Как найти 4пи на окружности

Как обозначать числа с пи на числовой окружности?

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Обозначаем числа (2π), (π), (frac<π><2>), (-frac<π><2>), (frac<3π><2>)

Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки – это нормально для числовой окружности.

Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

Отметим точку (frac<π><2>) . (frac<π><2>) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

Обозначим на окружности точки (-) (frac<π><2>) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

Теперь рассмотрим пример посложнее. Отметим на окружности число (frac<3π><2>) . Для этого дробь (frac<3><2>) переведем в смешанный вид (frac<3><2>) (=1) (frac<1><2>) , т.е. (frac<3π><2>) (=π+) (frac<π><2>) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac<3π><2>) .

Обозначаем числа (frac<π><4>), (frac<π><3>), (frac<π><6>)

Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac<π><4>) , (frac<π><3>) и (frac<π><6>) .
(frac<π><4>) – это половина от (frac<π><2>) (то есть, (frac<π><4>) (=) (frac<π><2>) (:2)) , поэтому расстояние (frac<π><4>) – это половина четверти окружности.

(frac<π><4>) – это треть от (π) (иначе говоря, (frac<π><3>) (=π:3)), поэтому расстояние (frac<π><3>) – это треть от полукруга.

(frac<π><6>) – это половина (frac<π><3>) (ведь (frac<π><6>) (=) (frac<π><3>) (:2)) поэтому расстояние (frac<π><6>) – это половина от расстояния (frac<π><3>) .

Вот так они расположены друг относительно друга:

Замечание: Расположение точек со значением (0), (frac<π><2>) ,(π), (frac<3π><2>) , (frac<π><4>) , (frac<π><3>) , (frac<π><6>) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

Разные расстояние на окружности наглядно:

Обозначаем числа (frac<7π><6>), (-frac<4π><3>), (frac<7π><4>)

Обозначим на окружности точку (frac<7π><6>) , для этого выполним следующие преобразования: (frac<7π><6>) (=) (frac<6π + π><6>) (=) (frac<6π><6>) (+) (frac<π><6>) (=π+) (frac<π><6>) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac<π><6>) .

Отметим на окружности точку (-) (frac<4π><3>) . Преобразовываем: (-) (frac<4π><3>) (=-) (frac<3π><3>) (-) (frac<π><3>) (=-π-) (frac<π><3>) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac<π><3>) .

Нанесем точку (frac<7π><4>) , для этого преобразуем (frac<7π><4>) (=) (frac<8π-π><4>) (=) (frac<8π><4>) (-) (frac<π><4>) (=2π-) (frac<π><4>) . Значит, чтобы поставить точку со значением (frac<7π><4>) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac<π><4>) .

Обозначаем числа (10π), (-3π), (frac<7π><2>) ,(frac<16π><3>), (-frac<21π><2>), (-frac<29π><6>)

Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

Из этого примера можно сделать вывод:

Числам с разницей в (2πn), где (n∈Z) (то есть (n) – любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

Кстати, там же будут находиться все нечетные (π).

Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

Сейчас обозначим число (frac<7π><2>) . Как обычно, преобразовываем: (frac<7π><2>) (=) (frac<6π><2>) (+) (frac<π><2>) (=3π+) (frac<π><2>) (=2π+π+) (frac<π><2>) . Два пи – отбрасываем, и получается что, для обозначения числа (frac<7π><2>) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac<π><2>) (т.е. половину окружности и еще четверть).

Отметим (frac<16π><3>) . Вновь преобразования: (frac<16π><3>) (=) (frac<15π + π><3>) (=) (frac<15π><3>) (+) (frac<π><3>) (=5π+) (frac<π><3>) (=4π+π+) (frac<π><3>) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac<π><3>) – и мы найдем место точки (frac<16π><3>) .

