Абсолютная и относительная погрешность
4.2
Средняя оценка: 4.2
Всего получено оценок: 2175.
4.2
Средняя оценка: 4.2
Всего получено оценок: 2175.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Опыт работы учителем математики – более 33 лет.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
- при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
- при делении и умножении чисел требуется сложить относительные погрешности;
- при возведении в степень относительную погрешность умножают на показатель степени.
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Светлана Лобанова-Асямолова
10/10
-
Валерий Соломин
10/10
-
Анастасия Юшкова
10/10
-
Ксюша Пономарева
7/10
-
Паша Кривов
10/10
-
Евгений Холопик
9/10
-
Guzel Murtazina
10/10
-
Максим Аполонов
10/10
-
Olga Bimbirene
9/10
-
Света Колодий
10/10
Оценка статьи
4.2
Средняя оценка: 4.2
Всего получено оценок: 2175.
А какая ваша оценка?
Приближенное значение — число, которое получилось после округления.
Для записи результата округления используют знак «приблизительно равно» — ≈.
Округлить можно любое число — для всех чисел работают одни и те же правила.
Округлить число значит сократить его значение до сотых, десятков или тысячных, остальные значения откидываются. Это нужно в случаях, когда полная точность не нужна или невозможна.
Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление.
Правила округления чисел:
1. Подчеркнуть цифру разряда, до которого надо округлить число.
2.Отделить все цифры справа от этого разряда вертикальной чертой.
3. Если справа от подчеркнутой цифры стоит 0,1, 2, 3 или 4 — все цифры, которые отделены справа, заменяем нулями. Цифру разряда, до которой округляли, оставляем без изменений.
4.Если справа от подчеркнутой цифры стоит 5, 6, 7, 8 или 9 — все цифры, которые отделены справа, заменяем нулями. К цифре разряда, до которой округляли, прибавляем 1.
1 пример :
Итак, мы должны округлить 1456 до разряда десятков. Все действия округления производятся с конца числа . У 10 один ноль. Значит убирать с конца 1456 будем одну последнюю цифру 6 . Цифра 6 больше 5, значит по правилам округления , предыдущую цифру 5 будем увеличивать на 1. Теперь о существовании первых цифр 1 и 4 временно забываем. На месте удалённой цифры ставим ноль. Получаем в результате округления , число 1460
1456 ≈ 1460
2 пример:
Например, округлим число 123 до разряда десятков. Последняя цифра у этого числа 3 , она меньше 5. Значит по правилам округления, предыдущую цифру 2 , мы увеличивать не будем. Она останется без изменений. Итого получаем : 123 ≈ 120
Пример 3
Теперь попробуем округлить то же самое число 123, но уже до разряда сотен. У сотни два ноля. Значит будем убирать две последние цифры в числе . Итого получаем : 123 ≈ 100
Пример 4
Округлить число 1234 до разряда сотен. Ответ – 1234 ≈ 1200
Пример 5
Округлить число 1234 до разряда тысяч. У 1000 три ноля. Будем убирать три последние цифры в числе. В итоге получаем : 1234 ≈ 1000
Пример 6
Округлим число 675 до разряда десятков. Последняя цифра , которую мы будем убирать , равна 5. По правилам округления , будем предыдущую цифру увеличивать на один. Ответ : 675 ≈ 680
Пример 7
Теперь попробуем округлить то же самое число 675, но уже до разряда сотен. Ответ : 675 ≈ 700
Пример 8
Округлим число 9876 до разряда десятков. Ответ: 9876 ≈ 9880
Пример 9
Округлить число 9876 до разряда сотен. Ответ : 9876 ≈ 9900
Пример 10
Округлить число 9876 до разряда тысяч. У тысячи три ноля. Будем убирать три последние цифры в числе . Цифра 8 больше 5. Значит цифру 9 будем увеличивать на 1, а значит будет число 10 . Ответ : 9876 ≈ 10000
Пример 11
Округлить число 2971 до сотен. 29 +1 = 30 Ответ: 2971 ≈ 3000
ПРИМЕР 12
Давайте рассмотрим, как округлить число 57 861 до тысяч.
