Как найти абсолютную влажность в помещении

Как найти абсолютную влажность воздуха

Абсолютная влажность – эта масса водяного пара, которая находится в единице объема этого газа, проще говоря, это плотность водяного пара. В зависимости от температуры эта величина может меняться. Ее можно измерить, получив точку росы или рассчитать через относительную влажность.

Как найти абсолютную влажность воздуха

Вам понадобится

  • – ртутный термометр;
  • – герметичный сосуд;
  • – таблица зависимости насыщенного водяного пара от температуры;
  • – психрометр.

Инструкция

Для непосредственного измерения влажности, отберите пробу воздуха в герметичный сосуд и начинайте охлаждать его. При определенной температуре на стенках сосуда появится роса (пар конденсируется), запишите значение температуры, при котором это произойдет. По специально таблице найдите плотность насыщенного пара при той температуре, что он конденсировался. Это и будет абсолютная влажность воздуха, проба которого отбиралась.

Возьмите чувствительный ртутный термометр, обмотайте пузырек с ртутью тканью. Снимите с него показания после того, как он придет в температурное равновесие с окружающим воздухом. По таблице определите плотность насыщенного пара при температуре, которую показывает термометр. Это и будет абсолютная влажность, но значение будет не очень точным.

Рассчитайте абсолютную влажность при известной относительной влажности. Эта величина измеряется в процентах и показывает, во сколько раз реальная плотность водяного пара в воздухе меньше насыщенного при данной температуре. Для определения абсолютной влажности измерьте температуру воздуха. Затем, по таблице плотности насыщенного пара найдите эту величину для измеренной температуры. Чтобы найти абсолютную влажность, относительную влажность φ умножьте на плотность насыщенного пара при данной температуре ρн и поделите на 100% (ρ= φ∙ ρн/100%).

Пример Относительная влажность при температуре 20ºС составляет 45%. Чтобы получить абсолютную влажность, найдите плотность насыщенного водяного пара при температуре 20 ºС, которую имеет воздух. Эта величина составляет 17,3 г/м³. После этого примените формулу для расчета абсолютной влажности ρ=45∙17,3/100=7,785 г/м³. Это и будет абсолютная влажность воздуха.

Полезный совет

Если относительная влажность воздуха неизвестна, измерьте ее при помощи специального прибора, который называется психрометр.

Источники:

  • абсолютная влажность воздуха

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 ноября 2017 года; проверки требуют 20 правок.

Абсолютная влажность воздуха
f = frac{m}{V}
Размерность L−3M
Единицы измерения
СИ кг/м³
СГС г/см³
Примечания
скалярная величина

Абсолютная влажность воздуха (лат. absolutus — полный) — физическая величина, показывающая массу водяных паров, содержащихся в 1 м³ воздуха[1]. Другими словами, это плотность водяного пара в воздухе. Обычно обозначается буквой f.

Согласно РМГ 75-2014 термины абсолютная влажность и парциальная плотность влаги отнесены к не рекомендуемым к применению синонимам термина массовая концентрация влаги[2].

Определение[править | править код]

Абсолютная влажность воздуха рассчитывается по следующей формуле:

{displaystyle f={frac {m}{V}}=rho _{steam},}

где V — объём влажного воздуха, а m — масса водяного пара, содержащегося в этом объёме.

Обычно используемая единица абсолютной влажности: {displaystyle [f]=1} г/м³.

Абсолютная влажность воздуха зависит от температурного режима и переноса (адвекции) влаги с океаническими массами воздуха. При одной и той же температуре воздух может поглотить вполне определённое количество водяного пара и достичь состояния полного насыщения. В спокойном состоянии воздух может достичь и перенасыщения (параметр влажности становится выше 100%), но поскольку атмосфера редко когда равновесна, лишняя влага или осаждается (роса, изморозь, иней) или, реже, конвектирует в более высокие слои атмосферы, а в прогнозах погоды перенасыщение не отображается.

Рассматривая водяной пар как идеальный газ, с помощью уравнения Клапейрона — Менделеева получают соотношение, связывающее плотность и парциальное давление водяного пара[3]:

{displaystyle rho _{steam}={frac {Mcdot {p}_{(H_{2}O)}}{Rcdot T}}} ,

где M — молярная масса воды (18,01528 г/моль); {displaystyle {p}_{(H_{2}O)}} — парциальное давление паров воды в воздухе; R — универсальная газовая постоянная (R = 8,3144598(48) Дж(моль∙К)); T — температура воздуха, К.

