Приближенное значение — число, которое получилось после округления.
Для записи результата округления используют знак «приблизительно равно» — ≈.
Округлить можно любое число — для всех чисел работают одни и те же правила.
Округлить число значит сократить его значение до сотых, десятков или тысячных, остальные значения откидываются. Это нужно в случаях, когда полная точность не нужна или невозможна.
Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление.
Правила округления чисел:
1. Подчеркнуть цифру разряда, до которого надо округлить число.
2.Отделить все цифры справа от этого разряда вертикальной чертой.
3. Если справа от подчеркнутой цифры стоит 0,1, 2, 3 или 4 — все цифры, которые отделены справа, заменяем нулями. Цифру разряда, до которой округляли, оставляем без изменений.
4.Если справа от подчеркнутой цифры стоит 5, 6, 7, 8 или 9 — все цифры, которые отделены справа, заменяем нулями. К цифре разряда, до которой округляли, прибавляем 1.
1 пример :
Итак, мы должны округлить 1456 до разряда десятков. Все действия округления производятся с конца числа . У 10 один ноль. Значит убирать с конца 1456 будем одну последнюю цифру 6 . Цифра 6 больше 5, значит по правилам округления , предыдущую цифру 5 будем увеличивать на 1. Теперь о существовании первых цифр 1 и 4 временно забываем. На месте удалённой цифры ставим ноль. Получаем в результате округления , число 1460
1456 ≈ 1460
2 пример:
Например, округлим число 123 до разряда десятков. Последняя цифра у этого числа 3 , она меньше 5. Значит по правилам округления, предыдущую цифру 2 , мы увеличивать не будем. Она останется без изменений. Итого получаем : 123 ≈ 120
Пример 3
Теперь попробуем округлить то же самое число 123, но уже до разряда сотен. У сотни два ноля. Значит будем убирать две последние цифры в числе . Итого получаем : 123 ≈ 100
Пример 4
Округлить число 1234 до разряда сотен. Ответ – 1234 ≈ 1200
Пример 5
Округлить число 1234 до разряда тысяч. У 1000 три ноля. Будем убирать три последние цифры в числе. В итоге получаем : 1234 ≈ 1000
Пример 6
Округлим число 675 до разряда десятков. Последняя цифра , которую мы будем убирать , равна 5. По правилам округления , будем предыдущую цифру увеличивать на один. Ответ : 675 ≈ 680
Пример 7
Теперь попробуем округлить то же самое число 675, но уже до разряда сотен. Ответ : 675 ≈ 700
Пример 8
Округлим число 9876 до разряда десятков. Ответ: 9876 ≈ 9880
Пример 9
Округлить число 9876 до разряда сотен. Ответ : 9876 ≈ 9900
Пример 10
Округлить число 9876 до разряда тысяч. У тысячи три ноля. Будем убирать три последние цифры в числе . Цифра 8 больше 5. Значит цифру 9 будем увеличивать на 1, а значит будет число 10 . Ответ : 9876 ≈ 10000
Пример 11
Округлить число 2971 до сотен. 29 +1 = 30 Ответ: 2971 ≈ 3000
ПРИМЕР 12
Давайте рассмотрим, как округлить число 57 861 до тысяч.
Округлим число 123 до десятков: 123 ≈ 120.
Округлим число 3581 до сотен: 3581 ≈ 3580.
Округлить число 697 до десятков — 697 ≈ 700;
Округлить число 980 до сотен — 980 ≈ 1000
Иногда уместно записать округленный результат с сокращениями «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард). Вот так:
7 882 000 = 7 882 тыс.
1 000 000 = 1 млн.
ОКРУГЛЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ
Десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Такую дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Например дробь (одна вторая) 1/2.Делим 1 на 5 получаем ноль ЦЕЛЫХ и пять ДЕСЯТЫХ 0,5
При округлении десятичных дробей следует быть особенно внимательным, потому что десятичная дробь состоит из целой и дробной части. И у каждой из этих частей есть свои разряды:
Разряды целой части:
разряд единиц;
разряд десятков;
разряд сотен;
разряд тысяч.
Разряды дробной части:
разряд десятых;
разряд сотых;
разряд тысячных.
Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление.
Цифра, которая записана в данном разряде: не меняется, если следующая за ней справа цифра — 0,1, 2, 3 или 4;
увеличивается на единицу, если за ней справа следует цифра — 5, 6, 7, 8 или 9.
Пример 1.
256,43 ≈ 256,4 — округление до десятых;
4,578 ≈ 4,58 — округление до сотых;
17,935 ≈ 18 — округление до целых.
79,7 ≈ 80 — округление до десятков;
0,099 ≈ 0,10 — округление до сотых.
Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра слева в предыдущем разряде увеличивается на 1.
==============================================================
Рассмотрим десятичную дробь 123,456 — сто двадцать три целых четыреста пятьдесят шесть тысячных. Здесь целая часть это 123, а дробная часть 456. При этом у каждой из этих частей есть свои разряды. Очень важно не путать их:
Для целой части применяются те же правила округления, что и для обычных чисел. Отличие в том, что после округления целой части и замены нулями всех цифр после сохраняемой цифры, дробная часть полностью отбрасывается.
Например, округлим дробь 123,456 до разряда ДЕСЯТКОВ . Именно до разряда десятков, А НЕ ДЕСЯТЫХ Очень важно не перепутать эти разряды. РАЗРЯД ДЕСЯТКОВ РАСПОЛАГАЕТСЯ В ЦЕЛОЙ ЧАСТИ , А РАЗРЯД ДЕСЯТЫХ В ДРОБНОЙ
Итак, мы должны округлить 123,456 до разряда десятков. Сохраняемая цифра здесь это 2, а первая из отбрасываемых цифр это 3
Ответ : 123,456 ≈ 120
Теперь попробуем округлить ту же самую дробь 123,456 до разряда единиц. Сохраняемая цифра здесь будет 3, а первая из отбрасываемых цифр это 4, которая находится в дробной части:
123,456 ≈ 123,0 ≈ 123
Попробуем округлить дробь 123,456 до разряда десятых.
Ответ : 123,456 ≈ 123,500
===================================================
На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой спидометр не может дать точных показаний скорости и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того, чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать их приближенными значениями.
На сколько отличается приближенное значение от точного?
Точное значение Приближенное значение
Разница
Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее.
Определение: Абсолютной погрешностью приближенного значения называется модуль разности точного и приближенного значений.
Пример 1
Найди абсолютную погрешность приближенного значения, полученного в результате округления числа 124 до десятков
Выполни округление. Так как после разряда десятков 124 стоит цифра 4, цифру разряда, до которой идет округление, оставь без изменения и замени нулями все последующие цифры: 124 ≈ 120.
Найди абсолютную погрешность, то есть модуль разности точного и приближенного значений: |124 – 120| = 4.
Пример 2
Представь число (пять шестых) 5/6 в виде бесконечной периодической десятичной дроби. Округли результат до сотых и найди абсолютную погрешность приближенного значения.
Относительная погрешность приближения показывает, какую часть или сколько процентов составляет абсолютная погрешность от приближенного значения числа. Чем меньше абсолютная погрешность по отношению к приближенному значению, тем лучше качество приближения, то есть относительная погрешность характеризует качество приближения. На производстве при изготовлении деталей пользуются штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).
Пример 3
Округли число 2,525 до десятых и найди относительную погрешность приближения, полученного при округлении.
Пример 4
Округли число 48,6 до десятков и найди относительную погрешность приближения, полученного при округлении в процентах.
Пример 5
Расстояние от города A до города B равно (125 ± 1) км. Длина карандаша равна (20 ± 1) cм. Найди, на сколько процентов выше качество измерения расстояния между городами, чем качество измерения длины карандаша, оценив разность их относительных погрешностей.
Пример 6
Общая протяженность реки Нура около 978 км. Оцени, с какой точностью нужно произвести измерения, чтобы относительная погрешность составляла 0,1%.
Пример 7
Цилиндрический поршень имеет около 0,035 м в диаметре. Оцени, с какой точностью нужно произвести измерения микрометром, чтобы относительная погрешность составляла 0,05%. Ответ запиши в миллиметрах в стандартном виде.
Материал взят из инета .
Найдите правильный ответ на вопрос ✅ «Как найти абсолютную погрешность приближённого значения, полученного в результате округления: а) числа 9,87 до единиц; б) числа 124 до …» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Главная » Алгебра » Как найти абсолютную погрешность приближённого значения, полученного в результате округления: а) числа 9,87 до единиц; б) числа 124 до десятков; в) числа 0,453 до десятых; г) числа 0,198 до сотых?
Напишите мини-сочинение на тему школьных дней (на английском), по плану вступление,преимущества(школы),недостатки(школы),итог. Используя данные выражения: Some of the advantages:
to become smarter, to develop your mind, to take part in school activities, to have good sports facilities, to have good and experienced teachers, to have interesting school traditions, to develop your imagination, to study interesting subjects, to learn new things, to prepare for adult life, to have a lot of friends, to enjoy school life and friendship…
Some of the disadvantages:
not to need so much knowledge, to have no time for sports and hobbies, to get up early in the morning every day, to be tired of doing homework, to work too hard, not to be allowed to do what you want to, to have boring lessons, to be afraid of some teachers, to have too many extra subjects, to worry about getting good marks, to have many tests, school has nothing to do with real life…
Алгебра
Как найти абсолютную погрешность приближённого значения,полученного в результате округления:а) числа 9,87 до единиц; б) числа 124 до десятков; в) числа 0,453 до десятых; г) числа 0,198 до сотых?
Попроси больше объяснений
Следить
Отметить нарушение
Автор: Гость
Ответ(ы) на вопрос:
Гость:
а) 9,87~10 10-9,87=0,13 б) 124~120 124-120=4 в) 0,453~0,5 0,5-0,453=0,047 г) 0,198~0,20 0,20-0,198=0,02
Пожаловаться
Объясните пожалуйста как решать!
Найдите абсолютную погрешность приближенного значения, полученного в результате округления:
а) числа 9,87 до единиц
б) числа 124 до десятков
в) числа 0,453 до десятых
г) числа 0,198 до сотых
Остались вопросы?
Новые вопросы по предмету Математика