Округлим число 123 до десятков: 123 ≈ 120.
Округлим число 3581 до сотен: 3581 ≈ 3580.
Округлить число 697 до десятков — 697 ≈ 700;
Округлить число 980 до сотен — 980 ≈ 1000
Иногда уместно записать округленный результат с сокращениями «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард). Вот так:
7 882 000 = 7 882 тыс.
1 000 000 = 1 млн.
ОКРУГЛЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ
Десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Такую дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Например дробь (одна вторая) 1/2.Делим 1 на 5 получаем ноль ЦЕЛЫХ и пять ДЕСЯТЫХ 0,5
При округлении десятичных дробей следует быть особенно внимательным, потому что десятичная дробь состоит из целой и дробной части. И у каждой из этих частей есть свои разряды:
Разряды целой части:
разряд единиц;
разряд десятков;
разряд сотен;
разряд тысяч.
Разряды дробной части:
разряд десятых;
разряд сотых;
разряд тысячных.
Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление.
Цифра, которая записана в данном разряде: не меняется, если следующая за ней справа цифра — 0,1, 2, 3 или 4;
увеличивается на единицу, если за ней справа следует цифра — 5, 6, 7, 8 или 9.
Пример 1.
256,43 ≈ 256,4 — округление до десятых;
4,578 ≈ 4,58 — округление до сотых;
17,935 ≈ 18 — округление до целых.
79,7 ≈ 80 — округление до десятков;
0,099 ≈ 0,10 — округление до сотых.
Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра слева в предыдущем разряде увеличивается на 1.
==============================================================
Рассмотрим десятичную дробь 123,456 — сто двадцать три целых четыреста пятьдесят шесть тысячных. Здесь целая часть это 123, а дробная часть 456. При этом у каждой из этих частей есть свои разряды. Очень важно не путать их:
Для целой части применяются те же правила округления, что и для обычных чисел. Отличие в том, что после округления целой части и замены нулями всех цифр после сохраняемой цифры, дробная часть полностью отбрасывается.
Например, округлим дробь 123,456 до разряда ДЕСЯТКОВ . Именно до разряда десятков, А НЕ ДЕСЯТЫХ Очень важно не перепутать эти разряды. РАЗРЯД ДЕСЯТКОВ РАСПОЛАГАЕТСЯ В ЦЕЛОЙ ЧАСТИ , А РАЗРЯД ДЕСЯТЫХ В ДРОБНОЙ
Итак, мы должны округлить 123,456 до разряда десятков. Сохраняемая цифра здесь это 2, а первая из отбрасываемых цифр это 3
Ответ : 123,456 ≈ 120
Теперь попробуем округлить ту же самую дробь 123,456 до разряда единиц. Сохраняемая цифра здесь будет 3, а первая из отбрасываемых цифр это 4, которая находится в дробной части:
123,456 ≈ 123,0 ≈ 123
Попробуем округлить дробь 123,456 до разряда десятых.
Ответ : 123,456 ≈ 123,500
===================================================
На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой спидометр не может дать точных показаний скорости и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того, чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать их приближенными значениями.
На сколько отличается приближенное значение от точного?
Точное значение Приближенное значение
Разница
Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее.
Определение: Абсолютной погрешностью приближенного значения называется модуль разности точного и приближенного значений.
Пример 1
Найди абсолютную погрешность приближенного значения, полученного в результате округления числа 124 до десятков
Выполни округление. Так как после разряда десятков 124 стоит цифра 4, цифру разряда, до которой идет округление, оставь без изменения и замени нулями все последующие цифры: 124 ≈ 120.
Найди абсолютную погрешность, то есть модуль разности точного и приближенного значений: |124 – 120| = 4.
Пример 2
Представь число (пять шестых) 5/6 в виде бесконечной периодической десятичной дроби. Округли результат до сотых и найди абсолютную погрешность приближенного значения.
