Eighty-Seven

Five Hundred Eighty-Seven

Five Hundred Ninety-Three

Five Hundred Ninety-Three

Five Hundred Ninety-Nine

Five Hundred Ninety-Nine

503 509 521 523 541
547 557 563 569 571
577 587 593 599

600s

Six Hundred One

Six Hundred One

Six Hundred Seven

Six Hundred Seven

Six Hundred Thirteen

Six Hundred Thirteen

Six Hundred Seventeen

Six Hundred Seventeen

Six Hundred Nineteen

Six Hundred Nineteen

Six Hundred Thirty-One

Six Hundred Thirty-One

Six Hundred Forty-One

Six Hundred Forty-One

Six Hundred Forty-Three

Six Hundred Forty-Three

Six Hundred Forty-Seven

Six Hundred Forty-Seven

Six Hundred Fifty-Three

Six Hundred Fifty-Three

Six Hundred Fifty-Nine

Six Hundred Fifty-Nine

Six Hundred Sixty-One

Six Hundred Sixty-One

Six Hundred Seventy-Three

Six Hundred Seventy-Three

Six Hundred Seventy-Seven

Six Hundred Seventy-Seven

Six Hundred Eighty-Three

Six Hundred Eighty-Three

Six Hundred Ninety-One

Six Hundred Ninety-One

601 607 613 617 619
631 641 643 647 653
659 661 673 677 683
691

700s

Seven Hundred One

Seven Hundred One

Seven Hundred Nine

Seven Hundred Nine

Seven Hundred Nineteen

Seven Hundred Nineteen

Seven Hundred Twenty-Seven

Seven Hundred Twenty-Seven

Seven Hundred Thirty-Three

Seven Hundred Thirty-Three

Seven Hundred Thirty-Nine

Seven Hundred Thirty-Nine

Seven Hundred Forty-Three

Seven Hundred Forty-Three

Seven Hundred Fifty-One

Seven Hundred Fifty-One

Seven Hundred Fifty-Seven

Seven Hundred Fifty-Seven

Seven Hundred Sixty-One

Seven Hundred Sixty-One

Seven Hundred Sixty-Nine

Seven Hundred Sixty-Nine

Seven Hundred Seventy-Three

Seven Hundred Seventy-Three

Seven Hundred Eighty-Seven

Seven Hundred Eighty-Seven

Seven Hundred Ninety-Seven

Seven Hundred Ninety-Seven

701 709 719 727 733
739 743 751 757 761
769 773 787 797

800s

Eight Hundred Nine

Eight Hundred Nine

Eight Hundred Eleven

Eight Hundred Eleven

Eight Hundred Twenty-One

Eight Hundred Twenty-One

Eight Hundred Twenty-One

Eight Hundred Twenty-One

Eight Hundred Twenty-Seven

Eight Hundred Twenty-Seven

Eight Hundred Twenty-Nine

Eight Hundred Twenty-Nine

Eight Hundred Thirty-Nine

Eight Hundred Thirty-Nine

Eight Hundred Fifty-Three

Eight Hundred Fifty-Three

Eight Hundred Fifty-Seven

Eight Hundred Fifty-Seven

Eight Hundred Fifty-Nine

Eight Hundred Fifty-Nine

Eight Hundred Sixty-Three

Eight Hundred Sixty-Three

Eight Hundred Seventy-Seven

Eight Hundred Seventy-Seven

Eight Hundred Eighty-One

Eight Hundred Eighty-One

Eight Hundred Eighty-Three

Eight Hundred Eighty-Three

Eight Hundred Eighty-Seven

Eight Hundred Eighty-Seven

809 811 821 823 827
829 839 853 857 859
863 877 881 883 887

900s

Nine Hundred Seven

Nine Hundred Seven

Nine Hundred Eleven

Nine Hundred Eleven

Nine Hundred Nineteen

Nine Hundred Nineteen

Nine Hundred Twenty-Nine

Nine Hundred Twenty-Nine

Nine Hundred Thirty-Seven

Nine Hundred Thirty-Seven

Nine Hundred Forty-One

Nine Hundred Forty-One

Nine Hundred Forty-Seven

Nine Hundred Forty-Seven

Nine Hundred Fifty-Three

Nine Hundred Fifty-Three

Nine Hundred Sixty-Seven

Nine Hundred Sixty-Seven

Nine Hundred Seventy-One

Nine Hundred Seventy-One

Nine Hundred Seventy-Seven

Nine Hundred Seventy-Seven

Nine Hundred Eighty-Three

Nine Hundred Eighty-Three

Nine Hundred Ninety-One

