Абсолютная погрешность
- Причины возникновения погрешности измерения
- Систематическая и случайная погрешности
- Определение абсолютной погрешности
- Алгоритм оценки абсолютной погрешности в серии прямых измерений
- Значащие цифры и правила округления результатов измерений
- Примеры
Причины возникновения погрешности измерения
Погрешность измерения – это отклонение измеренного значения величины от её истинного (действительного) значения.
Обычно «истинное» значение неизвестно, и можно только оценить погрешность, приняв в качестве «истинного» среднее значение, полученное в серии измерений. Таким образом, процесс оценки проводится статистическими методами.
Виды погрешности измерений
Причины
Инструментальная погрешность
Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)
Погрешность метода
Определяется несовершенством методов и допущениями в методике.
Теоретическая погрешность
Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.
Погрешность оператора
Определяется субъективным фактором, ошибками экспериментатора.
Систематическая и случайная погрешности
Систематической погрешностью называют погрешность, которая остаётся постоянной или изменяется закономерно во времени при повторных измерениях одной и той же величины.
Систематическая погрешность всегда имеет знак «+» или «-», т.е. говорят о систематическом завышении или занижении результатов измерений.
Систематическую погрешность можно легко определить, если известно эталонное (табличное) значение измеряемой величины. Для других случаев разработаны эффективные статистические методы выявления систематических погрешностей. Причиной систематической погрешности может быть неправильная настройка приборов или неправильная оценка параметров (завышенная или заниженная) в расчётных формулах.
Случайной погрешностью называют погрешность, которая не имеет постоянного значения при повторных измерениях одной и той же величины.
Случайные погрешности неизбежны и всегда присутствуют при измерениях.
Определение абсолютной погрешности
Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины:
$$ Delta x = |x_{изм}-x_{ист} | $$
Например:
При пяти взвешиваниях гири с маркировкой 100 г были получены различные значения массы. Если принять маркировку за истинное значение, то получаем следующие значения абсолютной погрешности:
$m_i,г$
98,4
99,2
98,1
100,3
98,5
$Delta m_i, г$
1,6
0,8
1,9
0,3
1,5
Граница абсолютной погрешности – это величина h: $ |x-x_{ист}| le h $
Для оценки границы абсолютной погрешности на практике используются статистические методы.
Алгоритм оценки абсолютной погрешности в серии прямых измерений
Шаг 1. Проводим серию из N измерений, в каждом из которых получаем значение измеряемой величины $x_i, i = overline{1, N}$.
Шаг 2. Находим оценку истинного значения x как среднее арифметическое данной серии измерений:
$$ a = x_{cp} = frac{x_1+x_2+ cdots +x_N}{N} = frac{1}{N} sum_{i = 1}^N x_i $$
Шаг 3. Рассчитываем абсолютные погрешности для каждого измерения:
$$ Delta x_i = |x_i-a| $$
Шаг 4. Находим среднее арифметическое абсолютных погрешностей:
$$ Delta x_{cp} = frac{Delta x_1+ Delta x_2+ cdots + Delta x_N}{N} = frac{1}{N} sum_{i = 1}^N Delta x_i $$
Шаг 5. Определяем инструментальную погрешность при измерении как цену деления прибора (инструмента) d.
Шаг 6. Проводим оценку границы абсолютной погрешности серии измерений, выбирая большую из двух величин:
$$ h = max {d; Delta x_{cp} } $$
Шаг 7. Округляем и записываем результаты измерений в виде:
$$ a-h le x le a+h или x = a pm h $$
Значащие цифры и правила округления результатов измерений
Значащими цифрами – называют все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.
Например:
0,00501 – три значащие цифры 5,0 и 1.
5,01 – три значащие цифры.
5,0100 – пять значащих цифр; такая запись означает, что величина измерена с точностью 0,0001.
Внимание!
Правила округления.
Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу (округление по избытку, “ceiling”).
Округлять результаты измерений и вычислений нужно так, чтобы последняя значащая цифра находилась в том же десятичном разряде, что и абсолютная погрешность измеряемой величины.
Например: если при расчетах по результатам серии измерений получена оценка истинного значения a=1,725, а оценка абсолютной погрешности h = 0,11, то результат записывается так:
$$ a approx 1,7; h approx ↑0,2; 1,5 le x le 1,9 или x = 1,7 pm 0,2 $$
Примеры
Пример 1. При измерении температура воды оказалась в пределах от 11,55 ℃ до 11,63 ℃. Какова абсолютная погрешность этих измерений?
По условию $11,55 le t le 11,63$. Получаем систему уравнений:
$$ {left{ begin{array}{c} a-h = 11,55 \ a+h = 11,63 end{array} right.} Rightarrow {left{ begin{array}{c} 2a = 11,55+11,63 = 23,18 \ 2h = 11,63-11,55 = 0,08 end{array} right.} Rightarrow {left{ begin{array}{c} a = 11,59 \ h = 0,04end{array} right.} $$
$$ t = 11,59 pm 0,04 ℃ $$
Ответ: 0,04 ℃
Пример 2. По результатам измерений найдите границы измеряемой величины. Инструментальная погрешность d = 0,1.
$x_i$
15,3
16,4
15,3
15,8
15,7
16,2
15,9
Находим среднее арифметическое:
$$ a = x_{ср} = frac{15,3+16,4+ cdots +15,9}{7} = 15,8 $$
Находим абсолютные погрешности:
$$ Delta x_i = |x_i-a| $$
$ Delta x_i$
0,5
0,6
0,5
0
0,1
0,4
0,1
Находим среднее арифметическое:
$$ Delta x_{ср} = frac{0,5+0,6+ cdots + 0,1}{7} approx 0,31 gt d $$
Выбираем большую величину:
$$ h = max {d; Delta x_{ср} } = max {0,1; 0,31} = 0,31 $$
Округляем по правилам округления по избытку: $h approx ↑0,4$.
Получаем: x = 15, $8 pm 0,4$
Границы: $15,4 le x le 16,2$
Ответ: $15,4 le x le 16,2$
Пример 3*. В первой серии экспериментов было получено значение $x = a pm 0,3$. Во второй серии экспериментов было получено более точное значение $x = 5,631 pm 0,001$. Найдите оценку средней a согласно полученным значениям x.
Более точное значение определяет более узкий интервал для x. По условию:
$$ {left{ begin{array}{c} a-0,3 le x le a+0,3 \ 5,630 le x le 5,632 end{array} right.} Rightarrow a-0,3 le 5,630 le x le 5,632 le a+0,3 Rightarrow $$
$$ Rightarrow {left{ begin{array}{c} a-0,3 le 5,630 \ 5,632 le a+0,3 end{array} right.} Rightarrow {left{ begin{array}{c} a le 5,930 \ 5,332 le a end{array} right.} Rightarrow 5,332 le a le 5,930 $$
Т.к. a получено в серии экспериментов с погрешностью h=0,3, следует округлить полученные границы до десятых:
$$ 5,3 le a le 5,9 $$
Ответ: $ 5,3 le a le 5,9 $
Приближенное значение — число, которое получилось после округления.
Для записи результата округления используют знак «приблизительно равно» — ≈.
Округлить можно любое число — для всех чисел работают одни и те же правила.
Округлить число значит сократить его значение до сотых, десятков или тысячных, остальные значения откидываются. Это нужно в случаях, когда полная точность не нужна или невозможна.
Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление.
Правила округления чисел:
1. Подчеркнуть цифру разряда, до которого надо округлить число.
2.Отделить все цифры справа от этого разряда вертикальной чертой.
3. Если справа от подчеркнутой цифры стоит 0,1, 2, 3 или 4 — все цифры, которые отделены справа, заменяем нулями. Цифру разряда, до которой округляли, оставляем без изменений.
4.Если справа от подчеркнутой цифры стоит 5, 6, 7, 8 или 9 — все цифры, которые отделены справа, заменяем нулями. К цифре разряда, до которой округляли, прибавляем 1.
1 пример :
Итак, мы должны округлить 1456 до разряда десятков. Все действия округления производятся с конца числа . У 10 один ноль. Значит убирать с конца 1456 будем одну последнюю цифру 6 . Цифра 6 больше 5, значит по правилам округления , предыдущую цифру 5 будем увеличивать на 1. Теперь о существовании первых цифр 1 и 4 временно забываем. На месте удалённой цифры ставим ноль. Получаем в результате округления , число 1460
1456 ≈ 1460
2 пример:
Например, округлим число 123 до разряда десятков. Последняя цифра у этого числа 3 , она меньше 5. Значит по правилам округления, предыдущую цифру 2 , мы увеличивать не будем. Она останется без изменений. Итого получаем : 123 ≈ 120
Пример 3
Теперь попробуем округлить то же самое число 123, но уже до разряда сотен. У сотни два ноля. Значит будем убирать две последние цифры в числе . Итого получаем : 123 ≈ 100
Пример 4
Округлить число 1234 до разряда сотен. Ответ – 1234 ≈ 1200
Пример 5
Округлить число 1234 до разряда тысяч. У 1000 три ноля. Будем убирать три последние цифры в числе. В итоге получаем : 1234 ≈ 1000
Пример 6
Округлим число 675 до разряда десятков. Последняя цифра , которую мы будем убирать , равна 5. По правилам округления , будем предыдущую цифру увеличивать на один. Ответ : 675 ≈ 680
Пример 7
Теперь попробуем округлить то же самое число 675, но уже до разряда сотен. Ответ : 675 ≈ 700
Пример 8
Округлим число 9876 до разряда десятков. Ответ: 9876 ≈ 9880
Пример 9
Округлить число 9876 до разряда сотен. Ответ : 9876 ≈ 9900
Пример 10
Округлить число 9876 до разряда тысяч. У тысячи три ноля. Будем убирать три последние цифры в числе . Цифра 8 больше 5. Значит цифру 9 будем увеличивать на 1, а значит будет число 10 . Ответ : 9876 ≈ 10000
Пример 11
Округлить число 2971 до сотен. 29 +1 = 30 Ответ: 2971 ≈ 3000
ПРИМЕР 12
Давайте рассмотрим, как округлить число 57 861 до тысяч.
Округлим число 123 до десятков: 123 ≈ 120.
Округлим число 3581 до сотен: 3581 ≈ 3580.
Округлить число 697 до десятков — 697 ≈ 700;
Округлить число 980 до сотен — 980 ≈ 1000
Иногда уместно записать округленный результат с сокращениями «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард). Вот так:
7 882 000 = 7 882 тыс.
1 000 000 = 1 млн.
ОКРУГЛЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ
Десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Такую дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Например дробь (одна вторая) 1/2.Делим 1 на 5 получаем ноль ЦЕЛЫХ и пять ДЕСЯТЫХ 0,5
При округлении десятичных дробей следует быть особенно внимательным, потому что десятичная дробь состоит из целой и дробной части. И у каждой из этих частей есть свои разряды:
Разряды целой части:
разряд единиц;
разряд десятков;
разряд сотен;
разряд тысяч.
Разряды дробной части:
разряд десятых;
разряд сотых;
разряд тысячных.
Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление.
Цифра, которая записана в данном разряде: не меняется, если следующая за ней справа цифра — 0,1, 2, 3 или 4;
увеличивается на единицу, если за ней справа следует цифра — 5, 6, 7, 8 или 9.
Пример 1.
256,43 ≈ 256,4 — округление до десятых;
4,578 ≈ 4,58 — округление до сотых;
17,935 ≈ 18 — округление до целых.
79,7 ≈ 80 — округление до десятков;
0,099 ≈ 0,10 — округление до сотых.
Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра слева в предыдущем разряде увеличивается на 1.
==============================================================
Рассмотрим десятичную дробь 123,456 — сто двадцать три целых четыреста пятьдесят шесть тысячных. Здесь целая часть это 123, а дробная часть 456. При этом у каждой из этих частей есть свои разряды. Очень важно не путать их:
Для целой части применяются те же правила округления, что и для обычных чисел. Отличие в том, что после округления целой части и замены нулями всех цифр после сохраняемой цифры, дробная часть полностью отбрасывается.
Например, округлим дробь 123,456 до разряда ДЕСЯТКОВ . Именно до разряда десятков, А НЕ ДЕСЯТЫХ Очень важно не перепутать эти разряды. РАЗРЯД ДЕСЯТКОВ РАСПОЛАГАЕТСЯ В ЦЕЛОЙ ЧАСТИ , А РАЗРЯД ДЕСЯТЫХ В ДРОБНОЙ
Итак, мы должны округлить 123,456 до разряда десятков. Сохраняемая цифра здесь это 2, а первая из отбрасываемых цифр это 3
Ответ : 123,456 ≈ 120
Теперь попробуем округлить ту же самую дробь 123,456 до разряда единиц. Сохраняемая цифра здесь будет 3, а первая из отбрасываемых цифр это 4, которая находится в дробной части:
123,456 ≈ 123,0 ≈ 123
Попробуем округлить дробь 123,456 до разряда десятых.
Ответ : 123,456 ≈ 123,500
===================================================
На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой спидометр не может дать точных показаний скорости и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того, чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать их приближенными значениями.
На сколько отличается приближенное значение от точного?
Точное значение Приближенное значение
Разница
Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее.
Определение: Абсолютной погрешностью приближенного значения называется модуль разности точного и приближенного значений.
Пример 1
Найди абсолютную погрешность приближенного значения, полученного в результате округления числа 124 до десятков
Выполни округление. Так как после разряда десятков 124 стоит цифра 4, цифру разряда, до которой идет округление, оставь без изменения и замени нулями все последующие цифры: 124 ≈ 120.
Найди абсолютную погрешность, то есть модуль разности точного и приближенного значений: |124 – 120| = 4.
Пример 2
Представь число (пять шестых) 5/6 в виде бесконечной периодической десятичной дроби. Округли результат до сотых и найди абсолютную погрешность приближенного значения.
Относительная погрешность приближения показывает, какую часть или сколько процентов составляет абсолютная погрешность от приближенного значения числа. Чем меньше абсолютная погрешность по отношению к приближенному значению, тем лучше качество приближения, то есть относительная погрешность характеризует качество приближения. На производстве при изготовлении деталей пользуются штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).
Пример 3
Округли число 2,525 до десятых и найди относительную погрешность приближения, полученного при округлении.
Пример 4
Округли число 48,6 до десятков и найди относительную погрешность приближения, полученного при округлении в процентах.
Пример 5
Расстояние от города A до города B равно (125 ± 1) км. Длина карандаша равна (20 ± 1) cм. Найди, на сколько процентов выше качество измерения расстояния между городами, чем качество измерения длины карандаша, оценив разность их относительных погрешностей.
Пример 6
Общая протяженность реки Нура около 978 км. Оцени, с какой точностью нужно произвести измерения, чтобы относительная погрешность составляла 0,1%.
Пример 7
Цилиндрический поршень имеет около 0,035 м в диаметре. Оцени, с какой точностью нужно произвести измерения микрометром, чтобы относительная погрешность составляла 0,05%. Ответ запиши в миллиметрах в стандартном виде.
Материал взят из инета .
Профи
(865),
закрыт
13 лет назад
Удачник
Высший разум
(141068)
13 лет назад
Округляя число 38,27 до десятых, получаем 38,3. Мы прибавляем 1 к десятым, потому что сотые больше 5.
Абсолютная погрешность равна модулю разницы между точным и округленным числом, 38,3 – 38,27 = 0,03
Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах,
0,03 / 38,3 * 100% = 0,08 %
Стас Проселков
Ученик
(181)
6 лет назад
Округляя число 38,27 до десятых, получаем 38,3. Мы прибавляем 1 к десятым, потому что сотые больше 5.
Абсолютная погрешность равна модулю разницы между точным и округленным числом, 38,3 – 38,27 = 0,03
Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах,
0,03 / 38,3 * 100% = 0,08 %
38
Элементы теории погрешностей Основные определения
Определение
1: Приближенным
числом a
называют число, незначительно отличающееся
от точного числа А
и заменяющее последнее в вычислениях.
Определение
2:
Округление
числа –
это приближенное представление числа
в некоторой системе счисления с помощью
конечного количества разрядов. Возникающую
при этом погрешность называют погрешностью
округления
или ошибкой округления. Округляют как
исходные данные задачи, так и полученные
результаты вычислений.
Правила округления чисел
-
Если первая из
отброшенных цифр меньше 5, то оставшиеся
десятичные знаки сохраняются, например:
25700203 25700200, -
Если первая из
отброшенных цифр больше 5, то к последней
оставшейся цифре добавляется 1, например:
25700267
25700300, -
Если первая из
отброшенных цифр равна 5, а среди
остальных отброшенных цифр есть
ненулевые, то к последней оставшейся
цифре добавляется 1; например:
2575002
2580000, -
Если первая из
отброшенных цифр равна 5, а все остальные
отброшенные цифры равны нулю, то
действует правило
четной цифры:
-
если последняя
оставшаяся цифра четная, то она
сохраняется, например:
256500
256000, -
если последняя
оставшаяся цифра нечетная, то она
увеличивается на единицу, например:
257500
258000.
Пример 1:
Пользуясь правилами округления чисел,
округлить:
1) до десятых долей:
73,47373,5;
2) до сотых долей:
73,47373,47.
Важное замечание.
Абсолютная погрешность округления по
правилам 14
не превосходит половины единицы разряда
последней оставленной цифры.
Типы погрешностей:
-
Исходные или
неустранимые.
К ним относятся погрешности, возникающие
в результате приближенного описания
реальных процессов и неточного задания
исходных данных, а также погрешности,
связанные с действиями над приближенными
числами. Эти погрешности проходят через
все вычисления и являются неустранимыми. -
Погрешность
метода
(результат
замены бесконечных процессов конечной
последовательностью действий). -
Погрешности округления Абсолютная и относительная погрешности (ап и оп)
Разность между
точным числом А
и его приближенным значением a
составляет ошибку или погрешность.
— приближенное
значение a
по недостатку,
— приближенное
значение a
по избытку.
Как правило, знак
ошибки нас не интересует, поэтому
пользуются абсолютной погрешностью.
Определение
3:
Абсолютная величина разности между
точным числом А
и его приближенными значениями а
называется абсолютной
погрешностью
приближенного числа а
и обозначается
Пример 2:
Пусть
Тогда абсолютная погрешность
Значение точного
числа А
всегда заключено в границах
Значение числа А
можно записать так:
.
По абсолютной
погрешности нельзя судить о том, насколько
точно или грубо произведено измерение
или вычисление, а именно, какую долю
в значении числа составляет погрешность
. В связи с этим вводится понятие
относительной погрешности.
Определение
4:
Относительной погрешностью
(ОП)
приближенного числа a
называется отношение абсолютной
погрешности
к модулю точного значения числа
т.е.
Так как точное
значение числа А,
как правило, неизвестно, то можно
воспользоваться формулой:
П той же причине
(А
неизвестно) вместо значений абсолютной
и относительной погрешности получают
их оценки
сверху,
котрые имеют вид:
,
и называются
верхними границами (или просто границами)
абсолютной и относительной погрешностей
соответственно.
В дальнейшем
мы будем пользоваться просто символами
и
,
имея в виду погрешности (если есть
возможность их найти) либо их оценки
сверху.
Пример
3:
Число 75,3
получено округлением. Оценить абсолютную
погрешность округления.
Решение:
Точное
значение числа неизвестно. Пользуясь
правилами округления чисел, можно
сказать, что абсолютная погрешность не
превышает (
)
0,05. Запишем это так: 75,3
или
.
В качестве границы абсолютной погрешности
берут по возможности наименьшее число.
Пример 4:
Пусть при измерении книги и длины стола
получены результаты
см и
см.
Найти относительную
погрешность измерения книги стола:
или 0,35%.
или 0,09%.
Таким образом,
измерение стола было произведено гораздо
точнее.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Абсолютная и относительная погрешность
4.2
Средняя оценка: 4.2
Всего получено оценок: 2179.
4.2
Средняя оценка: 4.2
Всего получено оценок: 2179.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Опыт работы учителем математики – более 33 лет.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
- при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
- при делении и умножении чисел требуется сложить относительные погрешности;
- при возведении в степень относительную погрешность умножают на показатель степени.
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Светлана Лобанова-Асямолова
10/10
-
Валерий Соломин
10/10
-
Анастасия Юшкова
10/10
-
Ксюша Пономарева
7/10
-
Паша Кривов
10/10
-
Евгений Холопик
9/10
-
Guzel Murtazina
10/10
-
Максим Аполонов
10/10
-
Olga Bimbirene
9/10
-
Света Колодий
10/10
Оценка статьи
4.2
Средняя оценка: 4.2
Всего получено оценок: 2179.
А какая ваша оценка?