Относительная погрешность приближения показывает, какую часть или сколько процентов составляет абсолютная погрешность от приближенного значения числа. Чем меньше абсолютная погрешность по отношению к приближенному значению, тем лучше качество приближения, то есть относительная погрешность характеризует качество приближения. На производстве при изготовлении деталей пользуются штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).
Пример 3
Округли число 2,525 до десятых и найди относительную погрешность приближения, полученного при округлении.
Пример 4
Округли число 48,6 до десятков и найди относительную погрешность приближения, полученного при округлении в процентах.
Пример 5
Расстояние от города A до города B равно (125 ± 1) км. Длина карандаша равна (20 ± 1) cм. Найди, на сколько процентов выше качество измерения расстояния между городами, чем качество измерения длины карандаша, оценив разность их относительных погрешностей.
Пример 6
Общая протяженность реки Нура около 978 км. Оцени, с какой точностью нужно произвести измерения, чтобы относительная погрешность составляла 0,1%.
Пример 7
Цилиндрический поршень имеет около 0,035 м в диаметре. Оцени, с какой точностью нужно произвести измерения микрометром, чтобы относительная погрешность составляла 0,05%. Ответ запиши в миллиметрах в стандартном виде.
Материал взят из инета .
Абсолютная погрешность
- Причины возникновения погрешности измерения
- Систематическая и случайная погрешности
- Определение абсолютной погрешности
- Алгоритм оценки абсолютной погрешности в серии прямых измерений
- Значащие цифры и правила округления результатов измерений
- Примеры
Причины возникновения погрешности измерения
Погрешность измерения – это отклонение измеренного значения величины от её истинного (действительного) значения.
Обычно «истинное» значение неизвестно, и можно только оценить погрешность, приняв в качестве «истинного» среднее значение, полученное в серии измерений. Таким образом, процесс оценки проводится статистическими методами.
Виды погрешности измерений
Причины
Инструментальная погрешность
Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)
Погрешность метода
Определяется несовершенством методов и допущениями в методике.
Теоретическая погрешность
Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.
Погрешность оператора
Определяется субъективным фактором, ошибками экспериментатора.
Систематическая и случайная погрешности
Систематической погрешностью называют погрешность, которая остаётся постоянной или изменяется закономерно во времени при повторных измерениях одной и той же величины.
Систематическая погрешность всегда имеет знак «+» или «-», т.е. говорят о систематическом завышении или занижении результатов измерений.
Систематическую погрешность можно легко определить, если известно эталонное (табличное) значение измеряемой величины. Для других случаев разработаны эффективные статистические методы выявления систематических погрешностей. Причиной систематической погрешности может быть неправильная настройка приборов или неправильная оценка параметров (завышенная или заниженная) в расчётных формулах.
Случайной погрешностью называют погрешность, которая не имеет постоянного значения при повторных измерениях одной и той же величины.
Случайные погрешности неизбежны и всегда присутствуют при измерениях.
Определение абсолютной погрешности
Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины:
$$ Delta x = |x_{изм}-x_{ист} | $$
Например:
При пяти взвешиваниях гири с маркировкой 100 г были получены различные значения массы. Если принять маркировку за истинное значение, то получаем следующие значения абсолютной погрешности:
$m_i,г$
98,4
99,2
98,1
100,3
98,5
$Delta m_i, г$
1,6
0,8
1,9
0,3
1,5
Граница абсолютной погрешности – это величина h: $ |x-x_{ист}| le h $
Для оценки границы абсолютной погрешности на практике используются статистические методы.
Алгоритм оценки абсолютной погрешности в серии прямых измерений
Шаг 1. Проводим серию из N измерений, в каждом из которых получаем значение измеряемой величины $x_i, i = overline{1, N}$.