Nine Hundred Ninety-One

Nine Hundred Ninety-Seven

Nine Hundred Ninety-Seven

907 911 919 929 937
941 947 953 967 971
977 983 991 997

All in all, there are 143 prime numbers from 101-1,000. This means that 143/900 or around 1 in 6 numbers from 101-1,000 are prime. 757 numbers are composite.

Простые числа — целые, положительные числа, больше либо равные 2, которые на цело делятся только на себя и на 1.

* – обязательно заполнить

Таблица простых чисел от 1 до 1000:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997

Список простых чисел от 1 до 1000:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997

* – обязательно заполнить

125 – составное и, соответсвенно, натуральное число.

Разложение на простые множители числа 125

125 = 5 * 5 * 5

В столбик:

Алгоритмы поиска простых чисел

Время на прочтение
6 мин

Количество просмотров 133K

«Самое большое простое число 232582657-1. И я с гордостью утверждаю, что запомнил все его цифры… в двоичной форме».
Карл Померанс

Натуральное число называется простым, если оно имеет только два различных делителя: единицу и само себя. Задача поиска простых чисел не дает покоя математикам уже очень давно. Долгое время прямого практического применения эта проблема не имела, но все изменилось с появлением криптографии с открытым ключом. В этой заметке рассматривается несколько способов поиска простых чисел, как представляющих исключительно академический интерес, так и применяемых сегодня в криптографии.

Решето Эратосфена

Решето Эратосфена — алгоритм, предложенный древнегреческим математиком Эратосфеном. Этот метод позволяет найти все простые числа меньше заданного числа n. Суть метода заключается в следующем. Возьмем набор чисел от 2 до n. Вычеркнем из набора (отсеим) все числа делящиеся на 2, кроме 2. Перейдем к следующему «не отсеянному» числу — 3, снова вычеркиваем все что делится на 3. Переходим к следующему оставшемуся числу — 5 и так далее до тех пор пока мы не дойдем до n. После выполнения вышеописанных действий, в изначальном списке останутся только простые числа.

Алгоритм можно несколько оптимизировать. Так как один из делителей составного числа n обязательно

$leqslant sqrt{n}$, алгоритм можно останавливать, после вычеркивания чисел делящихся на

$sqrt{n}$.

Иллюстрация работы алгоритма из Википедии:

image

Сложность алгоритма составляет

$O(n loglog n)$, при этом, для хранения информации о том, какие числа были вычеркнуты требуется

$O(n)$ памяти.

Существует ряд оптимизаций, позволяющих снизить эти показатели. Прием под названием wheel factorization состоит в том, чтобы включать в изначальный список только числа взаимно простые с несколькими первыми простыми числами (например меньше 30). В теории предлагается брать первые простые примерно до

$sqrt{log n}$. Это позволяет снизить сложность алгоритма в

$loglog n$ раз. Помимо этого для уменьшения потребляемой памяти используется так называемое сегментирование. Изначальный набор чисел делится на сегменты размером

$leqslant sqrt{n}$ и для каждого сегмента решето Эратосфена применяется по отдельности. Потребление памяти снижается до

$O(sqrt{n})$.

Решето Аткина

Более совершенный алгоритм отсеивания составных чисел был предложен Аткином и Берштайном и получил название Решето Аткина. Этот способ основан на следующих трех свойствах простых чисел.

Свойство 1

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 1(mod 4)$. То n — простое, тогда и только тогда, когда число корней уравнения

$4x^2+y^2=n$ нечетно.

Свойство 2

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 1(mod 6)$. То n — простое, тогда и только тогда, когда число корней уравнения

$3x^2+y^2=n$ нечетно.

Свойство 3

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 11(mod 12)$. То n — простое, тогда и только тогда, когда число корней уравнения

$3x^2-y^2=n$ нечетно.

Доказательства этих свойств приводятся в этой статье.

На начальном этапе алгоритма решето Аткина представляет собой массив A размером n, заполненный нулями. Для определения простых чисел перебираются все

$x, y < sqrt n$. Для каждой такой пары вычисляется

$4x^2+y^2$,

$3x^2+y^2$,

$3x^2-y^2$ и значение элементов массива

$A[4x^2+y^2]$,

$A[3x^2+y^2]$,

$A[3x^2-y^2]$ увеличивается на единицу. В конце работы алгоритма индексы всех элементов массива, которые имеют нечетные значения либо простые числа, либо квадраты простого числа. На последнем шаге алгоритма производится вычеркивание квадратов оставшихся в наборе чисел.

Из описания алгоритма следует, что вычислительная сложность решета Аткина и потребление памяти составляют

$O(n)$. При использовании wheel factorization и сегментирования оценка сложности алгоритма снижается до

$O(n / loglog n)$, а потребление памяти до

$O(sqrt{n})$.

Числа Мерсенна и тест Люка-Лемера

Конечно при таких показателях сложности, даже оптимизированное решето Аткина невозможно использовать для поиска по-настоящему больших простых чисел. К счастью, существуют быстрые тесты, позволяющие проверить является ли заданное число простым. В отличие от алгоритмов решета, такие тесты не предназначены для поиска всех простых чисел, они лишь способны сказать с некоторой вероятностью, является ли определенное число простым.

Один из таких методов проверки — тест Люка-Лемера. Это детерминированный и безусловный тест простоты. Это означает, что прохождение теста гарантирует простоту числа. К сожалению, тест предназначен только для чисел особого вида

$2^p-1$, где p — натуральное число. Такие числа называются числами Мерсенна.

Тест Люка-Лемера утверждает, что число Мерсенна

$M_p=2^p-1$ простое тогда и только тогда, когда p — простое и

$M_p$ делит нацело

$(p-1)$-й член последовательности

$S_k$ задаваемой рекуррентно:

$S_1=4, S_k=S_{k-1}^2-2$ для

$k > 1$.

Для числа

$M_p$ длиной p бит вычислительная сложность алгоритма составляет

${displaystyle O(p^{3})}$.

Благодаря простоте и детерминированности теста, самые большие известные простые числа — числа Мерсенна. Самое большое известное простое число на сегодня —

$2^{82,589,933}-1$, его десятичная запись состоит из 24,862,048 цифр. Полюбоваться на эту красоту можно здесь.

Теорема Ферма и тест Миллера-Рабина

Простых чисел Мерсенна известно не очень много, поэтому для криптографии с открытым ключом необходим другой способ поиска простых чисел. Одним из таким способов является тест простоты Ферма. Он основан на малой теореме Ферма, которая гласит, что если n — простое число, то для любого a, которое не делится на n, выполняется равенство

$a^{n-1}equiv 1{pmod {n}}$. Доказательство теоремы можно найти на Википедии.

Тест простоты Ферма — вероятностный тест, который заключается в переборе нескольких значений a, если хотя бы для одного из них выполняется неравенство

$a^{n-1} notequiv 1 pmod n$, то число n — составное. В противном случае, n — вероятно простое. Чем больше значений a использовано в тесте, тем выше вероятность того, что n — простое.

К сожалению, существуют такие составные числа n, для которых сравнение

$a^{n-1}equiv 1{pmod {n}}$ выполняется для всех a взаимно простых с n. Такие числа называются числам Кармайкла. Составные числа, которые успешно проходят тест Ферма, называются псевдопростыми Ферма. Количество псевдопростых Ферма бесконечно, поэтому тест Ферма — не самый надежный способ определения простых чисел.

Тест Миллера-Рабина

Более надежных результатов можно добиться комбинируя малую теорему Ферма и тот факт, что для простого числа p не существует других корней уравнения

$x^2 equiv 1 pmod p$, кроме 1 и -1. Тест Миллера-Рабина перебирает несколько значений a и проверяет выполнение следующих условий.

Пусть p — простое число и

$p-1=2^sd$, тогда для любого a справедливо хотя бы одно из условий:

  1. $a^{d}equiv pm1{pmod {p}}$
  2. Существует целое число r < s такое, что $a^{2^{r}d}equiv -1{pmod {p}}$

По теореме Ферма

$a^{p-1}equiv1pmod p$, а так как

$p-1=2^sd$ из свойства о корнях уравнения

$x^2 equiv 1 pmod p$ следует что если мы найдем такое a, для которого одно из условий не выполняется, значит p — составное число. Если одно из условий выполняется, число a называют свидетелем простоты числа n по Миллеру, а само число n — вероятно простым.

Чем больше свидетелей простоты найдено, тем выше вероятность того, что n — простое. Согласно теореме Рабина вероятность того, что случайно выбранное число a окажется свидетелем простоты составного числа составляет приблизительно

$1/4$.

Следовательно, если проверить k случайных чисел a, то вероятность принять составное число за простое

$approx(1/4)^k$.

Сложность работы алгоритма

$O(klog^3p)$, где k — количество проверок.

Благодаря быстроте и высокой точности тест Миллера-Рабина широко используется при поиске простых чисел. Многие современные криптографические библиотеки при проверке больших чисел на простоту используют только этот тест и, как показал Мартин Альбрехт в своей работе , этого не всегда оказывается достаточно.

Он смог сгенерировать такие составные числа, которые успершно прошли тест на простоту в библиотеках OpenSSL, CryptLib, JavaScript Big Number и многих других.

Тест Люка и Тест Baillie–PSW

Чтобы избежать уязвимости, связанные с ситуациями, когда сгенерированное злоумышленником составное число, выдается за простое, Мартин Альбрехт предлагает использовать тест Baillie–PSW. Несмотря на то, что тест Baillie–PSW является вероятностным, на сегодняшний день не найдено ни одно составное число, которое успешно проходит этот тест. За нахождение подобного числа в 1980 году авторы алгоритма пообещали вознаграждение в размере $30. Приз пока так и не был востребован.

Ряд исследователей проверили все числа до

$2^{64}$ и не обнаружили ни одного составного числа, прошедшего тест Baillie–PSW. Поэтому, для чисел меньше

$2^{64}$ тест считается детерминированным.

Суть теста сводится к последовательной проверке числа на простоу двумя различными методами. Один из этих методов уже описанный выше тест Миллера-Рабина. Второй — тест Люка на сильную псевдопростоту.

Тест Люка на сильную псевдопростоту

Последовательности Люка — пары рекуррентных последовательностей

${U_{n}(P,Q)}, {V_{n}(P,Q)}$, описываемые выражениями:

${displaystyle U_{0}(P,Q)=0,quad U_{1}(P,Q)=1,quad U_{n+2}(P,Q)=Pcdot U_{n+1}(P,Q)-Qcdot U_{n}(P,Q),,ngeq 0}$

${displaystyle V_{0}(P,Q)=2,quad V_{1}(P,Q)=P,quad V_{n+2}(P,Q)=Pcdot V_{n+1}(P,Q)-Qcdot V_{n}(P,Q),,ngeq 0}$

Пусть

$U_n(P,Q)$ и

$V_n(P,Q)$ — последовательности Люка, где целые числа P и Q удовлетворяют условию

${displaystyle D=P^{2}-4Qneq 0}$

Вычислим символ Якоби:

$left({frac {D}{p}}right)=varepsilon$.

Найдем такие r, s для которых выполняется равенство

$n-ε=2^rs$

Для простого числа n выполняется одно из следующих условий:

  1. n делит $U_s$
  2. n делит $V_{2^js}$ для некоторого j < r

В противном случае n — составное.

Вероятность того, что составное число n успешно пройдет тест Люка для заданной пары параметров P, Q не превышает 4/15. Следовательно, после применения теста k раз, эта вероятность составляет

$(4/15)^k$.

Тесты Миллера-Рабина и Люка производят не пересекающиеся множества псевдопростых чисел, соответственно если число p прошло оба теста, оно простое. Именно на этом свойстве основывается тест Baillie–PSW.

Заключение

В зависимости от поставленной задачи, могут использоваться различные методы поиска простых чисел. К примеру, при поиске больших простых чисел Мерсенна, сперва, при помощи решета Эратосфена или Аткина определяется список простых чисел до некоторой границы, предположим, до

$10^8$. Затем для каждого числа p из списка, с помощью теста Люка-Лемера, на простоту проверяется

$M_p=2^p-1$.

Чтобы сгенерировать большое простое число в криптографических целях, выбирается случайное число a и проверяется тестом Миллера-Рабина или более надежным Baillie–PSW. Согласно теореме о распределении простых чисел, у случайно выбранного числа от 1 до n шанс оказаться простым примерно равен

${frac {1}{ln n}}$. Следовательно, чтобы найти простое число размером 1024 бита, достаточно перебрать около тысячи вариантов.

P.S. Исходники

Реализацию всех описанных алгоритмов на Go можно посмотреть на GitHub.

Что такое простое число, определение, что такое простое число, примеры и напишем скрипт, который будет определять простое это число или нет – онлайн! + можем составить списки простых чисел, или кому нравится- таблицу. Но список лучше!

  • Что такое простое число

    Для простого числа есть формулировка – простое число такое, которое делится на 1 и на себя!

    Примеры простых чисел :

    Начнем с самого первого числа – 1.

    Почему 1 не является простым?

    Простые – это все, которые делятся только на себя и на единицу за исключением единицы. Единицу нельзя назвать простым числом, так как простое имеет 2 делителя, а единица 1. Число 1 не относят ни к простым, ни к составным.

    Для школьного курса – этого объяснения(я думаю) будет достаточно!

    Является ли число 2 простым!?

    2 делится на 2 :

    2 : 2 = 1

    И 2 делится на 1 :

    2 : 1 = 2

    Больше, число 2 ни на что не делится! Значит число 2 простое.

    Является ли число 3 простым!?[h3]

    3 делится на 3 :

    3 : 3 = 1

    И 3 делится на 1 :

    3 : 1 = 3

    Больше, число 3 ни на что не делится! Значит число 3 простое.

    Является ли число 4 простым!?

    4 делится на 4 :

    4 : 4 = 1

    И 4 делится на 1 :

    4 : 1 = 4

    Но! 4 делится и на 2 :

    4 : 2 = 2

    Значит число 4 не является простым.

    Список простых однозначных чисел

    2
    3
    5
    7

  • Определить простое число или нет онлайн.

    Если вам требуется разложить число на множители, то мы делали отдельную страницу.

    Далее напишем маленький скриптик. который будет определять – число простое или нет!

    Для определения простоты числа – в поле ввода набираем число, которое требуется проверить и нажимаем отправить!

    Определение простоты числа онлайн

  • Список простых двузначных чисел

    11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

  • Список простых трехзначных чисел

    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,

  • Список простых четырехзначных чисел

    1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,

  • Почему отрицательные числа – не являются простыми

    Специально пошел посмотреть, что пишут на вопрос – “Почему отрицательные сила – не являются простыми” – сложно, долго, неэффективно, непонятно!
    Вот вам простое и понятное объяснение:

    Отрицательные числа не могут быть простыми, потому, что они делятся на

    1

    на себя

    и положительную версию себя.

    А это противоречит определению простого числа.

    Добавить комментарий