Переход к относительной влажности[править | править код]

Согласно следствию закона Бойля — Мариотта, при изотермическом процессе давление газа изменяется прямо пропорционально его плотности. Отсюда формулу расчёта относительной влажности воздуха можно как:

{displaystyle RH={frac {{p}_{(H_{2}O)}}{p_{(H_{2}O)}^{*}}}times 100%={frac {{rho }_{(H_{2}O)}}{rho _{(H_{2}O)}^{*}}}times 100%,}

откуда следует, что

{displaystyle {rho }_{(H_{2}O)}={frac {RHtimes {rho }_{(H_{2}O)}^{*}}{100%}},}

где

{displaystyle RH} — относительная влажность воздуха (обычно обозначается греческой буквой φ);
{displaystyle {p}_{(H_{2}O)}} — парциальное давление паров воды в воздухе;
{displaystyle {p}_{(H_{2}O)}^{*}} — равновесное давление насыщенного пара.
{displaystyle {rho }_{(H_{2}O)}} — это и есть абсолютная влажность воздуха f, а
{displaystyle {rho }_{(H_{2}O)}^{*}} — плотность насыщенного водяного пара при данной температуре, значение которой можно найти из психрометрических таблиц Всемирной метеорологической организации[4]:
Зависимость плотности насыщенного пара от температуры воздуха

Температура {displaystyle t,{}^{circ }C} Плотность насыщенного водяного пара {displaystyle {rho }_{(H_{2}O)}^{*}}, г/м³ Температура {displaystyle t,{}^{circ }C} Плотность насыщенного водяного пара {displaystyle {rho }_{(H_{2}O)}^{*}}, г/м³
0,0 4,9 55,0 104,0
5,0 6,8 60,0 129,5
10,0 9,4 65,0 160,1
15,0 12,8 70,0 196,4
20,0 17,3 75,0 239,3
25,0 23,0 80,0 289,7
30,0 30,4 85,0 348,7
35,0 39,6 90,0 417,3
40,0 51,2 95,0 496,8
45,0 65,4 100,0 588,5
50,0 82,8 и т.д. >588,5

Абсолютная влажность воздуха в состоянии его насыщения носит название влагоёмкости. Величина влагоёмкости воздуха резко возрастает с увеличением его температуры.

См. также[править | править код]

  • Влажность
  • Насыщенный пар
  • Относительная влажность
  • Психрометр

Примечания[править | править код]

  1. Влажность воздуха Архивная копия от 22 ноября 2012 на Wayback Machine — Статья в Физической энциклопедии
  2. РМГ 75-2014. Измерения влажности веществ. Термины и определения, 2015, с. 3.
  3. Кирьянов А. П., Коршунов С. М., Термодинамика и молекулярная физика, 1977, с. 117.
  4. PWMU. CIMO-WMO Guide to meteorological instruments and methods of observation. WMO-No. 8 (2014 edition, Updated in 2017) (англ.). www.wmo.int. Дата обращения: 4 мая 2018. Архивировано 4 мая 2018 года.

Литература[править | править код]

  • Кирьянов А. П., Коршунов С. М. Термодинамика и молекулярная физика. Пособие для учащихся. — М.: Просвещение, 1977. — 160 с.
  • Рекомендации по межгосударственной стандартизации РМГ 75-2014. Государственная система обеспечения единства измерений. Измерения влажности веществ. Термины и определения. — М.: Стандартинформ, 2015. — iv + 16 с.

Ссылки[править | править код]

  • Абсолютная влажность воздуха и относительная влажность воздуха. Онлайн-калькулятор.

Вода покрывает две трети поверхности Земли.

e.png

С поверхностей рек, морей, водоёмов при любой температуре происходит испарение. Следовательно, в воздухе постоянно находится водяной пар. Наличие водяного пара в воздухе и показывает влажность воздуха.

Для определения содержания влаги в воздухе используют понятия абсолютной и относительной влажности.

Абсолютная влажность

ρ

 показывает, какая масса водяного пара содержится в единице объёма воздуха, то есть плотность водяного пара:
([rho]=frac{1~кг}{1~м^3}).

В справочных таблицах используют значение плотности водяного пара: ([rho]=frac{1~г}{1~м^3}).

Насыщенный пар — это пар, в котором количество испаряющихся молекул равно количеству конденсирующихся за единицу времени.

В насыщенный пар можно добавить молекулы пара, но они будут возвращаться в жидкость.

Состояние воздуха описывают относительной влажностью воздуха.

Относительная влажность воздуха

ϕ

 — это отношение абсолютной влажности воздуха 

ρ

к плотности 

ρ0

 насыщенного водяного пара при той же температуре, выраженной в процентах:

ϕ=ρρ0⋅100%

.

Из формулы следует: чем больше абсолютная влажность воздуха (т.е. плотность водяного пара) при данной температуре, тем выше относительная влажность (значение приближается к 100%). Из этого следует, что пар приближается к состоянию насыщения, и станет насыщенным при относительной влажности 100%.  

Всем доводилось наблюдать, когда при проветривании кабинета окно запотевает. Как правило, это случается зимой. При охлаждении воздуха до определенной температуры водяной пар может стать насыщенным. В этом случае может появиться роса или туман.

topoboi.com-21824.jpg   i (15).jpg

Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы.

Точкой росы также характеризуется влажность воздуха.

Источники:

http://nearestspace.cc.ua/p/e.png Земля

http://www.topoboi.com/pic/201310/1024×600/topoboi.com-21824.jpg роса

https://w-dog.net/wallpaper/tree-fog-rapeseed-nature-landscape/id/312476/ туман

Измерение относительной влажности в быту

Время на прочтение
12 мин

Количество просмотров 9.3K

Теория

Напомню, что вещество может находиться в твердом, жидком или газообразном состоянии (речь о жилых помещениях с температурой 15-30оС при нормальном – 720-770 мм.рт.ст. – атмосферном давлении). Жидкости характеризуются летучестью паров – при данной температуре некое количество молекул жидкости переходит в газообразное состояние. Количество таких молекул в воздухе зависит от свойств жидкости (есть крайне летучие, как эфир, а есть совсем не летучие, как силиконовое масло), температуры и давления.

Как долго и как много молекул будут покидать жидкую фазу? Это зависит от уже имеющегося их количества в воздухе (газовой фазе). Здесь прямая аналогия с конкуренцией на рынке. Если рынок пустой и доходный, туда “ломятся” множество производителей. Но чем их больше, тем выше конкуренция и ниже доход. В результате на рынке устанавливается некое равновесие. Тоже самое происходит и с воздухом. Молекулы воды будут переходить в газовую фазу либо до исчерпания жидкости, либо до состояния равновесия (при данной температуре и давлении). Равновесие в данном случае выражается в достижении равенства между количеством молекул из жидкой фазы вылетающих с числом молекул, туда возвращающихся.

Если мы говорим об океане, то молекулы воды очевидным образом кончиться не могут, воды много. Но в помещении обычно нет открытого водного зеркала, откуда происходит испарение (за исключением нашей любимой чашки с чаем или кофе). Вода содержится в гигроскопичных материалах, находящихся в помещении (дерево, ткань и пр.). Т.е. равновесие в данном помещении будет достигнуто не из-за насыщения воздуха парами воды до максимального значения, но потому, что вода закончилась.

Важно понимать, что количество молекул воды в воздухе зависит от температуры. При росте температуры на 10оС количество вырастает приблизительно в два раза. С ее снижением равновесное содержание также быстро уменьшается. Когда температура становится отрицательной, воды в воздухе очень мало. Напомню, что шкала Цельсия основана на двух реперных точках, связанных с свойствами именно воды. Вода (особо чистая, оговорюсь) замерзает при нуле градусов, а кипит при 100оС. Т.е. при отрицательных температурах воздух быстро высыхает.

Все мы знаем, что это высыхание ведет, например, к тому, что двери из гигроскопичного материала (дерева, МДФ и пр.) “рассыхаются”. Точно также увеличиваются щели в полах из паркета или паркетной доски. Естественно, материал невозможно в домашних условиях высушить до нулевого содержания воды, ее количество опять-таки будет равновесным и определяется как свойствами материала, так и условиями окружающей среды.