Шаг 2. Находим оценку истинного значения x как среднее арифметическое данной серии измерений:
$$ a = x_{cp} = frac{x_1+x_2+ cdots +x_N}{N} = frac{1}{N} sum_{i = 1}^N x_i $$
Шаг 3. Рассчитываем абсолютные погрешности для каждого измерения:
$$ Delta x_i = |x_i-a| $$
Шаг 4. Находим среднее арифметическое абсолютных погрешностей:
$$ Delta x_{cp} = frac{Delta x_1+ Delta x_2+ cdots + Delta x_N}{N} = frac{1}{N} sum_{i = 1}^N Delta x_i $$
Шаг 5. Определяем инструментальную погрешность при измерении как цену деления прибора (инструмента) d.
Шаг 6. Проводим оценку границы абсолютной погрешности серии измерений, выбирая большую из двух величин:
$$ h = max {d; Delta x_{cp} } $$
Шаг 7. Округляем и записываем результаты измерений в виде:
$$ a-h le x le a+h или x = a pm h $$
Значащие цифры и правила округления результатов измерений
Значащими цифрами – называют все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.
Например:
0,00501 – три значащие цифры 5,0 и 1.
5,01 – три значащие цифры.
5,0100 – пять значащих цифр; такая запись означает, что величина измерена с точностью 0,0001.
Внимание!
Правила округления.
Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу (округление по избытку, “ceiling”).
Округлять результаты измерений и вычислений нужно так, чтобы последняя значащая цифра находилась в том же десятичном разряде, что и абсолютная погрешность измеряемой величины.
Например: если при расчетах по результатам серии измерений получена оценка истинного значения a=1,725, а оценка абсолютной погрешности h = 0,11, то результат записывается так:
$$ a approx 1,7; h approx ↑0,2; 1,5 le x le 1,9 или x = 1,7 pm 0,2 $$
Примеры
Пример 1. При измерении температура воды оказалась в пределах от 11,55 ℃ до 11,63 ℃. Какова абсолютная погрешность этих измерений?
По условию $11,55 le t le 11,63$. Получаем систему уравнений:
$$ {left{ begin{array}{c} a-h = 11,55 \ a+h = 11,63 end{array} right.} Rightarrow {left{ begin{array}{c} 2a = 11,55+11,63 = 23,18 \ 2h = 11,63-11,55 = 0,08 end{array} right.} Rightarrow {left{ begin{array}{c} a = 11,59 \ h = 0,04end{array} right.} $$
$$ t = 11,59 pm 0,04 ℃ $$
Ответ: 0,04 ℃
Пример 2. По результатам измерений найдите границы измеряемой величины. Инструментальная погрешность d = 0,1.
$x_i$
15,3
16,4
15,3
15,8
15,7
16,2
15,9
Находим среднее арифметическое:
$$ a = x_{ср} = frac{15,3+16,4+ cdots +15,9}{7} = 15,8 $$
Находим абсолютные погрешности:
$$ Delta x_i = |x_i-a| $$
$ Delta x_i$
0,5
0,6
0,5
0
0,1
0,4
0,1
Находим среднее арифметическое:
$$ Delta x_{ср} = frac{0,5+0,6+ cdots + 0,1}{7} approx 0,31 gt d $$
Выбираем большую величину:
$$ h = max {d; Delta x_{ср} } = max {0,1; 0,31} = 0,31 $$
Округляем по правилам округления по избытку: $h approx ↑0,4$.
Получаем: x = 15, $8 pm 0,4$
Границы: $15,4 le x le 16,2$
Ответ: $15,4 le x le 16,2$
Пример 3*. В первой серии экспериментов было получено значение $x = a pm 0,3$. Во второй серии экспериментов было получено более точное значение $x = 5,631 pm 0,001$. Найдите оценку средней a согласно полученным значениям x.
