Как найти абсциссу точки в треугольнике

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki

http://www.matburo.ru/ex_ag.php?p1=agtr

[/spoiler]

Координаты на плоскости:

Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке Координаты на плоскости - определение и вычисление с примерами решения

Определение: Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) направления, 2) масштаб и 3) общая точка отсчета.

Координаты на плоскости - определение и вычисление с примерами решения

Назовем одну из осей осью Координаты на плоскости - определение и вычисление с примерами решения или осью абсцисс, другую—осью Координаты на плоскости - определение и вычисление с примерами решения или осью ординат. Точку их пересечения назовем началом координат.

Возьмем произвольную точку Координаты на плоскости - определение и вычисление с примерами решения, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения. Обозначим координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения, а координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения. Введем определение:

Определение. Абсциссой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения. Ординатой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения.

Абсциссу точки обычно обозначают буквой Координаты на плоскости - определение и вычисление с примерами решения, ординату— буквой Координаты на плоскости - определение и вычисление с примерами решения. Точку Координаты на плоскости - определение и вычисление с примерами решения, имеющую абсциссу Координаты на плоскости - определение и вычисление с примерами решения и ординату Координаты на плоскости - определение и вычисление с примерами решения, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: Координаты на плоскости - определение и вычисление с примерами решения.

Координатные оси разделяют плоскость на четыре части, которые называют четвертями.

Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.

Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.

Третьей четвертью—та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой,—та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7). На рис. 8 указаны Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения Заметим, что абсцисса Координаты на плоскости - определение и вычисление с примерами решения по абсолютной величине равна расстоянию точки от оси ординат, так как Координаты на плоскости - определение и вычисление с примерами решения (см. рис. 7), а ордината — расстоянию точки Координаты на плоскости - определение и вычисление с примерами решения от оси абсцисс, так как Координаты на плоскости - определение и вычисление с примерами решения.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку Координаты на плоскости - определение и вычисление с примерами решения (рис. 9).

Решение:

Возьмем на оси Координаты на плоскости - определение и вычисление с примерами решения точку Координаты на плоскости - определение и вычисление с примерами решения с координатой Координаты на плоскости - определение и вычисление с примерами решения, ее координатный отрезок Координаты на плоскости - определение и вычисление с примерами решения. На оси Координаты на плоскости - определение и вычисление с примерами решения возьмем точку Координаты на плоскости - определение и вычисление с примерами решения с координатным отрезком Координаты на плоскости - определение и вычисление с примерами решения. Восставим перпендикуляры к осям из точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, точка их пересечения и даст искомую точку Координаты на плоскости - определение и вычисление с примерами решения.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, нужно найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения (рис. 10).

Решение:

Обозначим проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения— через Координаты на плоскости - определение и вычисление с примерами решения. Проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения обозначим через Координаты на плоскости - определение и вычисление с примерами решения и через Координаты на плоскости - определение и вычисление с примерами решения — ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения. Тогда Координаты на плоскости - определение и вычисление с примерами решения. Из точки Координаты на плоскости - определение и вычисление с примерами решения проведем прямую, параллельную оси Координаты на плоскости - определение и вычисление с примерами решения, до пересечения с прямой Координаты на плоскости - определение и вычисление с примерами решения в точке Координаты на плоскости - определение и вычисление с примерами решения. Рассмотрим треугольник Координаты на плоскости - определение и вычисление с примерами решения По теореме Пифагора имеем Координаты на плоскости - определение и вычисление с примерами решения. to Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки Координаты на плоскости - определение и вычисление с примерами решения, и Координаты на плоскости - определение и вычисление с примерами решения будут равны Координаты на плоскости - определение и вычисление с примерами решения Подставляя полученные выражения в Координаты на плоскости - определение и вычисление с примерами решения, получим

Координаты на плоскости - определение и вычисление с примерами решения

откуда

Координаты на плоскости - определение и вычисление с примерами решения

т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей, координат.

Примечание. Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.

Пример:

Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулу (1), получим

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения, если даны Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулу (1), получим

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку Координаты на плоскости - определение и вычисление с примерами решения, делящую отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения, если известны координаты точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

По условию задачи надо найти такую точку Координаты на плоскости - определение и вычисление с примерами решения, чтобы было выполнено равенство

Координаты на плоскости - определение и вычисление с примерами решения

Обозначим, как и выше, проекции точки Координаты на плоскости - определение и вычисление с примерами решения на оси через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а проекции точки Координаты на плоскости - определение и вычисление с примерами решения—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения; тогда Координаты на плоскости - определение и вычисление с примерами решения (рис. 11).

Кроме того, обозначим координаты искомой точки Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а ее проекции на оси — через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, т. е. Координаты на плоскости - определение и вычисление с примерами решения

Так как прямые Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что

Координаты на плоскости - определение и вычисление с примерами решения

Но Координаты на плоскости - определение и вычисление с примерами решения поэтому, подставляя в равенство Координаты на плоскости - определение и вычисление с примерами решения, будем иметь уравнение

Координаты на плоскости - определение и вычисление с примерами решения

решая которое найдем абсциссу точки Координаты на плоскости - определение и вычисление с примерами решения:

Координаты на плоскости - определение и вычисление с примерами решения

Рассуждая аналогично о проекциях на оси Координаты на плоскости - определение и вычисление с примерами решения, т.е. о точках Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, по- лучим ординату точки Координаты на плоскости - определение и вычисление с примерами решения, делящей отрезок в отношении Координаты на плоскости - определение и вычисление с примерами решения,

Координаты на плоскости - определение и вычисление с примерами решения

Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения имеет координаты, определяемые равенствами (2) и (3).

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку, делящую в отношении 1:2 отрезок Координаты на плоскости - определение и вычисление с примерами решения, гдеКоординаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулы (2) и (3), получим:

Координаты на плоскости - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найти точку, делящую расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения в отношении 3:1.

Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

Решение:

По формулам (2) и (3) находим:

Координаты на плоскости - определение и вычисление с примерами решения

Следствие (из формул (2) и (3)). Если точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения пополам, то Координаты на плоскости - определение и вычисление с примерами решения, поэтому

Координаты на плоскости - определение и вычисление с примерами решения

т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Даны три вершины треугольника: Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Найти длину биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения (рис. 12).

Решение:

Найдем длины сторон Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Для этого применим формулу (1):

Координаты на плоскости - определение и вычисление с примерами решения

Обозначим точку пересечения биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения с противоположной стороной Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее координаты—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения; поэтому, применяя формулы (2) и (3), получим:

Координаты на плоскости - определение и вычисление с примерами решения

т.е. Координаты на плоскости - определение и вычисление с примерами решения (5,6).

Теперь вычисляем длину биссектрисы как расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения:

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку пересечения медиан треугольника, вершинами которого являются точки Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения (рис. 13).

Координаты на плоскости - определение и вычисление с примерами решения

Решение:

Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через Координаты на плоскости - определение и вычисление с примерами решения середину стороны Координаты на плоскости - определение и вычисление с примерами решения; по формулам (4) и (5) можно найти ее координаты:

Координаты на плоскости - определение и вычисление с примерами решения

т. е. Координаты на плоскости - определение и вычисление с примерами решения. Точка Координаты на плоскости - определение и вычисление с примерами решения пересечения медиан делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении 2:1, поэтому ее координаты найдутся по формулам (2) и (3):

Координаты на плоскости - определение и вычисление с примерами решения

Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения Задача 5. Записать условие того, что точка Координаты на плоскости - определение и вычисление с примерами решения находится на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. По формуле (1) имеем

Координаты на плоскости - определение и вычисление с примерами решения

или, возводя обе части равенства в квадрат, получим

Координаты на плоскости - определение и вычисление с примерами решения

Это равенство есть уравнение с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки Координаты на плоскости - определение и вычисление с примерами решения равно 5. Это геометрическое место есть окружность.

Следовательно, можно сказать, что уравнение Координаты на плоскости - определение и вычисление с примерами решения есть уравнение окружности с центром в точке Координаты на плоскости - определение и вычисление с примерами решения и радиуса 5.

В следующих главах будут рассмотрены уравнения с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.

  • Линейная функция
  • Квадратичная функция
  • Тригонометрические функции
  • Производные тригонометрических функции
  • Уравнение линии
  • Функции нескольких переменных
  • Комплексные числ
  • Координаты на прямой

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 251    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Вектор overset{to }{mathop{AB}}, с концом в точке B(5; 3) имеет координаты (3; 1). Найдите абсциссу точки A. 


Прямая y=7x минус 5 параллельна касательной к графику функции y=x в квадрате плюс 6x минус 8. Найдите абсциссу точки касания.


Прямая y= минус 4x минус 11 является касательной к графику функции y=x в кубе плюс 7x в квадрате плюс 7x минус 6. Найдите абсциссу точки касания.


На рисунке изображен график производной функции f(x), определенной на интервале (−4; 8). Найдите точку экстремума функции f(x) на отрезке [−2; 6].


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображён график функции y=f левая круглая скобка x правая круглая скобка и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Из точки А(6; 8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.


Через точку А(6; 8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью Oy.


Найдите расстояние от точки A с координатами (6; 8) до оси абсцисс.


Найдите расстояние от точки A с координатами (6; 8) до оси ординат.


Найдите абсциссу точки, симметричной точке A(6; 8) относительно оси Oy.


Найдите ординату точки, симметричной точке A(6; 8) относительно оси Ox.


Найдите абсциссу точки, симметричной точке A(6; 8) относительно начала координат.


Найдите ординату точки, симметричной точке A(6; 8) относительно начала координат.


Найдите абсциссу середины отрезка, соединяющего точки O(0; 0) и A(6; 8).


Найдите абсциссу середины отрезка, соединяющего точки A(6; 8) и B(−2; 2).


Найдите синус угла наклона отрезка, соединяющего точки O(0; 0) и A(6; 8), с осью абсцисс.


Найдите косинус угла наклона отрезка, соединяющего точки O(0; 0) и A(6; 8), с осью абсцисс.

Всего: 251    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Помогите как найти абсциссу точки?

Андрей Барыбин



Профи

(506),
закрыт



14 лет назад

Olya

Мастер

(1607)


14 лет назад

Всё просто: точка А -точка пересечения двух прямых АС и АВ.
Уравнение прямой AC (просто переносим 2х в правую часть, выразив таким образом y): y = 3 – 2x
Уравнение прямой АВ: y = 7 + 2x
Чтобы найти абсциссу точки А, нужно эти уравнения приравнять (есть такое правило для нахождения абсциссы точки пересечения прямых) :
3 – 2х = 7 + 2х
-4х = 4
х = 4 : (-4)
х = -1
Ответ: -1

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Добавить комментарий