Нанесем на окружность число (-) (frac<21π><2>) .
(-) (frac<21π><2>) (= -) (frac<20π><2>) (-) (frac<π><2>) (=-10π-) (frac<π><2>) . Значит, место (-) (frac<21π><2>) совпадает с местом числа (-) (frac<π><2>) .

Обозначим (-) (frac<29π><6>) .
(-) (frac<29π><6>) (=-) (frac<30π><6>) (+) (frac<π><6>) (=-5π+) (frac<π><6>) (=-4π-π+) (frac<π><6>) . Для обозначение (-) (frac<29π><6>) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac<π><6>) .

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Единичная окружность

    О чем эта статья:

    10 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Единичная окружность в тригонометрии

    Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

    Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

    Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

    Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

    Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

    Поясним, как единичная окружность связана с тригонометрией.

    В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

    Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

    Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

    Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

    Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

    Радиан — одна из мер для определения величины угла.

    Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

    Число радиан для полной окружности — 360 градусов.

    Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

    Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан = 360°
    • 1 радиан = (360/2π) градусов
    • 1 радиан = (180/π) градусов
    • 360° = 2π радиан
    • 1° = (2π/360) радиан
    • 1° = (π/180) радиан

    Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

    Уравнение единичной окружности

    При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

    Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

    [spoiler title=”источники:”]

    http://ege-study.ru/ru/ege/materialy/matematika/trigonometricheskij-krug/

    http://skysmart.ru/articles/mathematic/edinichnaya-okruzhnost

    [/spoiler]

    Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать! Если вы, конечно, собираетесь находить точки на числовой окружности.

    Обозначаем числа (2π), (π), (frac{π}{2}), (-frac{π}{2}), (frac{3π}{2})

    Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки – это нормально для числовой окружности.

    0 и 2pi на окружности

    Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

    как найти pi на окружности?

    Отметим точку (frac{π}{2}). (frac{π}{2}) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

    где на окружности пи/2

    Обозначим на окружности точки (-)(frac{π}{2}). Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

    где на окружности - pi/2?

    Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

    где на окружности - пи ?

    Теперь рассмотрим пример посложнее. Отметим на окружности число (frac{3π}{2}). Для этого дробь (frac{3}{2}) переведем в смешанный вид (frac{3}{2})(=1)(frac{1}{2}), т.е. (frac{3π}{2})(=π+)(frac{π}{2}). Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

    найдите 3пи/2 на окружности                                    

     

    Задание 1. Отметьте на числовой окружности точки (-2π),(-)(frac{3π}{2}).

    Обозначаем числа (frac{π}{4}), (frac{π}{3}), (frac{π}{6})

    Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac{π}{4}), (frac{π}{3}) и (frac{π}{6}).
    (frac{π}{4}) – это половина от (frac{π}{2}) (то есть, (frac{π}{4}) (=)(frac{π}{2})(:2)) , поэтому расстояние (frac{π}{4}) – это половина четверти окружности.

                                        отметьте pi 4 на окружности

    (frac{π}{4}) – это треть от (π) (иначе говоря,(frac{π}{3})(=π:3)), поэтому расстояние (frac{π}{3}) – это треть от полукруга.

    Отметьте пи на 3           

    (frac{π}{6}) – это половина (frac{π}{3}) (ведь (frac{π}{6})(=)(frac{π}{3})(:2)) поэтому расстояние (frac{π}{6}) – это половина от расстояния (frac{π}{3}).

    отметьте pi 6

    Вот так они расположены друг относительно друга:

    все самые главные точки на числовой окружности

    Замечание: Расположение точек со значением (0), (frac{π}{2}),(π), (frac{3π}{2}), (frac{π}{4}), (frac{π}{3}), (frac{π}{6}) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

    Разные расстояние на окружности наглядно:

     

    Обозначаем числа (frac{7π}{6}), (-frac{4π}{3}), (frac{7π}{4})

    Обозначим на окружности точку (frac{7π}{6}), для этого выполним следующие преобразования: (frac{7π}{6})(=)(frac{6π + π}{6})(=)(frac{6π}{6})(+)(frac{π}{6})(=π+)(frac{π}{6}). Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac{π}{6}).

    7 пи на 6 на числовой окружности                                  

    Отметим на окружности точку (-)(frac{4π}{3}). Преобразовываем: (-)(frac{4π}{3})(=-)(frac{3π}{3})(-)(frac{π}{3})(=-π-)(frac{π}{3}). Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac{π}{3}).

    Отметьте -4pi 3                               

    Нанесем точку (frac{7π}{4}), для этого преобразуем (frac{7π}{4})(=)(frac{8π-π}{4})(=)(frac{8π}{4})(-)(frac{π}{4})(=2π-)(frac{π}{4}). Значит, чтобы поставить точку со значением (frac{7π}{4}), надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac{π}{4}).

                         7 пи на 4 на числовой окружности

    Задание 2. Отметьте на числовой окружности точки (-)(frac{π}{6}),(-)(frac{π}{4}),(-)(frac{π}{3}),(frac{5π}{4}),(-)(frac{7π}{6}),(frac{11π}{6}), (frac{2π}{3}),(-)(frac{3π}{4}).

    Обозначаем числа (10π), (-3π), (frac{7π}{2}) ,(frac{16π}{3}), (-frac{21π}{2}), (-frac{29π}{6})

    Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

    10 pi на числовой окружности

    Из этого примера можно сделать вывод:

    Числам с разницей в (2πn), где (n∈Z) (то есть (n) – любое целое число) соответствует одна и та же точка.

    То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

    Еще один вывод:

    Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

    Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

    - пи и -3пи

    Кстати, там же будут находиться все нечетные (π).

    Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

    Сейчас обозначим число (frac{7π}{2}). Как обычно, преобразовываем: (frac{7π}{2})(=)(frac{6π}{2})(+)(frac{π}{2})(=3π+)(frac{π}{2})(=2π+π+)(frac{π}{2}). Два пи – отбрасываем, и получается что, для обозначения числа (frac{7π}{2}) нужно от нуля в положительную сторону пройти расстояние равное (π+)(frac{π}{2}) (т.е. половину окружности и еще четверть).

    7 пи на 2 на числовой окружности

    Отметим (frac{16π}{3}). Вновь преобразования: (frac{16π}{3})(=)(frac{15π + π}{3})(=)(frac{15π}{3})(+)(frac{π}{3})(=5π+)(frac{π}{3})(=4π+π+)(frac{π}{3}). Ясно, что от нуля надо пройти расстояние равное (π+)(frac{π}{3}) – и мы найдем место точки (frac{16π}{3}).

    16 пи на 3 на числовой окружности

    Нанесем на окружность число (-)(frac{21π}{2}).
    (-)(frac{21π}{2})(= -)(frac{20π}{2})(-)(frac{π}{2})(=-10π-)(frac{π}{2}). Значит, место (-)(frac{21π}{2}) совпадает с местом числа (-)(frac{π}{2}).

    обозначьте -21 пи на 2

    Обозначим (-)(frac{29π}{6}).
    (-)(frac{29π}{6})(=-)(frac{30π}{6})(+)(frac{π}{6})(=-5π+)(frac{π}{6})(=-4π-π+)(frac{π}{6}). Для обозначение (-)(frac{29π}{6}), на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac{π}{6}).

    -29 pi на 2 на числовой окружности

    Задание 3. Отметьте на числовой окружности точки (-8π),(-7π), (frac{11π}{4}),(-)(frac{7π}{3}),(frac{17π}{6}),(-)(frac{20π}{3}),(-)(frac{11π}{2}).

    Скачать статью

    Голосование за лучший ответ

    Sergey S.

    Мастер

    (2219)


    12 лет назад

    4пи это два полных круга, откуда считаешь начало там и 4пи!

    Мария

    Мастер

    (2126)


    12 лет назад

    это будет там же, где и 2 пи – по оси икс – единица, по оси игрек – 0, то есть
    4пи (1;0)

    Alex Frost

    Гуру

    (3349)


    12 лет назад

    Точка 4pi находится в начальной точке тригонометрической окружности, то есть ее координата (1;0).

    Елена Соболева

    Профи

    (509)


    12 лет назад

    там же где и 2 пи

    Продолжение (начало здесь)


    Перевод радиан в градусы и градусы в радианы

    На тригонометрическом круге  помимо углов  в градусах мы наблюдаем радианы.

    круг тригонометрический


    Подробнее про радианы:+ показать

     pi радиан –  это 180^{circ}.

    Так вот, например,

    frac{pi}{3}=frac{180^{circ}}{3}=60^{circ},

    а

    frac{11pi}{6}=frac{11cdot 180^{circ}}{6}=330^{circ}.

    Так, мы научились переводить радианы в углы.


    Теперь наоборот, давайте переводить градусы в радианы.

    Допустим, нам надо перевести 80^{circ} в радианы. Нам поможет пропорция. Поступаем следующим образом:

    Так как, 180^{circ}=pi радиан, то заполним таблицу:

    перевод градусов в радианы

    Откуда

    x=frac{80^{circ}cdot pi}{180^{circ}}=frac{4pi}{9}.

    Итак,

    80^{circ}=frac{4pi}{9}.


    Тренируемся находить  значения  синуса и косинуса по кругу

    Давайте еще уточним следующее.

    Ну хорошо, если нас просят вычислить, скажем, sin 30^{circ}, – здесь обычно путаницы не возникает – все начинают первым делом искать 30^{circ} на круге.

    А если просят вычислить, например, sin0… Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его  в начале координат. Почему?

    1) Давайте договоримся раз и навсегда! То, что стоит после sin или cos  – это аргумент=угол, а  углы у нас располагаются на окружности, не ищите их на осяx! (Просто отдельные точки попадают и на окружность, и на ось…) А сами значения синусов и косинусов – ищем на осях!

    2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов, значения углов растут при движении в этом направлении.

    Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.


    Пример 1. Найти значение sin 0^{circ}.

    Решение: + показать


    Пример 2. Найти значение sin 270^{circ}.

    Решение: + показать


    Заметим, + показать


    Пример 3. Найти значение sin (-frac{7pi}{6}).

    Решение: + показать


    Пример 4. Найти значение cos frac{5pi}{4}.

    Решение: + показать


    Пример 5. Найти значение cos (-frac{25pi}{6}).

    Решение: + показать


    Пример 6. Найти значение cos (-1500^{circ}).

    Решение: + показать


    Тригонометрический круг – у вас в руках

    Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками.  А «цепочку-лесенку»  значений тригонометрических функций, вы, надеюсь уже не забудете. тригонометрия в руке


    Как находить значения тангенса и котангенса основных углов смотрите здесь


    UnknownПосле чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти   тест по теме «Нахождение значений косинусов, синусов, тангенсов и котангенсов различных углов»


    Ссылочка на пустой шаблон круга. Тренируйтесь!

    Как на числовой окружности найти следующие числа : (4 Пи) / 7, ( – 5Пи) / 7, (9 Пи) / 8.

    Объясните сам принцип, пожалуйста!

    На этой странице находится ответ на вопрос Как на числовой окружности найти следующие числа : (4 Пи) / 7, ( – 5Пи) / 7, (9 Пи) / 8?, из категории
    Алгебра, соответствующий программе для 5 – 9 классов. Чтобы посмотреть
    другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов
    подберите похожие вопросы и ответы в категории Алгебра. Ответ, полностью
    соответствующий критериям вашего поиска, можно найти с помощью простого
    интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе.
    Обратите внимание на варианты ответов других пользователей, которые можно не
    только просмотреть, но и прокомментировать.

    Добавить комментарий