Более точное значение определяет более узкий интервал для x. По условию:
$$ {left{ begin{array}{c} a-0,3 le x le a+0,3 \ 5,630 le x le 5,632 end{array} right.} Rightarrow a-0,3 le 5,630 le x le 5,632 le a+0,3 Rightarrow $$
$$ Rightarrow {left{ begin{array}{c} a-0,3 le 5,630 \ 5,632 le a+0,3 end{array} right.} Rightarrow {left{ begin{array}{c} a le 5,930 \ 5,332 le a end{array} right.} Rightarrow 5,332 le a le 5,930 $$
Т.к. a получено в серии экспериментов с погрешностью h=0,3, следует округлить полученные границы до десятых:
$$ 5,3 le a le 5,9 $$
Ответ: $ 5,3 le a le 5,9 $
Абсолютная и
относительная погрешность числа.
В качестве
характеристик точности приближенных
величин любого происхождения вводятся
понятия абсолютной и относительной
погрешности этих величин.
Обозначим через
а приближение
к точному числу А.
Определени.
Величина
называется
погрешностью приближенного числаа.
Определение.
Абсолютной погрешностью
приближенного
числа а
называется
величина
.
Практически точное
число А обычно
неизвестно, но мы всегда можем указать
границы, в которых изменяется абсолютная
погрешность.
Определение.
Предельной абсолютной погрешностью
приближенного
числа а
называется
наименьшая из верхних границ для величины
,
которую можно найти при данном способе
получения числаа.
На практике в
качестве
выбирают одну
из верхних границ для
,
достаточно близкую к наименьшей.
Поскольку
,
то.
Иногда пишут:.
Абсолютная
погрешность
– это разница между результатом измерения
и истинным
(действительным) значением
измеряемой
величины.
Абсолютная
погрешность и предельная абсолютная
погрешность не достаточны для
характеристики точности измерения или
вычисления. Качественно более существенна
величина относительной погрешности.
Определение.
Относительной погрешностью
приближенного
числа а назовем
величину:
Определение.
Предельной относительной погрешностью
приближенного
числа а назовем
величину
Так как
.
Таким образом,
относительная погрешность определяет
фактически величину абсолютной
погрешности, приходящейся на единицу
измеряемого или вычисляемого приближенного
числа а.
Пример.
Округляя
точные числа А до трех значащих цифр,
определить
абсолютную Dи относительную
δ погрешности полученных приближенных
чисел.
Дано:
А=-13,327
Найти:
∆-абсолютная
погрешность
δ –относительная
погрешность
Решение:
=|А-а|
А=а±.
a=-13.3
=|-13.327-(-13.3)|=0.027
,a0
*100%=0.203%
Ответ: =0,027;
δ=0.203%
2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).
Верные знаки числа.
Определение.
Значащей цифрой приближенного числа а
называется
всякая цифра, отличная от нуля, и нуль,
если он расположен между значащими
цифрами или является представителем
сохраненного десятичного разряда.
Например, в числе
0,00507 =
имеем
3 значащие цифры, а в числе 0,005070=значащие цифры,
т.е. нуль справа, сохраняя десятичный
разряд, является значащим.
Условимся впредь
нули справа записывать, если только они
являются значащими. Тогда, иначе говоря,
значащими являются
все цифры числа а,
кроме нулей слева.
В десятичной
системе счисления всякое число а
может быть
представлено в виде конечной или
бесконечной суммы (десятичной дроби):
где
,
– первая значащая
цифра, m –
целое число, называемое старшим десятичным
разрядом числа а.
Например, 518,3
=,
m=2.
Пользуясь записью
,
введем понятие о верных десятичных
знаках (в значащих цифрах) приближенно-
го числа.
Определение.
Говорят, что в приближенном числе а
формы
n –
первых значащих цифр
,
где i=
m, m-1,…, m-n+1 являются
верными, если абсолютная погрешность
этого числа не превышает половины
единицы разряда, выражаемого n-й
значащей цифрой:
В противном случае
последняя цифра
называется
сомнительной.
При записи
приближенного числа без указания его
погрешности требуют, чтобы все записанные
цифры
были верными. Это
требование соблюдено во всех математических
таблицах.
Термин “n
верных знаков”
характеризует лишь степень точности
приближенного числа и его не следует
понимать так, что n
первых значащих
цифр приближенного числа а
совпадает с
соответствующими цифрами точного числа
А.
Например, у чисел А=10,
а=9,997 все
значащие цифры различны, но число а
имеет 3 верных
значащих цифры. Действительно, здесь
m=0 и
n=3
(находим
подбором).
На практике
отыскание n из
при
известных
и
m требует
решения нелинейного неравенства, что
составляет непростую задачу. Правильный
выбор n возможен
из тривиального линейного равенства
по следующей методике.
Величину
записываем в
виде
,
где 0,05<d≤0,5,
что всегда возможно. Тогда в
неравенство для
коэффициентов
выполняется (d≤1/2), основания степеней
справа и слева одинаковы , поэтому можем
приравнять показатели степеней: s=m-n+1,
поэтому n=m-s+1.
ТЕОРЕМА 1 .
Если положительное приближенное число
а имеет
n верных
десятичных знаков, то для относительной
погрешности
этого числа
справедлива оценка:
где
– первая значащая
цифра числа а.
Доказательство.
Пусть число а
определено
формулой
со знаком +
перед скобкой.
По условию а
имеет n
верных знаков,
следовательно
Тогда
Следствие.
В качестве предельной относительной
погрешности числа а
можно принять
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
ВИДЕО УРОК
Абсолютная погрешность.
Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.
Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.
Существует формула
абсолютной погрешности. Обозначим точное число буквой А, а буквой а –
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:
∆а = А – а.
ПРИМЕР:
В школе учится 374 ученика. Если округлить это число до 400,
то абсолютная погрешность измерения равна:
400 – 374 = 26.
ПРИМЕР:
На предприятии 1284 рабочих и
служащих. При округлении этого числа до 1300 абсолютная
погрешность составляет
1300 – 1284 = 16.
При округлении до 1280 абсолютная
погрешность составляет
1284 – 1280 = 4.
Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.
ПРИМЕР:
Торговые весы могут дать абсолютную погрешность, не
превышающую 5 г, а аптекарские – не превышающую одной сотой грамма.
Записывают
абсолютную погрешность числа, используя знак
±.
ПРИМЕР:
Длина рулона обоев составляет.
30 м ± 3
см.
Границу абсолютной
погрешности называют предельной абсолютной погрешностью.
Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.
ПРИМЕР:
Допустим, что при измерении коридора длиной в 20
м мы допустили абсолютную погрешность
всего только в 1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 18
см длины, мы тоже допустили абсолютную
погрешность в 1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 20
м ошибка в 1
см вполне допустима и неизбежна, но
на 18
см такая ошибка является очень грубой.
Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 20 м погрешность в 1 см
составляет
долю
измеряемой величины, а при измерении корешка книги погрешность в 1 см составляет
долю
измеряемой величины.
Делаем вывод, что измеряя корешок книги, имеющий 18
см длины и допустив погрешность в 1
см, можно считать измерение с большой ошибкой. Но если погрешность в 1
см была допущена при измерении коридора
длиной в 20
м, то это измерение можно считать максимально точным.
Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.
Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 0,5 мм.
ПРИМЕР:
Для измерения длины болта использованы метровая линейка с
делениями 0,5 см и линейка с
делениями 1 мм. В обоих случаях получен результат 3,5
см. Ясно, что в первом случае отклонение найденной длины 3,5
см от истинной, не
должно по модулю превышать 0,5 см, во втором случае
0,1 см.
Если этот же результат получится при измерении
штангенциркулем, то
p(l; 3,5) = |l – 3,5 ≤ 0,01|.
Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае ∆l = 0,5 и, следовательно,
3
≤ l ≤ 4,
в другом – ∆l = 0,1 и
3,4
≤ l ≤ 3,6.
ПРИМЕР:
Длина листа бумаги формата А4 равна (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно (650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.
РЕШЕНИЕ:
Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной погрешности не
превышает 1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.
При измерении длины листа абсолютная погрешность не
превышает 0,1 см на 29,7 см, то есть в процентном отношении это составляет
0,1
: 29,7 ∙ 100% ≈ 0,33%
измеряемой величины.
Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает
1 км
на 650 км, что в процентном соотношении составляет
1
: 650 ∙ 100% ≈ 0,15%
измеряемой величины.
Видим, что расстояние между городами измерено точнее, чем
длинна листа формата А4.
Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.
Относительная погрешность.
Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.
Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах.
Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.
ПРИМЕР:
Округлим дробь 14,7 до целых и найдём относительную погрешность приближённого
значения:
14,7 ≈ 15,
Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.
ПРИМЕР:
При измерении в (сантиметрах) толщины
b
стекла и длины l книжной полки
получили следующие результаты:
b ≈ 0,4 с
точностью до 0,1,
l ≈ 100 с
точностью до 0,1.
Абсолютная погрешность каждого из этих измерений не
превосходит 0,1. Однако 0,1 составляет
существенную часть числа 0,4 и
ничтожную часть числа 100. Это показывает, что качество второго
измерения намного выше, чем первого.
В результате измерения нашли,
что b ≈ 0,4 с точностью до 0,1, то
есть абсолютная погрешность измерения не превосходит 0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно
то есть относительная погрешность приближения не превосходит 25%.
Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит
Говорят, что в первом случае измерение выполнено с
относительной точностью до 25%,
а во втором – с относительной точностью до 0,1%.
ПРИМЕР:
Если взять абсолютную погрешность в 1
см, при измерении длины отрезков 10
см и 10
м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для
отрезка длиной в 10 см погрешность
в 1
см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, эта ошибка всего в 0,1%.
Чем меньше относительная погрешность
измерения, тем оно точнее.
Различают
систематические и случайные погрешности.
Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.
Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.
В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.
ПРИМЕР:
Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря – 50
г. Взвешивание показало 3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 50
г. Относительная погрешность не превосходит
50/3600 ≈
1,4%.
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.
В предыдущем примере
за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность 1,4%.
Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность
100 г, 150 г и вообще всякое
число, большее чем 50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 4,78 без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.
Предельная
абсолютная погрешность обозначается греческой буквой ∆ (<<дельта>>),
предельная относительная погрешность – греческой буквой δ
(<<дельта малая>>). Если приближённое число обозначить буквой а,
Правила округления.
На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.
ПРИМЕР:
Для х = 1,7 ± 0,2 относительная погрешность измерений равна:
ПРИМЕР:
Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 17,9 см. Какова предельная относительная погрешность этого
измерения ?
РЕШЕНИЕ:
Здесь а =
17,9 см. Можно принять ∆ = 0,1 см, так как с точностью
до 1 мм
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину). Относительная погрешность равна
Округляя, находим
ПРИМЕР:
Цилиндрический поршень имеет около 35
мм в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла 0,05% ?
РЕШЕНИЕ:
По условию, предельная относительная
погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная абсолютная
погрешность равна
или, усиливая, 0,02
мм.
Можно воспользоваться
формулой
Подставляя в формулу
а = 35,
𝛿 = 0,0005,
имеем
Значит,
∆
= 35 × 0,0005 = 0,0175 мм.
Действия над приближёнными числами.
Сложение и вычитание приближённых чисел.
Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.
ПРИМЕР:
Складываются приближённые числа
265 и 32.
РЕШЕНИЕ:
Пусть предельная погрешность первого есть 5,
а второго 1. Тогда предельная погрешность суммы равна
5
+ 1 = 6.
Так, если истинное значение первого есть 270,
а второго 33, то приближённая сумма
265
+ 32 = 297
на 6 меньше истинной
270
+ 33 = 303.
ПРИМЕР:
Найти сумму приближённых чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Предельная погрешность каждого слагаемого
0,00005.
Предельная погрешность суммы:
0,00005
∙ 9 = 0,00045.
Значит, в последнем (четвёртом) знаке суммы возможна ошибка до 5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 0,619,
здесь все знаки верные.
При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 1, 2, 3, 4 или даже на 5 единиц в ту и в другую сторону.
Например, первое
слагаемое может быть больше своего истинного значения на 4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.
Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 0,00045,
это произойдёт:
– когда истинная величина каждого слагаемого больше
приближённой величины на 0,00005;
– когда истинная величина каждого слагаемого меньше
приближённой величины на 0,00005.
Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 0,0000002% всех возможных случаев.
Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 0,07%
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 2% всех возможных случаев, а одну единицу –
примерно в 25%.
В остальных 75% случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.
ПРИМЕР:
Найти сумму точных чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Округлим их до тысячных и сложим:
0,091
+ 0,083 + 0,077 + 0,071 + 0,067
+ 0,062 + 0,059 + 0,056 + 0,053 = 0,619.
Предельная погрешность суммы:
0,0005
∙ 9 = 0,0045.
Приближённая сумма отличается от истинной на 0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.
Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет:
0,005
∙ 9 = 0,045.
Между тем получим:
0,09
+ 0,08 + 0,08 + 0,07 + 0,07
+ 0,06 + 0,06 + 0,06 + 0,05 = 0,62.
Истинная погрешность составляет только 0,0013.
Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.
ПРИМЕР:
Пусть предельная погрешность приближённого
уменьшаемого 85 равна 2,
а предельная погрешность вычитаемого 32 равна 3.
Предельная погрешность разности
85
– 32 = 53
есть
2
+ 3 = 5.
В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться
85
+ 2 = 87 и
32
– 3 = 29.
Тогда истинная разность есть
87
– 29 = 58.
Она на 5 отличается от
приближённой разности 53.
Относительная погрешность суммы и разности.
Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.
Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.
ПРИМЕР:
Найти предельную абсолютную и предельную относительную
погрешность суммы чисел:
24,4
+ 25,2 + 24,7.
РЕШЕНИЕ:
В каждом слагаемом суммы
24,4
+ 25,2 + 24,7 = 74,3
предельная относительная погрешность примерно одна и та
же, а именно:
0,05
: 25 = 0,2%.
Такова же она и для суммы.
Здесь предельная абсолютная погрешность равна 0,15,
а относительная
0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.
В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.
Относительные погрешности при сложении и вычитании
складывать нельзя.
Умножение и деление приближённых чисел.
При делении и умножении чисел требуется сложить
относительные погрешности.
ПРИМЕР:
Пусть перемножаются приближённые числа 50 и 20, и пусть предельная относительная погрешность первого
сомножителя есть 0,4%, а второго
0,5%.
Тогда предельная относительная погрешность произведения
50
× 20 = 1000
приближённо равна 0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть
50
× 0,004 = 0,2,
а второго
20
× 0,005 = 0,1.
Поэтому истинная величина произведения не больше чем
(50
+ 0,2)(20 + 0,1) = 1009,02,
и не меньше, чем
(50
– 0,2)(20 – 0,1) = 991,022.
Если истинная величина произведения есть 1009,2,
то погрешность произведения равна
1009,2
– 1000 = 9,02,
а если 991,02, то погрешность произведения равна
1000
– 991,02 = 8,98.
Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 9,02.
Предельная относительная погрешность равна
9,02
: 1000 = 0,902%,
то есть приближённо 0,9%.
Задания к уроку 16
- Задание 1
- Задание 2
- Задание 3
- Урок 1. Числовые неравенства
- Урок 2. Свойства числовых неравенств
- Урок 3. Сложение и умножение числовых неравенств
- Урок 4. Числовые промежутки
- Урок 5. Линейные неравенства
- Урок 6. Системы линейных неравенств
- Урок 7. Нелинейные неравенства
- Урок 8. Системы нелинейных неравенств
- Урок 9. Дробно-рациональные неравенства
- Урок 10. Решение неравенств с помощью графиков
- Урок 11. Неравенства с модулем
- Урок 12. Иррациональные неравенства
- Урок 13. Неравенства с двумя переменными
- Урок 14. Системы неравенств с двумя переменными
- Урок 15. Приближённые вычисления