1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Примечание: дробные числа записывайте
через точку, а не запятую.
Округлять до -го знака после запятой.
Как найти координаты точки?
О чем эта статья:
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
- Координатные оси — это прямые, образующие систему координат.
- Ось абсцисс Ox — горизонтальная ось.
- Ось ординат Oy — вертикальная ось.
- Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
- Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
- верхний правый угол — первая четверть I;
- верхний левый угол — вторая четверть II;
- нижний левый угол — третья четверть III;
- нижний правый угол — четвертая четверть IV;
- Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
- Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
- Если обе координаты отрицательны, то число находится в третьей четверти.
- Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
- Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси Ox, то ее ордината равна 0. Например,
точка F (3, 0). - Начало координат — точка O. Ее координаты равны нулю: O (0,0).
- Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
- Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
- Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
- Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
- Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
- Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
Способ второй. Как определить положение точки D (-4, 2):
- Сместить прямую по оси Ox влево на 4 единицы, так как у нас
перед 4 стоит знак минус. - Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Примеры решений по аналитической геометрии на плоскости
В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.
Решения задач о треугольнике онлайн
Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.
Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.
Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.
Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.
Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.
Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.
Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.
Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki
http://www.matburo.ru/ex_ag.php?p1=agtr
[/spoiler]
Координаты на плоскости:
Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке
Определение: Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) направления, 2) масштаб и 3) общая точка отсчета.
Назовем одну из осей осью или осью абсцисс, другую—осью или осью ординат. Точку их пересечения назовем началом координат.
Возьмем произвольную точку , лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось через , а проекцию на ось через . Обозначим координату точки (по оси ) через , а координату точки (по оси ) через . Введем определение:
Определение. Абсциссой точки называется координата ее проекции на ось . Ординатой точки называется координата ее проекции на ось .
Абсциссу точки обычно обозначают буквой , ординату— буквой . Точку , имеющую абсциссу и ординату , обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: .
Координатные оси разделяют плоскость на четыре части, которые называют четвертями.
Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.
Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.
Третьей четвертью—та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой,—та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7). На рис. 8 указаны Заметим, что абсцисса по абсолютной величине равна расстоянию точки от оси ординат, так как (см. рис. 7), а ордината — расстоянию точки от оси абсцисс, так как .
Пример:
Найти точку (рис. 9).
Решение:
Возьмем на оси точку с координатой , ее координатный отрезок . На оси возьмем точку с координатным отрезком . Восставим перпендикуляры к осям из точек и , точка их пересечения и даст искомую точку .
Пример:
Найти расстояние между точками и . Иначе говоря, нужно найти длину отрезка (рис. 10).
Решение:
Обозначим проекцию точки на ось через , а ее проекцию на ось — через . Проекцию точки на ось обозначим через и через — ее проекцию на ось . Тогда . Из точки проведем прямую, параллельную оси , до пересечения с прямой в точке . Рассмотрим треугольник По теореме Пифагора имеем . to , , как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки , и будут равны Подставляя полученные выражения в , получим
откуда
т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей, координат.
Примечание. Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.
Пример:
Найти расстояние между точками и .
Решение:
Применяя формулу (1), получим
Пример:
Найти длину отрезка , если даны и .
Решение:
Применяя формулу (1), получим
Пример:
Найти точку , делящую отрезок в отношении , если известны координаты точек и .
Решение:
По условию задачи надо найти такую точку , чтобы было выполнено равенство
Обозначим, как и выше, проекции точки на оси через и , а проекции точки —через и ; тогда (рис. 11).
Кроме того, обозначим координаты искомой точки через и , а ее проекции на оси — через и , т. е.
Так как прямые и параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что
Но поэтому, подставляя в равенство , будем иметь уравнение
решая которое найдем абсциссу точки :
Рассуждая аналогично о проекциях на оси , т.е. о точках и , по- лучим ординату точки , делящей отрезок в отношении ,
Итак, искомая точка имеет координаты, определяемые равенствами (2) и (3).
Пример:
Найти точку, делящую в отношении 1:2 отрезок , где и .
Здесь .
Решение:
Применяя формулы (2) и (3), получим:
- Заказать решение задач по высшей математике
Пример:
Найти точку, делящую расстояние между точками и в отношении 3:1.
Здесь .
Решение:
По формулам (2) и (3) находим:
Следствие (из формул (2) и (3)). Если точка делит отрезок пополам, то , поэтому
т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.
Пример:
Даны три вершины треугольника: , и . Найти длину биссектрисы угла (рис. 12).
Решение:
Найдем длины сторон и . Для этого применим формулу (1):
Обозначим точку пересечения биссектрисы угла с противоположной стороной через , а ее координаты—через и . Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка делит отрезок в отношении ; поэтому, применяя формулы (2) и (3), получим:
т.е. (5,6).
Теперь вычисляем длину биссектрисы как расстояние между точками и :
Пример:
Найти точку пересечения медиан треугольника, вершинами которого являются точки , (рис. 13).
Решение:
Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через середину стороны ; по формулам (4) и (5) можно найти ее координаты:
т. е. . Точка пересечения медиан делит отрезок в отношении 2:1, поэтому ее координаты найдутся по формулам (2) и (3):
Итак, искомая точка Задача 5. Записать условие того, что точка находится на расстоянии 5 от точки . По формуле (1) имеем
или, возводя обе части равенства в квадрат, получим
Это равенство есть уравнение с двумя неизвестными и . Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки . Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки равно 5. Это геометрическое место есть окружность.
Следовательно, можно сказать, что уравнение есть уравнение окружности с центром в точке и радиуса 5.
В следующих главах будут рассмотрены уравнения с двумя неизвестными и и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.
- Линейная функция
- Квадратичная функция
- Тригонометрические функции
- Производные тригонометрических функции
- Уравнение линии
- Функции нескольких переменных
- Комплексные числ
- Координаты на прямой
было в ЕГЭ
в условии
в решении
в тексте к заданию
в атрибутах
Категория
Атрибут
Всего: 251 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Добавить в вариант
Вектор с концом в точке B(5; 3) имеет координаты (3; 1). Найдите абсциссу точки A.
Прямая параллельна касательной к графику функции Найдите абсциссу точки касания.
Прямая является касательной к графику функции Найдите абсциссу точки касания.
На рисунке изображен график производной функции f(x), определенной на интервале (−4; 8). Найдите точку экстремума функции f(x) на отрезке [−2; 6].
На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
На рисунке изображён график функции и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Из точки А(6; 8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.
Через точку А(6; 8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью Oy.
Найдите расстояние от точки A с координатами (6; 8) до оси абсцисс.
Найдите расстояние от точки A с координатами (6; 8) до оси ординат.
Найдите абсциссу точки, симметричной точке A(6; 8) относительно оси Oy.
Найдите ординату точки, симметричной точке A(6; 8) относительно оси Ox.
Найдите абсциссу точки, симметричной точке A(6; 8) относительно начала координат.
Найдите ординату точки, симметричной точке A(6; 8) относительно начала координат.
Найдите абсциссу середины отрезка, соединяющего точки O(0; 0) и A(6; 8).
Найдите абсциссу середины отрезка, соединяющего точки A(6; 8) и B(−2; 2).
Найдите синус угла наклона отрезка, соединяющего точки O(0; 0) и A(6; 8), с осью абсцисс.
Найдите косинус угла наклона отрезка, соединяющего точки O(0; 0) и A(6; 8), с осью абсцисс.
Всего: 251 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Помогите как найти абсциссу точки?
Андрей Барыбин
Профи
(506),
закрыт
14 лет назад
Olya
Мастер
(1607)
14 лет назад
Всё просто: точка А -точка пересечения двух прямых АС и АВ.
Уравнение прямой AC (просто переносим 2х в правую часть, выразив таким образом y): y = 3 – 2x
Уравнение прямой АВ: y = 7 + 2x
Чтобы найти абсциссу точки А, нужно эти уравнения приравнять (есть такое правило для нахождения абсциссы точки пересечения прямых) :
3 – 2х = 7 + 2х
-4х = 4
х = 4 : (-4)
х = -1
Ответ: -1
Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
на главную
Как найти координаты точки
Поддержать сайт
Каждой точке координатной плоскости соответствуют две координаты.
Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором —
ордината точки.
Рассмотрим как в системе координат (на координатной плоскости):
- находить координаты точки;
- найти положение точки.
Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.
Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».
Обозначают координаты точки, как указано выше (·) A (2; 3).
Пример (·) A (2; 3) и (·) B (3; 2).
Запомните!
На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.
Особые случаи расположения точек
- Если точка лежит на оси «Oy»,
то её абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси «Ox», то её ордината равна 0.
Например,
точка F (3, 0). - Начало координат — точка O имеет координаты, равные нулю O (0,0).
- Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
- Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
- Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
Как найти положение точки по её координатам
Найти точку в системе координат можно двумя способами.
Первый способ
Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:
- Отметить на оси «Ox», точку с координатой
«−4», и провести через неё прямую перпендикулярную оси «Ox». - Отметить на оси «Oy»,
точку с координатой 2, и провести через неё прямую перпендикулярную
оси «Oy». - Точка пересечения перпендикуляров (·) D — искомая точка.
У неё абсцисса равна «−4», а ордината равна 2.
Второй способ
Чтобы найти точку D (−4 , 2) надо:
- Сместиться по оси «x» влево на
4 единицы, так как у нас
перед 4
стоит «−». - Подняться из этой точки параллельно оси y вверх на 2 единицы, так
как у нас перед 2 стоит «+».
Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий: