Как найти абсциссу точки пересечения двух графиков

Как найти абсциссу точки пересечения графиков двух линейных уравнений

На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Заметим, что на рисунке изображены графики линейных функций. Найдём их уравнения y = kx + b. Первая прямая проходит через точки (−1; 0) и (0; 1), следовательно

Значит, уравнение первой прямой — y = x + 1.

Вторая прямая проходит через точки (−4; 1) и (−2; 4), следовательно,

Значит, уравнение второй прямой —

Теперь найдём абсциссу точки пересечения графиков:

Решение на Номер 12.26 из ГДЗ по алгебре за 7 класс: Мордкович А.Г.

Условие

Решение 1

Решение 2

Поиск в решебнике

Популярные решебники

Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

Издатель: А.Г. Мордкович, 2013г.

Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

Решение №2132 На рисунке изображён графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

На рисунке изображён графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

На рисунке изображены прямые, линейных функции их вид имеет вид:

Найдём k и b функции справа .
kтангенс угла наклона прямой, по отношению к оси х. Тангенс это отношение противолежащего катета, к прилежащему катету:

bсдвиг прямой по оси у, по графику видим, прямая сдвинута от 0 на –3,5 .

b = –3,5

Функции справа имеет вид:

Найдём k и b функции слева .

Сдвигами на 1 клетку влево и на 4 клетки вверх находим b:

b = 9

Функции слева имеет вид:

y = 4x + 9

В точке пересечения прямых значения функций (y) равны, найдём абсциссу (х) точки пересечения:

1,5x – 3,5 = 4x + 9
1,5x – 4x = 9 + 3,5
–2,5x = 12,5

[spoiler title=”источники:”]

http://vipgdz.com/7-klass/algebra/mordkovich/nomer-12-26

[/spoiler]

Всего: 36    1–20 | 21–36

Добавить в вариант









На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.


На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.


На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.


На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.




Источник: сайт Решу урок  —  анализ, задание № 4784.


Источник: сайт Решу урок  —  анализ, задание № 4785.


Источник: сайт Решу урок  —  анализ, задание № 4786.


Источник: сайт Решу урок  —  анализ, задание № 4787.


Источник: сайт Решу урок  —  анализ, задание № 4788.


Источник: сайт Решу урок  —  анализ, задание № 4789.

Всего: 36    1–20 | 21–36

Как найти координаты точек пересечения графика функции: примеры решения

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Математика»

Задать вопрос автору статьи

В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.

Первый способ

Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.

Пример 1

Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:

$5x = x- 2$;

$4x = -2$;

$x=-frac{1}{2}$

Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:

$y=-frac{1}{2} – 2 = – 2frac12$.

Точка пересечения будет $(-frac{1}{2};- 2frac12)$.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Второй способ

Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.

Пример 2

Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.

Решение:

Составим систему:

$begin{cases} y=2x^2-2x-1 \ y= x + 1 \ end{cases}$

Второе уравнение проще первого, поэтому подставим его вместо $y$:

$x+1 = 2x^2 – 2x-1$;

$2x^2 – 3x – 2 = 0$.

Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:

$x_1=2; x_2 = -frac{1}{2}$

Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:

$y_1= 2 + 1 = 3; y_2=1 – frac{1}{2} = frac{1}{2}$.

Точки пересечения будут $(2;3)$ и $(-frac{1}{2}; frac{1}{2})$.

Третий способ

«Как найти координаты точек пересечения графика функции: примеры решения» 👇

Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.

Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.

Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.

Пример 3

Найдите точку пересечения графиков на общем рисунке.

Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Решение:

Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Точки пересечения графиков функций

В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.

График функции (y = f(x)) является множеством точек ((x; y)), координаты которых связаны соотношением (y = f(x).)

Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.

Как найти координаты, примеры решения

Существует несколько способов решения подобных задач:

  1. Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
  2. Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
  3. Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.

В качестве примера можно рассмотреть две линейные функции:

(f(x) = k_1 x+m_1)

(g(x) = k_2 x + m_2)

Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)). Далее действия необходимо повторить с функцией (g(x)). Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.

Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2). В противном случае (k_1=k_2), а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)). Данная закономерность упрощает решение многих подобных задач.

Задача № 1

Имеются функции: (f(x) = 2x-5)

(g(x)=x+3)

Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.

Решение

В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:

(k_1 = 2)

(k_2 = 1)

Заметим, что:

(k_1 neq k_2)

По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:

(f(x)=g(x))

(2x-5 = x+3)

Необходимо перенести члены с x в левую часть, а остальные – в правую:

(2x – x = 3+5)

(x = 8)

В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)), либо в (g(x)):

(f(8) = 2cdot 8 – 5 = 16 – 5 = 11)

Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.

Ответ: M (8;11)

Задача № 2

Записаны две функции: (f(x)=2x-1)

(g(x) = 2x-4.)

Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.

Решение

Угловые коэффициенты:

(k_1 = k_2 = 2)

Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.

Ответ: графики функций параллельны, точки пересечения отсутствуют.

Задача № 3

Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)

(g(x)=x^2+1)

Решение

В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:

(x^2-2x+1=x^2+1)

Далее необходимо разнести в разные стороны уравнения члены с x и без него:

(x^2-2x-x^2=1-1)

(-2x=0)

(x=0)

Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:

(f(0)=0^2-2cdot 0 + 1 = 1)

M (0;1) является точкой, в которой пересекаются графики функций.

Ответ: M (0;1)

Приравнивание функций друг к другу и нахождение корней

Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.

Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:

  • раскрытие скобок, приведение подобных коэффициентов;
  • перенос членов с неизвестными в одну сторону, а с известными – в другую;
  • математические преобразования;
  • определение корня.

Квадратные уравнения решают с помощью одного из способов:

  • разложение на множители;
  • выделение полного квадрата;
  • поиск дискриминанта;
  • теорема Виета.

В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.

Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:

((-S)^2-4PU)

В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д<0, искомое тождество с неизвестными не имеет решений.

Квадратные уравнения решают таким образом:

  • выполнение необходимых алгебраических преобразований, в том числе раскрытие скобок и приведение подобных слагаемых;
  • выбор наиболее оптимального способа решения и его реализация;
  • проверка корней с помощью их подстановки в начальное выражение.

Примечание

Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.

Существует несколько методик решения тождеств кубического и биквадратного типов:

  • понижение степени, то есть разложение на множители;
  • замена переменной.

Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:

  • выполнение математических преобразований;
  • выражение переменной через другую;
  • решение квадратного или линейного уравнения;
  • подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
  • вычисление искомых корней;
  • проверка;
  • исключение ложных решений;
  • запись ответа.

Путем составления системы уравнений

Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:

К примеру

Источник: static-interneturok.cdnvideo.ru

Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.

Порядок действий при решении системы уравнений можно рассмотреть на примере:

Порядок действий при решении системы уравнений можно рассмотреть на примере

Источник: static-interneturok.cdnvideo.ru 

Решение будет иметь следующий вид:

Решение будет иметь следующий вид

Источник: static-interneturok.cdnvideo.ru

Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.

Прямые пересекаются в точке

Источник: static-interneturok.cdnvideo.ru

Решение системы представляет сбой единственную пару чисел:

Решение системы представляет сбой единственную пару чисел:

Источник: static-interneturok.cdnvideo.ru 

Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).

В процессе решения линейной системы можно столкнуться с разными ситуациями:

  • система обладает единственным решением, прямые пересекаются;
  • решения системы отсутствуют. прямые параллельны;
  • система обладает бесчисленным множеством решений, прямые совпадают.

При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.

В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:

К примеру, необходимо решить следующую систему

Источник: static-interneturok.cdnvideo.ru

Решение имеет следующий вид:

Решение имеет следующий вид

Источник: static-interneturok.cdnvideo.ru

График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:

Можно построить первый график по точкам

Источник: static-interneturok.cdnvideo.ru

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).

Ответ: (0; 1); (-1; 0).

Можно решить систему графическим способом:

Можно решить систему графическим способом

Источник: static-interneturok.cdnvideo.ru

В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).

График второго уравнения является параболой

Источник: static-interneturok.cdnvideo.ru

Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).

В качестве еще одного примера можно решить следующую систему:

В качестве еще одного примера можно решить следующую систему

Источник: static-interneturok.cdnvideo.ru

Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.

Первым шагом является построение графика первого уравнения

Источник: static-interneturok.cdnvideo.ru

Далее необходимо построить график функции:

Далее необходимо построить график функции

Источник: static-interneturok.cdnvideo.ru

График будет являться ломанной:

График будет являться ломанной

Источник: static-interneturok.cdnvideo.ru

Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:

В результате получится график функции

Источник: static-interneturok.cdnvideo.ru

При помещении обоих графиков в одну систему координат получится следующая ситуация:

При помещении обоих графиков в одну систему координат получится следующая ситуация

Источник: static-interneturok.cdnvideo.ru

Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)

Нахождение через графическое построений функций

Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:

(f1(x)=f2(x))

Решение данного уравнения будет являться искомой точкой.

Решение данного уравнения будет являться искомой точкой

Источник: st03.kakprosto.ru

Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.

В общем случае двух линейных функций можно предположить, что:

(y1=k1x+b1)

(y2=k2x+b2)

Для поиска точки пересечения графиков необходимо решить уравнение:

(y1=y2 или k1x+b1=k2x+b2)

После преобразований получится, что:

(k1x-k2x=b2-b1.)

Далее нужно выразить x:

(x=(b2-b1)/(k1-k2).)

При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:

(((b2-b1)/(k1-k2); k1(b2-b1)/(k1-k2)+b2))

График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.

С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:

В качестве примера можно рассмотреть график линейной функции

Источник: st03.kakprosto.ru

В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0). Для того чтобы определить х, следует решить уравнение (f(x)=0). В случае линейной функции получаем уравнение (ax+b=0), откуда и находим (x=-b/a). В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)

При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)), график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.

Как найти точки пересечения графиков

Два графика на координатной плоскости, если они не параллельны, обязательно пересекаются в какой-либо точке. И нередко в алгебраических задачах такого типа требуется найти координаты данной точки. Поэтому знание инструкций по ее нахождению принесет большую пользу как школьникам, так и студентам.

Как найти точки пересечения графиков

Инструкция

Любой график можно задать определенной функцией. Для того чтобы найти те точки, в которых графики пересекаются, нужно решить уравнение, которое имеет вид: f₁(x)=f₂(x). Результат решения и будет той точкой (или точками), которые вы ищете. Рассмотрите следующий пример. Пусть значение y₁=k₁x+b₁, а значение y₂=k₂x+b₂. Для нахождения точек пересечения на оси абсцисс необходимо решить уравнение y₁=y₂, то есть k₁x+b₁=k₂x+b₂.

Преобразуйте данное неравенство, получив k₁x-k₂x=b₂-b₁. Теперь выразите x: x=(b₂-b₁)/(k₁-k₂). Таким образом вы найдете точку пересечения графиков, которая находится по оси OX. Найдите точку пересечения на оси ординат. Просто подставьте в какую-либо из функций значение x, которое вы нашли ранее.

Предыдущий вариант подходит для линейной функции графиков. Если же функция квадратичная, воспользуйтесь следующими инструкциями. Таким же способом, как и с линейной функцией, найдите значение x. Для этого решите квадратное уравнение. В уравнении 2x² + 2x – 4=0 найдите дискриминант (уравнение дано для примера). Для этого используйте формулу: D= b² – 4ac, где b – значение перед X, а c – это числовое значение.

Подставив числовые значения, получите выражение вида D= 4 + 4*4= 4+16= 20. От значения дискриминанта зависят корни уравнения. Теперь к значению переменной b со знаком «-» прибавьте или отнимите (по очереди) корень из полученного дискриминанта, и поделите на удвоенное произведение коэффициента a. Так вы найдете корни уравнения, то есть координаты точек пересечения.

Графики квадратичной функции имеют особенность: ось OX будет пересекаться два раза, то есть вы найдете две координаты оси абсцисс. Если вы получите периодическое значение зависимости X от Y, тогда знайте, что график пересекается в бесконечном количестве точек с осью абсцисс. Проверьте, правильно ли вы нашли точки пересечения. Для этого подставьте значения X в уравнение f(x)=0.

Источники:

  • Нахождение точек пересечения прямых

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий