Как найти абсолютную температуру в физике формула

Температура. Тепловое равновесие. Абсолютная шкала температур. Молекулярная физика

Подробности
Обновлено 07.10.2018 21:52
Просмотров: 920

Температура – это просто!

Температура

Температура – это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.

Прибор для измерения температуры – термометр.
Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах – это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Жидкостные термометры

На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35oС до +750oС) и спиртовые (от -80oС до +70oС).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0oС и 100oС).
Этих недостатков лишены газовые термометры.

Газовые термометры

Первый газовый термометр был создан французским физиком Ж. Шарлем.

Преимущества газового термометра:
– используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
– точность измерения от 0,003oС до 0,02oС
– интервал температур от -271oС до +1027oС.

Тепловое равновесие

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.

Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.

Для разреженных (идеальных) газов величина

и зависит только от температуры, тогда

где k – постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

Абсолютная шкала температур

– введена английским физиком У. Кельвином
– нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный ноль ( 0К = -273oС ), самая низкая температура в природе. В настоящее время достигнута самая низкая температура – 0,0001К.
По величине 1К равен 1oC.

Связь абсолютной шкалы со шкалой Цельсия

Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

После введения абсолютной температуры получаем новые выражения для формул:

Средняя кинетическая энергия поступательного движения молекул

Давление газа – основное уравнение МКТ

Средняя квадратичная скорость молекул

И как следствие, закон Авогадро:

В равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Заметьте, здесь концентрация молекул также одинакова!

Молекулярная физика. Термодинамика – Класс!ная физика

Основные положения МКТ. Масса и размер молекул. Количество вещества. —
Взаимодействие молекул. Строение твердых тел, жидкостей и газов. —
Идеальный газ. Основное уравнение МКТ. —
Температура. Тепловое равновесие. Абсолютная шкала температур. —
Уравнение состояния идеального газа. —
Изопроцессы. Газовые законы. —
Взаимные превращения жидкостей и газов. Влажность воздуха. —
Твердые тела. Кристаллические тела. Аморфные тела.

Температура

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: тепловое равновесие, абсолютная температура.

Мы часто используем слово “температура” в повседневной речи. А что такое температура? В данной статье мы объясним физический смысл этого понятия.

В молекулярной физике и термодинамике рассматриваются макроскопические тела, т. е. тела, состоящие из огромного числа частиц. Например, в стакане воды содержится порядка 10^{25} молекул. Такое грандиозное число с трудом поддаётся осмыслению.

Термодинамическая система

Термодинамической системой называется макроскопическое тело или система тел, которые могут взаимодействовать друг с другом и с окружающими телами. Стакан с водой — пример термодинамической системы.

Термодинамическая система состоит из столь большого числа частиц, что совершенно невозможно описывать её поведение путём рассмотрения движения каждой молекулы в отдельности. Однако именно грандиозность числа молекул делает ненужным такое описание.

Оказывается, что состояние термодинамической системы можно характеризовать небольшим числом макроскопических параметров — величин, относящимся к системе в целом, а не к отдельным атомам или молекулам. Такими макроскопическими параметрами являются давление, объём, температура, плотность, теплоёмкость, удельное сопротивление и др.

Состояние термодинамической системы, при котором все макроскопические параметры остаются неизменными с течением времени, называется тепловым равновесием. В состоянии теплового равновесия прекращаются все макроскопические процессы: диффузия, теплопередача, фазовые переходы химические реакции и т. д.(Следует отметить, что тепловое равновесие является динамическим равновесием. Так, при тепловом равновесии жидкости и её насыщенного пара весьма интенсивно идут взаимные превращения жидкости и пара. Но это — процессы молекулярного масштаба, они происходят с одинаковыми скоростями и компенсируют друг друга. На макроскопическом уровне количество жидкости и пара со временем не меняется).

Термодинамическая система называется изолированной, если она не может обмениваться энергией с окружающими телами. Чай в термосе — типичный пример изолированной системы.

Тепловое равновесие

Фундаментальный постулат, вытекающий из многочисленных опытных данных, гласит: каково бы ни было начальное состояние тел изолированной системы, со временем в ней устанавливается тепловое равновесие. Таким образом, тепловое равновесие — это состояние, в которое любая система, изолированная от окружающей среды, самопроизвольно переходит через достаточно большой промежуток времени.

Температура как раз и является величиной, характеризующей состояние теплового равновесия термодинамической системы.

Температура — это макроскопический параметр, значения которого одинаковы для всех частей термодинамической системы, находящейся в состоянии теплового равновесия. Попросту говоря, температура — это то, что является одинаковым для любых двух тел, которые находятся в тепловом равновесии друг с другом. При тепловом контакте тел с одинаковыми температурами между ними не будет происходить обмен энергией (теплообмен).

В общем же случае при установлении между телами теплового контакта теплообмен начнётся. Говорят, что тело, которое отдаёт энергию, имеет более высокую температуру, а тело, которое получает энергию — более низкую температуру. Температура, таким образом, указывает направление теплообмена между телами. В процессе теплообмена температура первого тела начнёт уменьшаться, температура второго тела — увеличиваться; при выравнивании температур теплообмен прекратится — наступит тепловое равновесие.

Особенность температуры заключается в том, что она не аддитивна: температура тела не равна сумме температур его частей. Этим температура отличается от таких физических величин, как масса, длина или объём. И по этой причине температуру нельзя измерить путём сравнения с эталоном.

Измеряют температуру с помощью термометра.

Для создания термометра выбирают какое-либо вещество (термометрическое вещество), какую-либо характеристику этого вещества (термометрическую величину), и используют зависимость термометрической величины от температуры. При этом выбор термометрического вещества и термометрической величины может быть весьма произвольным.

Так, в бытовых жидкостных термометрах термометрическим веществом является ртуть (или спирт), а термометрической величиной — длина столбика жидкости. Здесь используется линейная зависимость объёма жидкости от температуры.

В идеально-газовых термометрах используется линейная зависимость давления разреженного газа (близкого по своим свойствам к идеальному) от температуры.

Действие электрических термометров (термометров сопротивления) основано на температурной зависимости сопротивления чистых металлов, сплавов и полупроводников.

В процессе измерения температуры термометр приводится в тепловой контакт(В области температур выше rm 1000^{circ}C (раскалённые газы, расплавленные металлы) используются бесконтактные высокотемпературные термометры — пирометры. Их действие основано на измерении интенсивности теплового излучения в оптическом диапазоне.) с телом, температура которого определяется. Показания термометра после наступления теплового равновесия — это и есть температура тела. При этом термометр показывает свою температуру!

Температурная шкала. Абсолютная температура

При установлении единицы температуры чаще всего поступают следующим образом. Берут две температуры (так называемые реперные точки) — температуру таяния льда и температуру кипения воды при нормальном атмосферном давлении. Первой температуре приписывают значение 0, второй — значение 100, а интервал между ними делят на 100 равных частей. Каждую из частей называют градусом (обозначают rm vphantom{1}^{circ}C), а полученную таким образом температурную шкалу — шкалой Цельсия.

При измерениях по шкале Цельсия с помощью жидкостных термометров возникает одна трудность: разные жидкости при изменении температуры изменяют свой объём по-разному. Поэтому два термометра с различными жидкостями, приведённые в тепловой контакт с одним и тем же телом, могут показать разные температуры. От данного недостатка свободны идеально-газовые термометры — зависимость давления разреженного газа от температуры не зависит от вещества самого газа.

Кроме того, для температурной шкалы идеально-газового термометра существует естественное начало отсчёта (исчезает произвол выбора реперной точки!): это та предельно низкая температура, при которой давление идеального газа постоянного объёма обращается в нуль. Эта температура называется абсолютным нулём температур.

Температурная шкала, началом отсчёта которой является абсолютный нуль, а единицей температуры — градус Цельсия, называется абсолютной температурной шкалой.

Температура, измеряемая по абсолютной шкале, называется абсолютной температурой и обозначается буквой T. Единица абсолютной температуры называется кельвином (rm K).

Абсолютному нулю (T=0) соответствует температура t=-273,15^{circ}C. Поэтому связь абсолютной температуры и температуры по шкале Цельсия даётся формулой:

T=t+273,15.

В задачах достаточно использовать формулу T=t+273.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Температура» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Температура – термодинамическая макроскопическая характеристика, которая играет важную роль практически во всех физических процессах. В данной статье сосредоточим свое внимание на освещении вопросов, что такое абсолютная температура газа идеального и как ее можно вычислить.

Абсолютная шкала температур

Для начала познакомимся со шкалой, которая используется в физике для описания температуры. Она называется абсолютной или шкалой Кельвина. Впервые ее ввел в использование английский физик лорд Кельвин в 1848 году. При этом ученый основывался на завоевавшей популярность шкале Цельсия.

Лорд Кельвин

Абсолютная температура так называется потому, что она имеет нижний предел – 0 кельвин, при котором считается “замороженным” любой вид движения (на самом деле при 0 К существуют так называемые нулевые колебания). Верхнего предела у этой шкалы нет.

С градусами Цельсия C абсолютная шкала T связана следующим простым равенством:

T = C + 273,15.

В отличие от других температурных шкал, например, от шкалы Фаренгейта, кельвин имеет точно такой же масштаб, что и градус Цельсия. Последнее означает, что для перевода в абсолютную любой температуры по Цельсию достаточно добавить к ней число 273,15. Так, по шкале Кельвина вода замерзает при 273,15 К, а кипит при 373,15 К.

Термометр с абсолютной шкалой

Краткое понятие о газе идеальном

Поскольку далее будет рассмотрена формула для определения абсолютной температуры газа идеального, то будет полезным познакомиться с этим понятием поближе. Под идеальным понимают такой газ, молекулы которого практически не взаимодействуют друг с другом, обладают большой кинетической энергией по сравнению с потенциальной, и расстояния между которыми значительно превышают их собственные размеры.

Все реальные газы проявляют поведение идеальных при небольших давлениях и высоких температурах. Примерами могут служить благородные газы, воздух, метан и другие. В то же время пар H2O даже при низких давлениях сильно отличается от идеального газа, поскольку в нем всегда присутствуют значительные водородные связи между полярными молекулами воды.

Газы реальные и идеальные

Температура абсолютная идеального газа

Существует два подхода к определению температуры в газах. Рассмотрим каждый из них.

Первый подход заключается в привлечении положений молекулярно-кинетической теории (МКТ) и физического смысла самой температуры T. Последний заключается в кинетической энергии частиц газа. Чем больше эта энергия, тем выше температура, причем зависимость является прямо пропорциональной. Используя формулу из механики для энергии кинетической и постоянную Больцмана kB можно записать следующее равенство МКТ:

m*v2/2 = 3/2*kB*T.

Где m – масса движущейся поступательно частицы. Выражая из этого равенства величину T, получаем формулу:

T = m*v2/(3*kB).

Чем меньше масса частицы и чем больше ее скорость, тем выше абсолютная температура.

Второй подход в определении величины T заключается в использовании универсального уравнения Клапейрона-Менделеева. Это уравнение было записано в XIX веке Эмилем Клапейроном (впоследствии модифицировано Д. И. Менделеевым) как результат обобщения открытых экспериментально в XVII-XIX веках газовых законов (Шарля, Гей-Люссака, Бойля-Мариотта, Авогадро). Математически универсальное уравнение записывается так:

P*V = n*R*T.

Как видно, оно связывает три основных термодинамических величины системы: давление P, объем V и температуру абсолютную T. Две другие величины, присутствующие в уравнении, – это n – количество вещества и R – газовая постоянная.

Не представляет особого труда получить формулу для температуры из Клапейрона-Менделеева закона:

T = P*V/(n*R).

В закрытой системе (n = const) температура газа прямо пропорциональна произведению объема на давление.

Пример задачи

Воздух, которым мы дышим, является смесью газов идеальных. Известно, что молярная масса воздуха составляет 29 г/моль. Необходимо определить температуру воздуха, если средняя скорость его молекул составляет 530 м/с.

Очевидно, что решение этой задачи можно получить, если воспользоваться следующим выражением:

T = m*v2/(3*kB).

Массу одной молекулы m воздуха можно получить, если поделить величину M на число Авогадро NA. Произведение же числа NA на константу Больцмана kB – это не что иное, как газовая постоянная R, которая равна 8,314 Дж/(К*моль). Учитывая эти рассуждения, получаем рабочую формулу:

T = M*v2/(3*R ) = 0,029*6002/(3*8,314) = 326,60 К.

Пустыня Сахара

В градусах Цельсия найденной температуре соответствует значение 53,45 oC. На нашей планете такие температуры характерны для жарких песчаных пустынь в полдень.

Видеоурок: Абсолютная температура

Лекция: Абсолютная температура

Температура, её измерение

Всегда для нас температура была характеристикой теплоты некоторого тела. На самом деле температура характеризуется скоростью движения молекул вещества, в том числе и идеального газа.

Чем большую скорость имеет молекула, следовательно, она обладает большей энергией.

Температура – это среднеквадратическая энергия структурных единиц вещества. 

То есть чем больше кинетическая энергия молекул газа, тем выше температура всего вещества.

Измерять температуру можно с помощью специального проградуированного прибора. Впервые такое средство измерительной техники было предложено Фаренгейтом. За начало измерений была взята температура, при которой тает лед из воды и спирта, соединенные в равных количествах. Заканчивалась шкала температурой, при которой кипит вода. Ведь этот диапазон был разделен на 180 равных частей, каждая из которых отвечала изменению температуры на 1 градус.

В середине XVIII столетия ученый Цельсий предложил новую шкалу, начинавшуюся с температуры таяния льда, и заканчивающуюся температурой кипения. Весь диапазон разделил на 100 частей. Данная шкала температур используется до сих пор.

Несмотря на популярность шкалы по Цельсию, за абсолютную шкалу температур во всем мире принимается шкала Кельвина, которая берет свое начало в абсолютном нуле. Абсолютный ноль273,15 градуса Цельсия.

Абсолютная температура

Так как температура характеризуется скоростью и энергией молекул, то при абсолютном нуле все молекулы прекращают свое движение.

Абсолютная температура измеряется в Кельвинах: [Т] = 1К.

Чтобы перейти от температуры в Цельсиях к Кельвинам, следует воспользоваться простой формулой:

Например:

Если дана температура в Цельсиях 27 градусов, то чтобы перейти в Кельвины, следует просто добавить стандартную величину: 27 °С + 273 = 300 К.

Если необходимо, наоборот, перейти от Кельвинов к Цельсиям, то фиксированное значение следует отнять:

373 К – 273 = 100°С.

Данная шкала температур удобна тем, что все величины получаются положительными. Абсолютная температура не может быть отрицательной.

На протяжении школьного
курса физики, вы уже много раз слышали о том, что температура является мерой
средней кинетической энергии молекул. Но, как сказал Лев Ландау, «верховным
судьёй всякой физической теории является опыт». Поэтому, на сегодняшнем уроке мы
рассмотрим опыты, позволяющие нам дать определение температуре. Возьмем сосуд с
перегородкой и поместим в половинки сосуда два различных газа разной
температуры. Если перегородка сосуда проводит тепло, то через некоторое время
оба газа будут иметь одинаковую температуру.

Основываясь на нашем
начальном предположении о том, что температура является мерой средней
кинетической энергии молекул, мы попытаемся доказать, что средняя кинетическая
энергия молекул обладает таким же свойством, как и температура.

Как и было сказано в
предыдущих уроках, измерить кинетическую энергию отдельной молекулы крайне
сложно. Однако, мы можем выразить среднюю кинетическую энергию молекул газа
через макроскопические параметры. Воспользуемся основным уравнением
молекулярно-кинетической теории:

Заметим, что концентрация
молекул равна отношению числа молекул газа к его объёму:

Тогда

Итак, мы выразили среднюю
кинетическую энергию молекул через три величины, которые легко измеряются.
Объём можно задать, поместив газ в герметичный баллон, а давление измерим с
помощью манометра. Чтобы найти количество молекул, как вы знаете, нужно
количество вещества умножить на число Авогадро:

Вспомним теперь, что
количество вещества равно отношению массы к молярной массе:

Молярную массу, как вы
знаете, можно подсчитать, используя таблицу Менделеева.

Следовательно,

Для проведения опыта мы
можем использовать баллоны с водородом и кислородом, давление, объёмы и
количество молекул которых, различны.

Чтобы уравнять
температуру газов их необходимо привести в тепловое равновесие с одним и тем же
телом (как правило, используется тающий лед). Через некоторое время установится
тепловое равновесие, то есть температуры кислорода и водорода будут равны 0 оС.
Наша цель проверить — уравнялись ли при этом средние кинетические энергии
молекул газов, и если это так, то наше начальное предположение верно. Опыты и
сопутствующие расчеты говорят о том, что отношение произведения давления и
объёма к количеству молекул газа остается постоянным при постоянной температуре,
независимо от природы самого газа:

Это говорит нам о том,
что средняя кинетическая энергия молекул — это и есть температура.

Необходимо отметить, что
данное соотношение все же начинает зависеть от рода газа при очень большом
давлении, таком как несколько сотен атмосфер. Однако, мы с уверенностью можем
сказать, что до тех пор, пока газ может считаться идеальным, данное соотношение
строго определено.

Поскольку температура
фактически является мерой энергии, её иногда измеряют в энергетических единицах.
Но, дело в том, что в повседневной жизни подобные единицы измерения неудобны.
Например, если в баллоне объёмом 10 л находится 1 моль водорода при нормальном
давлении, то средняя кинетическая энергия его молекул будет равна 1,68 х 10−21
Дж. В связи с этим возникает вопрос: как перевести температуру из
энергетических единиц измерения в градусы, используемые в повседневной жизни?
Ведь, люди могут выбирать какую угодно температурную шкалу, но этот выбор не
может повлиять на кинетическую энергию молекул. Поэтому, вводится понятие абсолютной
температуры.
Будем считать эту температуру прямо пропорциональной
температуре, выраженной в энергетических единицах:

В этой формуле мы
обозначили коэффициент пропорциональности буквой k.

Учитывая тот факт, что
такие величины, как объём, давление и число молекул, не могут быть
отрицательными, делаем вывод, что абсолютная температура тоже не может быть
отрицательной.

Как видно из формулы, абсолютный
ноль температуры — это такая температура, при которой давление газа равно нулю,
при постоянном объёме.
Такое возможно только в случае, если молекулы газа
попросту остановились (это следует из основного уравнения
молекулярно-кинетической теории).

Абсолютную шкалу температур
предложил лорд Кельвин, в честь которого и названа единица измерения
температуры по абсолютной шкале. 1 К равен 1 оС, поэтому перевести
градусы Цельсия в кельвины довольно просто: нужно к температуре в градусах
Цельсия прибавить 273 градуса:

Таким образом, абсолютный
ноль температуры по шкале Цельсия равен −273 градуса. Необходимо
отметить, что абсолютный ноль недостижим.

Вернемся теперь к
уравнению, которое мы использовали в начале урока:

Также, мы выяснили, что
отношение произведения давления и объёма к числу молекул должно быть
пропорционально температуре:

 Мы получили два
уравнения, левые части которых равны. Значит, должны быть равны и правые части:

Итак, мы вплотную подошли
к связи между средней кинетической энергией и температурой. Остается только
разобраться с коэффициентом пропорциональности.

Этот коэффициент получил
название постоянной Больцмана, в честь Людвига Больцмана.

Больцман был первым, кто
нашел соотношение между кинетической энергией и температурой. Постоянная
Больцмана определяет связь между температурой в энергетических единицах
измерения и температурой в кельвинах.
Итак, средняя кинетическая энергия
молекул равна

Сегодня мы можем
повторить эксперимент, с помощью которого можно вычислить постоянную Больцмана.
Возьмем газ, который можно считать идеальным, и измерим среднюю кинетическую
энергию его молекул тем же способом, который мы использовали в начале урока —
то есть, выразив её через макроскопические параметры:

Проведем измерения для
двух случаев: в одном случае поместим сосуд в тающий лед, а во втором случае —
в кипящую воду.

Тогда, разность между
температурами в энергетических единицах измерения должна быть равна
произведению разности температуры в кельвинах и постоянной Больцмана:

Отсюда выразим постоянную
Больцмана:

Расчеты показывают, что
эта величина остается постоянной для любого газа, который можно считать
идеальным:

Несмотря на то, что
соотношение между температурой и кинетической энергией установлено для газов,
оно также выполняется для жидкостей и для твердых тел:

Данное соотношение не
выполняется только в том случае, если движение частиц не подчиняется законам
механики Ньютона. Это происходит при экстремальных условиях, например при
колоссальном давлении, огромной температуре или сильнейших электромагнитных
полях.

Пример решения задачи.

Задача. При
температуре 200 К средняя скорость молекул одного моля неизвестного газа равна
500 м/с. Считая этот газ идеальным, определите его молярную массу.

Добавить комментарий