Далее, человек на 95% состоит из воды. И она тоже испаряется в условиях, когда количество молекул в единице объема воздуха далеко от равновесного. Собственно, тело человека и является основным источником влаги в такой ситуации. В итоге мы тоже высыхаем, причем в первую очередь обезвоживаются слизистые, поскольку они в норме влажные (т.е. содержат свободную воду). К чему это ведет, мы тоже хорошо знаем. Горло и язык “пересыхают”, появляются неприятные ощущения в носоглотке.

Поскольку – в отличии от атмосферного давления – мы в силах регулировать влажность в жилых помещениях, не комфортные условиях можно изменить. В данной статье речь идет о ручном регулировании, темы “умного дома” не затрагиваются.

Но сначала нужно определиться, как мы будем измерять влажность, по какому критерию мы будет ее регулировать. Различают 2 базовых показателя. Первый совсем простой по смыслу, называется “абсолютная влажность”. Очевидным образом, это содержание воды в граммах на единицу объема или веса воздуха. Обычно говорят об объеме, тогда абсолютная влажность измеряется в г/м3, т.е. количество граммов воды в кубометре воздуха в нашей квартире.

Второй чуть сложнее. Если жидкой воды в помещении достаточно, то – как я уже сказал выше – она будет испаряться до достижения равновесного (насыщенного) значения. Например, 5 г/м3. В квартирах, как уже говорилось, свободной жидкой воды, как правило, нет. Следовательно, содержание воды в воздухе равновесно-насыщенного значения не достигнет, вода раньше закончится. Допустим, это значение 2.5 г/м3. Тогда можно определить, сколько это в процентах от равновесного значения, т.е. (2.5/5х100)=50%. Эту величину называют “относительной влажностью” (relative humidity, RH) и именно ее измеряют бытовые гигрометры и психрометры.

Еще немного простейшей физики. Ниже в таблице показано содержание воды в граммах на кубометр в зависимости от температуры:

Как видно из таблицы:

60 % отн. влажности воздуха при +30 гр. – это 30,4 * 60 % = 18,24 гр/м3 абсолютной влажности

60 % отн. влажности воздуха при +20 гр. – это 17,3 * 60 % = 10,38 гр/м3

60 % отн. влажности воздуха при -10 гр. – это 2,1 * 60 % = 1,26 гр/м3

Заметьте, относительная влажность одинаковая, а абсолютная отличается в разы. Т.е. показания относительной влажности воздуха можно сравнивать при условии, что измерения делались при одинаковой температуре, измерения при разной температуре сравнивать не имеет смысла.

Эти данные позволяют также понять природу распространенного заблуждения о том, что нагреватели “сушат воздух”. Содержание воды в кубометре при работающем нагревателе не меняется. Меняется равновесное содержание. Например, сегодня утром в комнате было 15оС, влажность 51%. Я включил нагреватель, через определенное время стало 22оС, а относительная влажность упала до 40%. Это произошло не из-за уменьшения количества воды в комнате, изменилась лишь величина RH, т.к. равновесное содержание воды при 22 градусах выше, чем при 15.

Естественно, существуют нормативные документы (ГОСТ, СНиП и пр.), в которых определено, какая влажность для человека комфортная и как оценивать значение влажности в помещениях разного типа. Приведу цитату:

…СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование», Приложение 5 на правах обязательного, холодный (зима) и переходный (весна и осень) период – оптимальная влажность 30-45%. Те же цифры приведены в СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям». Нормальная влажность в жилых помещениях определена в СанПиН 2.1.2.1002-00. «Требования к жилым зданиям и помещениям». Нормальная влажность в помещении, где нет принудительной системы вентиляции, поддерживается за счет регулярных проветриваний. В соответствии со «СНиП 23-01-99* «Строительная климатология», по величине влажности различают следующие режимы помещения: сухой (меньше 40%), нормальный (40÷50%), влажный (50÷60%) или мокрый (свыше 60%). Согласно ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в жилых помещениях не допускается влажность воздуха более 60% (оптимальная величина влажности – не более 45%).”

Вот теперь можно поговорить о том, как влажность регулировать. Она же может быть как низкой (недостаточной), так и высокой (избыточной).

Вначале о наболевшем, о повышении влажности. Можно держать рыбок в аквариуме. Можно ставить на отопительные приборы банки с водой, подвешивать специальные трубки с водой (способ популярен в Европе), наконец, просто сушить белье на батарее. Если батареи горячие, эффективность такого способа достаточно велика. Наконец, воду можно искусственно испарять с помощью разнообразных устройств. Они работают на различных принципах, я полагаю наиболее эффективными из доступных ультразвуковые увлажнители (УЗ). Главным показателем такого устройства является объем воды, испаряемой за единицу времени, обычно это миллилитры в час. Мой домашний УЗ имеет значение 300 мл/ч, промышленные устройства – до 1800 мл/ч. Естественно, испарение в час почти двух литров воды в квартире – это перебор. Увлажнение можно совмещать с очисткой воздуха, но это за рамками данной публикации. Напомню, что в УЗ нужно использовать обессоленную или дистиллированную воду, иначе он быстро выйдет из строя.

Осенью в сырую погоду при выключенном отоплении влажность становится избыточной, в квартире промозгло и неуютно. Улучшить ситуацию можно с помощью кондиционера, включенного на осушение.

И, наконец, о предмете этого материала – об измерении относительной влажности в бытовых условиях.

Психрометры работают по принципу сравнения значений температуры сухого и влажного термометра. Влажность определяют затем по таблицам, которые размещены на корпусе прибора, например, популярный ВИТ-1:

Обратите внимание на надпись под таблицами – это требование к скорости воздуха, обдувающего термометры (скорость аспирации). Если воздух неподвижен, то прибор будет показывать неверную влажность, поскольку не происходит отвода паров воды и, соответственно, охлаждение мокрого термометра. Если скорость слишком высокая, то вода во влажном термометре будет испаряться слишком быстро, его температура будет ниже, соответственно, разница показаний сухого и влажного будет больше, т.е. значение влажности будет заниженным (см. таблицу на рисунке выше). Ввиду того, что требуется постоянно доливать воду, а сам прибор достаточно громоздкий по нынешним временам, в квартирах его используют редко. Если вам не жалко нескольких сотен рублей, его можно купить для калибровки гигрометров.

Наиболее распространены сейчас гигрометры. Они бывают механическими и цифровыми. Механические гигрометры часто изготавливают в дизайнерском исполнении и используют для украшения интерьера:

Они могут работать на различных принципах, один из простейших – это использование двух спиралей, в зависимости от температуры воздуха и влажности они либо растягиваются, либо сжимаются.

Очевидно, что точность измерения бытовых недорогих механических гигрометров весьма невысока, обычно она выражается величиной т.н. относительной погрешности. Я оцениваю ее в 10% и более. Т.е. если прибор показывает 50%, то реальная влажность может отличаться на (50*0.1)/50*100=10% или 45-55%. Именно поэтому на рисунке выше гигрометр занимает меньше места, чем термометр, а шкала весьма грубая. У меня механических гигрометров нет.

Для более точных измерений используют компактные цифровые гигрометры. О них и пойдет разговор в следующем разделе. Они используют датчики влажности различных типов. В дешевых это подложка из электроизоляционного материала с пленкой из хлорида лития. Электрическое сопротивление этого материала меняется в зависимости от уровня влажности воздуха, что и измеряется электронной частью устройства. Очевидным образом, точность измерения зависит от качества изготовления датчика и электронных компонентов.

Практика контроля влажности в жилом помещении

Давайте уже поговорим о практике. На рисунке представлен тот набор гигрометров, что есть у меня:

Это метеостанции (№№ 1 и 2), их выносные датчики (№№ 5 и 6), а также термогигрометры (т.е. измеряют и температуру, и влажность).

Все устройства на фото (кроме одного) – родные “китайцы”. Соответственно, можно предположить, что их заявленные показатели могут сильно отличаться от реальных. Обычно их точность объявляется на уровне 5%.

Устройство №4 – термогигрометр TechnoLine WS 7005 якобы немецкого производства, который я купил в Испании. Он до сих пор широко продается на Амазоне, его точность в диапазоне влажности 35-80% составляет 5%, за пределами указанного интервала – 7%. Обратите внимание, это важно: точность зависит от абсолютного значения, что обусловлено характеристиками датчика:

Видно, что зависимость сопротивления пленки хлорида лития от влажности, во-первых, нелинейная. А во-вторых, показана она начиная от 20% относительной влажности. Это связано с тем, что за пределами диапазона зависимость уже сильно нелинейная, использование показаний сопротивлений сопряжено с большими ошибками. И, наконец, в-третьих, вид кривой для каждого экземпляра датчика будет немного отличаться, что приведет к разнице в показаниях в одинаковых условиях. Именно в низком качестве изготовления причина большого разброса значений даже для датчиков из одной партии. Кстати, хочу заметить, что полная кривая отклика датчика в зависимости от влажности в большинстве случаев является S-образной (о таких кривых я писал ранее).

Большинство недорогих гигрометров просто неспособны отобразить значения ниже 20%, а показывают что угодно, кроме точного значения. Из показанных на рисунке измерять значения ниже 20% (для нас актуален прежде всего нижний порог) могут только №3 и №7 (они будут подробнее описаны ниже). Чтобы не ошибиться, важно реалистично оценивать условия измерения – например, утром в комнате, в которой всю ночь было открыто окно, а на улице -10оС, влажность составляет 13-15%. Если прибор показывает иное – он с высокой вероятностью врет.

Специализированный гигрометр GM1362 (№3) имеет точность плюс минус 3%, а измерение температуры в нем – это дополнительная опция. Его я принял за самый точный из имеющихся прибор, относительно которого я “поверяю” остальные. О поверке см. публикацию. Отмечу только, что термин “поверка” является официальным. Поверкой оборудования в норме занимаются сертифицированные центры, имеющие оборудование высокой точности. В продаже есть уже официально поверенные гигрометры, но стоят они десятки тысяч рублей. Здесь же мы говорим о поверке в смысле сравнения показаний разных устройств, включая принятый за эталон. Хотя по ссылке вы можете найти доступные методы проверки показаний в домашних условиях.

Итак, метеостанция №1 показывает влажность 33%, ее датчик (№6) – 28%. Вторая (№2) тоже 33%, ее датчик (№5) – 29%. Можно предположить, что датчики влажности в самой метеостанции выше классом (т.к. их показания совпадают с “поверочным” гигрометром), чем датчики в выносных блоках.

“Немецкий” прибор влажность занижает (что подтверждают и отзывы пользователей на немецком и других сайтах Амазон). На разницу в 1% между №3 и №7 можно не обращать внимания, поскольку величина в пределах погрешности измерений.

Отмечу, что к метеостанциям повыше классом могут продаваться сменные датчики более высокого качества. По умолчанию же внешние блоки измеряют влажность в интервале 20-90%.

Еще одна важная вещь. Выше я упоминал, что скорость аспирации термометров психрометра должна быть в оговоренных пределах. Это верно и для датчиков гигрометров. Очевидно, что количество и расположение вентиляционных отверстий сильно влияет на показания. По-хорошему, гигрометр должен располагаться в токе воздуха (на “сквознячке”), либо обдуваться вентилятором на небольших оборотах. Именно по указанной причине в специализированном гигрометре (№3) датчик вынесен на щуп, а отверстия достаточно большие и расположены вокруг него (а не с одной стороны, как в недорогих приборах).

Наконец, о частоте опроса датчика. Пользователи №4 как раз указывают, что она крайне невелика, порядка одного раза за несколько минут. Для сравнения, скорость обновления показаний №3 составляет 3 секунды. Забавно наблюдать, как после выдоха на датчик его показания растут (воздух из легких насыщен парами воды) пару измерений, а затем плавно снижаются. Отсюда же следует и правило о том, что измерительному устройству надо давать достаточно времени для выхода на стационарные значения (в неизменных условиях, естественно). Прямо из коробки или с улицы прибор будет показывать невесть что.

Сказанное можно проиллюстрировать снимком устройств через некоторый промежуток времени:

Здесь интересно, что разница между показаниями устройств №4 и 6 – и №3 и №7 больше, чем на первом снимке. Это иллюстрирует соображения о том, что датчики должны быть правильно расположены (обдуваться воздухом) и о том, что кривые отклика датчиков различаются.

В следующих разделах я кратко остановлюсь на особенностях современных моделей метеостанций и термогигрометров, которые я могу рекомендовать по собственному опыту.

Термогигрометр Xiaomi MiaoMiaoCe E-Ink

“Фишками” прибора являются:

  • элегантный внешний вид (причем на столе он даже красивее, чем на фото)

  • высокая точность измерений и частота опроса датчиков

  • использование экрана типа E-Ink.

Использование дисплея на электронных чернилах (как в ридерах электронных книг) позволило добиться отличных углов обзора и читаемости показаний даже в сумерках. Он очень симпатично сделан и, что важнее, точно показывает и температуру, и влажность. Использован датчик влажности швейцарской разработки (изготовлен, конечно, в Китае), погрешность измерений 3%.
Есть модели, которые могут передавать значения по протоколу Bluetooth на смартфон.

Метеостанция VL2810

Достоинства станции:

  • возможность питания от сети, что позволяет избегать периодической настройки заново и держать подсветку экрана включенной постоянно

  • очень информативный цветной экран с подсветкой (3 режима от яркой до выключенной)

  • измерение давления в мм.рт.ст.

  • возможность калибровки всех датчиков.

Метеостанция на порядок лучше предыдущей модели, которой я пользовался. В комплекте 1, 2 или 3 внешних датчика. Отмечу, что выносные блоки выполнены в незащищенном исполнении, поэтому ставить их напрямую на улицу не стоит, лучше на лоджию и пр.

Все датчики (давления, температуры, влажности) можно калибровать – т.е. вносить систематическую поправку, чтобы показания совпадали с эталонным устройством.

Датчик влажности центрального блока достаточно высокого качества, диапазон 10-99%. Точность производителем не указана. Автоматически связывается с внешними блоками и устойчиво держит связь.

Яркость экрана невелика, а углы обзора очень небольшие, что можно рассматривать как недостаток. Мне важнее, что ночью он не светит в глаза, не мешает спать. При этом в сумерках и темноте видно отлично.

Найти имя производителя весьма непросто даже в сети. Полагаю, это связано с тем, что станция ну очень похожа на изделия известной фирмы La Crosse. Скорее всего, их производят, т.с., “параллельно”.

Гигрометр Outest GM1362

Достоинства:

  • диапазон 5-98%, точность плюс-минус 3%

  • высокая частота опроса.

Прибор недорогой, экран с подсветкой, питание от “Кроны”, должно хватить надолго (есть автоматическое отключение). Из недостатков могу отметить серую рамку на корпусе, она не позволяет поставить гигрометр на стол, только положить. Сзади есть штативное гнездо с резьбой.

В инструкции, вложенной в упаковку, указан диапазон 0-100% (указанный выше диапазон лично мне представляется более реалистичным), а точность уточняется по интервалам значений относительной влажности: 0-20% – 4.5%; 20-80% – 3%; 80-100% – 4.5%. Причина уже пояснялась выше, наличие данной информации указывает на достаточно профессиональный подход изготовителя. Также есть утверждение, что прибор был откалиброван на заводе. Производителем заявлена фирма Benetech, а не Outest, как на сайте.

Приобретать этот прибор для использования в квартире особого смысла нет. Он может быть удобен в загородном доме и других локациях, где необходимо быстро измерить влажность в различных местах.

Заключение

Надеюсь, после ознакомления с этим материалом вы стали лучше ориентироваться в проблеме. Именно это и было моей главной целью.

Особо хочу подчеркнуть важный момент: в повседневной жизни нет необходимости измерять относительную влажность с очень высокой точностью, достаточно целого числа. Перфекционизм в данном вопросе ведет лишь к неэффективному расходованию бюджета. При ручном управлении влажностью в доме двухзначного значения вполне достаточно. Важно лишь убедиться в том, что приобретенный гигрометр в принципе работает и не врет на десятки процентов. Приобретение различных устройств (особенно дорогостоящих) имеет смысл только в случае, если вы осознанно и глубоко увлекаетесь этой темой.

Влажность
воздуха зависит от содержания в нем
водяных паров. Для характеристики
влажности используют следующие понятия:
абсолютная, максимальная, относительная
влажность, дефицит насыщения,
физиологический дефицит насыщения,
точка росы.

Абсолютная
влажность —
упругость
(парциальное давление) водяных
паров в воздухе в момент измерения (в
г/м3
или мм рт.ст.).

Максимальная
влажность —
упругость
водяных паров при полном насыщении
влагой воздуха определенной температуры
(в г/м3
или мм рт.ст.). Относительная
влажность —
отношение
абсолютной влажности
к максимальной, выраженное в процентах.
Дефицит
насыщения

разность между максимальной и абсолютной
влажностью
(в мм рт.ст.). Точка
росы

температура, при которой воздух
максимально
насыщен водяными парами. Нормируется
только отно­сительная
влажность, которая считается нормальной
в диапазоне 40-60%.

Измерение
влажности воздуха может проводиться с
помощью различных
приборов. Абсолютная влажность может
быть определе­на
с помощью психрометров.
Существует
2 его вида: аспирационный психрометр
Ассмана и станционный психрометр Августа
(рис. 4). Психрометр
состоит из двух одинаковых термометров,
резервуар одного
из которых обернут легкой гигроскопичной
тканью, увлажня­емой
дистиллированной водой перед измерением,
а второй остается сухим.

Станционный
психрометр Августа
используется
в стационар­ных
условиях, исключающих воздействие на
него ветра и лучистого тепла. Он состоит
из двух спиртовых термометров. На
основании их показаний
абсолютная влажность определяется по
таблицам или по формуле:

К
= f – ɑ * (tc
– tв)
* В

где:

К
– абсолютная влажность воздуха при
данной температуре, мм
рт. ст.;

f
– максимальная
влажность воздуха при температуре
влажного термометра,
мм рт.ст. (см. табл. 2);

ɑ

психрометрический коэффициент, равный
при несильном движении
воздуха 0,001;

tc
и tв.
– температура сухого и влажного
термометров, °С;

В
– атмосферное
давление в момент измерения, мм рт.ст.

Наиболее
широко в гигиенической практике для
измерения абсолютной
влажности как в помещении, так и вне его
используются переносные
аспирационные
психрометры Ассмана,
имеющие
защиту от ветра
и тепловой радиации. Психрометр состоит
из двух ртутных термометров
(имеющих шкалу от -30 до +50 °С), которые
заключены в
общую оправу, а их резервуары — в двойные
никелированные металлические трубки
защиты от лучистого тепла. Вмонтированный
в головку
прибора вентилятор с часовым механизмом
просасывает воздух
вдоль термометров с постоянной скоростью
2 м/с.

Перед
началом измерений при помощи пипетки
нужно увлажнить ткань
на резервуаре влажного термометра,
завести ключом механизм
прибора до отказа и подвесить его
вертикально на кронштейне в исследуемой
точке, обычно в центре помещения, а затем
через 3-5
мин записать показания сухого и влажного
термометров.

Абсолютная
влажность воздуха в этом случае
вычисляется по формуле:

К
=[f

0,5 * (tc-tB)
* В]/755

Относительная
влажность воздуха (в %) рассчитывается
по формуле:

Р = К
*100/F,

где:
Р

относительная влажность, %,

F
максимальная
влажность воздуха при температуре
сухого термометра,
мм рт.ст. (см. табл. 2).

Таблица
2.
Максимальная
влажность воздуха при разных температурах

Температура
воздуха,
+°С

Максимальная
влажность,
мм
рт.ст.

Температура
воздуха,
+°С

Максимальная
влажность,
мм
рт.ст.

12

10,5

29

30,04

13

11,23

30

31,84

14

L_
11>99

31

33,69

15

12,73

32

35,66 .

16

13,63

33

37,73

17

14,53

34 _]

39,90

18

15,48

35

42,17

19

16,48

36

44,16

20

17,73

37

46,65

21

18,65

38

49,26

22

19,83

39

52,00

23

21,07

40

55,32

24

22,38

41

58,34

25

23,76

42

61,50

26

25,20

43

64,80

27

26,74

44

68,26

28

28,34

45

71,88

Непосредственно
относительная влажность может быть
изме­рена
гигрометром
(рис.
5). Обезжиренный человеческий волос в
гигрометре
натянут вдоль рамы прибора и прикреплен
к стрелке. Используется
свойство волоса изменять свою длину в
зависимости от влажности. При изменении
степени его натяжения стрелка пере­мещается
по шкале, отградуированной в процентах.
Относительная влажность
измеряется обычно в центре помещения.

Для
непрерывной графической регистрации
относительной влаж­ности воздуха за
определенный период времени используются
само­пишущие
приборы — гигрографы
(суточный
или недельный) типа М-21
(диапазон измерений от 30 до 100% при
температурах от -30 до +45
°С), в которых датчиком служит натянутый
в рамке пучок обез­жиренных человеческих
волос (рис. 6).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий