Содержание
- 1 Как определить коэффициент мощности трансформатора?
- 2 Как определить полную мощность трехфазной цепи?
- 3 Как перевести полную мощность в активную?
- 4 Как найти полную мощность трансформатора?
- 5 Как определить коэффициент мощности цепи?
- 6 Как определить коэффициент мощности?
- 7 Как рассчитать мощность двигателя?
- 8 Как посчитать мощность 3 х фазной сети?
- 9 Чему равна активная мощность трехфазной цепи?
- 10 Как перевести амперы в киловатты?
- 11 Как перевести ква в Вт?
- 12 Как перевести вольт амперы в киловатты?
- 13 Как посчитать реактивную мощность?
- 14 Какие существуют мощности?
Как определить коэффициент мощности трансформатора?
Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты Определить его возможно по простой формуле: делятся усредненные значения модульных активных (ВТ) и полных (ВА). При этом активная вычисляется как умноженные параметры напряжения и силы тока, умноженные на косинус фи.
Как определить полную мощность трехфазной цепи?
Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.
Как перевести полную мощность в активную?
Говоря языком потребителя: кВт — полезная мощность, а кВА — полная мощность. кВА-20%=кВт или 1кВА=0,8кВт. Для того, чтобы перевести кВА в кВт, требуется от кВА отнять 20% и получится кВт с малой погрешностью, которую можно не учитывать. P-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.
Как найти полную мощность трансформатора?
Полная мощность (S)
Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью. Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А.
Как определить коэффициент мощности цепи?
Определение коэффициента мощности
PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.
Как определить коэффициент мощности?
Отношение активной мощности к полной называется коэффициентом мощности. Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла «фи» (cosφ). При изменяющейся нагрузке определяют усредненный коэффициент мощности за какой-то период времени.
Как рассчитать мощность двигателя?
Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где: Mкр – крутящий момент (Нм), n – обороты коленвала (об./мин.), 9549 – коэффициент для перевода оборотов в об/мин.
Как посчитать мощность 3 х фазной сети?
Формула расчета мощности электрического тока
I = P/(U*cos φ), а для трехфазной сети: I = P/(1,73*U*cos φ), где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.
Чему равна активная мощность трехфазной цепи?
Активной мощностью трехфазной системы называется сумма активных мощностей всех фаз приемника. где — φ угол сдвига фаз между фазными напряжением и током.
Как перевести амперы в киловатты?
Как перевести амперы в киловатты в однофазной сети
- — Ампер = Ватты / Вольт:
- Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. …
- Как перевести амперы в киловатты в трехфазной сети …
- — Ампер = Ватты / (√3 * Вольт):
Как перевести ква в Вт?
P = S * cos φ * 1000
Р — активная мощность (Вт); S — полная мощность (кВА); cos φ — коэффициент мощности.
Как перевести вольт амперы в киловатты?
Вольт-ампер в киловатт
- Вольт-ампер =
- 0.001. киловатт
- киловатт =
- 1 000. Вольт-ампер Поделиться Перевести другие величины
Как посчитать реактивную мощность?
Тогда мощность рассчитывают по одной из формул:
- P=U*I.
- P=I2*R.
- P=U2/R. По этой же формуле определяется полная мощность в цепи переменного тока. …
- P=S*cosФ Здесь мы видим, новую величину cosФ. …
- cosФ=P/S. В свою очередь реактивная мощность рассчитывается по формуле:
- Q = U*I*sinФ
Какие существуют мощности?
Во всех справочниках по электротехнике различаются четыре вида мощности: мгновенная, активная, реактивная и полная.
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.
Содержание
- Принцип работы
- Конструкция
- Особенности
- Формулы расчета силового трансформатора
- Мощность вторичной обмотки
- Общая мощность
- Сечение сердечника
- Количество витков
- Выбор пластин для сердечника
- Определение толщины набора сердечника
- Как рассчитать габаритную мощность
- Правильный расчет по сечению сердечника
- Как определить число витков обмотки
- Упрощенный расчет 220/36 Вольт
- 1 этап
- 2 этап
- 3 этап
- 4 этап
- 5 этап
- 6 этап
- Как рассчитать Ш-образный трансформатор
- Определение параметров ТТ
- Особенности расчета сетевого трансформатора
- Выбор магнитопровода
- Технология изготовления
- Формы серденичков
- Варианты размещения катушек
- Краткая справка о материалах магнитопровода
- Исходные данные
- Как посчитать магнитопровод
- 1 шаг
- 2 шаг
- 3 шаг
- Определение параметров обмоток
- Мощность потерь
- Особенности расчета автотрансформатора
- Как посчитать пленочный трансформатор
- Обзор онлайн сервисов
- Примеры расчета
- Расчет силового трансформатора, который должен запитывать N-оборудование
- Условия и исходные данные для расчета
- Расчет силового трансформатора пошагово
Принцип работы
Любая энергосистема, установка, особенно в сети трехфазного (3ф) тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач. На том конце линий тоже стоят трансформаторы высокого напряжения, которые уже производят процесс понижения его величины для подачи на объекты, которыми являются обычные потребители.
Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов.
В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа. В целом, без таких преобразователей в электричестве никуда.
Конструкция
На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы. Конструктивно такой трансформатор состоит из трех главных элементов:
- Первичная обмотка – катушка с изолированными проводниками, намотанная в определенном порядке, выводы которой являются принимающим определенную величину электроэнергии. Проводники первичной обмотки передают электроэнергию дальше, для проведения ее трансформации;
- Магнитопровод или сердечник – выполненный из специальной шихтованной (слоенной) электротехнической стали, различной конструкции и формы. На его части с одной и другой стороны наматываются проводники обмоток и именно в нем происходит бесконтактное явление трансформации величины электроэнергии;
- Вторичная обмотка – изолированные проводники, с намоткой на вторую часть сердечника в определенном количестве, с конкретной толщиной. Выводы вторичных проводников передают выходную величину энергии к потребителю или другому энерго устройству, в цепь которого был установлен преобразователь.
Особенности
Принцип работы любого трансформатора основан на явлении электромагнитной индукции, в замкнутом контуре магнитопровода, сквозь намотанные на него проводники первичной и вторичной обмотки. Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу (ЭДС).
Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками. ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала – количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора.
Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины – мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.
Формулы расчета силового трансформатора
В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин. Как выполнить в некоторых подробностях стоит разобрать ниже.
Мощность вторичной обмотки
В зависимости от того, в какой сети (однофазной или трехфазной) участвует трансформатор, какой по типу трансформации – повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.
Формула 1. Мощность вторичной обмотки трансформатора:
P2 = U2 X I2, где
P2 – величина электрической мощности вторичной обмотки, единицы измерения – Вт;
U2 – напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения – В;
I2 – ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.
Общая мощность
Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства. Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,8-0,85 от ее величины.
При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P2 и КПД устройства.
Формула 2. Полная мощность с учетом КПД:
Pрасч2 = P2 х КПД
Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.
Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность (Sполн.) будет равна сумме активных мощностей этих обмоток (P2.1+P2.2+….+P2.N), умноженных на коэффициент мощности (Км).
Формула 3. Полная мощность с коэффициентом мощности:
Sполн. = (P2.1+P2.2+…. +P2.N) * Км
В любом случае в ее расчет всегда закладывают величины активной мощности – энергии, которая продуктивно потратится на питание электро потребителей или других электро систем в составе установки, а так же реактивную составляющую мощности, выраженную в простейших расчетах в виде КПД трансформатора, а боле детальных формулах представляющих собой коэффициент мощности. Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении – ВА.
Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника.
Сечение сердечника
Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей. Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных (шихтованных) железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.
От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:
- броневые – на Рис. 1 модели «1» и «4»;
- стержневые – на Рис. 1 модели «2» и «5»;
- кольцевые. – на Рис. 1 модели «3» и «6»;
Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки.
Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода
На Рис. 1 подробно представлены формы каждого из строений сердечника, обозначены два параметра (A и B), измеряемые в сантиметрах, посредством которых производят расчет сечение конкретного магнитопровода.
Формула 4. Площадь сечения сердечника трансформатора:
S = A x B
Единицы измерения – сантиметры в квадрате см2
Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора.
Количество витков
Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток.
Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием – сечения магнитопровода. Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника.
Формула 5. Количество витков в обмотке на 1В:
N1v = K / S, где
N1v – количество витков обмотки на единицу напряжения равную 1 В;
K – технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято – 60; П-образного из пластин – 50; кольцевого – 40.
S – сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.
Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме.
Формула 6. Количество витков обмоток трансформаторов:
Wv = N х U, где
Wv -значение количества витков в обмотке;
N – количество витков на 1В полученное в начальной формуле;
U – величина напряжения обмотки без нагрузки (на холостом ходу).
После применения подобного расчета количества витков в обмотках, особенно в проектировании трансформаторов минимальной мощности, применяют 5% компенсационный коэффициент падений напряжения на обмотках. Тем самым расчетные значения увеличивают на 5% от их расчетной величины.
Выбор пластин для сердечника
Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.
Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:
- Ш-образных стальных пластин – тип сердечника трансформатора, выполненного по технологии штамповки пластин между собой, предварительно качественно изолировав их друг от друга. Имеют два отличия соединения стержней с ярмом сердечника. Могут собираться встык или вперемешку. По форме пластины такого рода напоминают букву «Ш», от которой и получили свое название.
- П – образных пластин – так же штампованный тип сердечника, по форме напоминающий букву «П». Несколько мене распространен в производстве магнитопровода, так как имеет хуже магнитные характеристики.
- «Торро» или кольцевая форма – сердечник выполнен не штамповкой, а навиванием стальной проволоки. По магнитным характеристикам имеют самые лучшие показатели, но на практике не смогли получить широкого распространения в связи с сложным процессом их производства и включения в состав трансформатора, как готового устройства.
Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.
Определение толщины набора сердечника
Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала.
Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.
Формула 7. Площадь сечения Ш-образного сердечника:
S ш = 1,2 , где
S ш – значение площади сечение Ш-образного магнитопровода;
Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много – рассчитывается по Формуле 3.
А уже после возможно определить значение толщины пластин сердечника по формуле.
Формула 8. Толщина пластин Ш-образного сердечника:
Tш = 100 х S ш / А, где
Tш – толщина пластин сердечника, мм;
S ш – площадь сечения Ш-образного сердечника, см2;
A – ширина среднего лепестка Ш-образного сердечника, мм.
Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам – проще обратится к стандартным базовым шаблонам того или иного сердечника. Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника.
Как рассчитать габаритную мощность
Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.
Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Ошибки в нем могут составлять до 50%. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле.
Формула 9. Габаритная мощность трансформатора:
Pгеом. = B x S2 / 1.69, где
Pгеом. – величина геометрической мощности для понижающего или повышающего типа трансформатора;
B – справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;
S – сечение магнитопровода, расчет которой по Формуле 4;
1,69 – постоянный поправочный коэффициент из технических справочников.
Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте.
Главный фактор в расчете параметра мощности геометрии трансформатора – превышение ее расчетной величины над значением электрической мощности.
Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.
Правильный расчет по сечению сердечника
Из электротехнических научных опытов, практики работы с трансформаторами известно, что стержневые сердечники в преобразователях энергии целиком носят обе обмотки на стержнях конструкций магнитопроводов, броневые конструкции лишь частично охватываются намоткой первичных и вторичных проводников катушек, и наиболее равномерное распределение, а значит и самые лучшие магнитные свойства устройства имеют кольцевые сердечники энергоагрегатов преобразования энергии, но они в связи со многими сложными пунктами своего строения, а главное тяжести сборки все меньше и меньше участвуют в реальной работе.
Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа. Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора.
Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.
Формула 10. Расчет электрической мощности по сечению сердечника:
Pтр-р = (S)2, где
Pтр-р – электрическая мощность расчетного сердечника, Вт;
S – площадь сечения магнитопровода оборудования, см2.
Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.
Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения. Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.
Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым – значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом.
Как определить число витков обмотки
В Формула 5 и Формула 6 приведены расчетные способы в начальной и конечной технологии, для математического определения необходимого количества витков на вторичной обмотке трансформатора.
Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале. Чем больше витков на этой обмотке – тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.
Формула 11. Расчет количества витков первичной обмотки:
N1 / U1 = N2 / U2, где
N1, N2 – количество витков намотки первичной и вторичной катушек трансформатора;
U1, U2 – номинальные напряжение обмоток трансформатора.
Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора.
Формула 12. Количество витков в намотке первичной обмотки:
N1 = U1 x N2 / U2
Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции (если позволяет конструкция устройства) и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.
Упрощенный расчет 220/36 Вольт
Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.
Итак, в качестве примера поставлена следующая задача: необходимо рассчитать самый простой понижающий трансформатор двухкатушечного типа с номинальным значением напряжений 220/36В.
Трансформатор будет использоваться в качестве источника слаботочного освещения мощностью 75Вт, напряжения 36В:
1 этап
По Формуле 1 известно, что электрическая мощность вторичной цепи: P2 = 75Вт;
Отсюда, воспользовавшись справочником по трансформаторам возьмем значение КПД, исходя из значения до 100 Вт, которое равно 0,8;
Следовательно, можем определить электрическую мощность P1 вводной обмотки трансформатора по формуле.
Формула 13. Расчет мощности первичной обмотки:
P1 = P2 / КПД
P1 = 75Вт / 0,8 = 94 Вт
2 этап
Теперь рассмотрим электромеханические характеристики, исходя из того, что сердечник расчетного трансформатора имеет Ш-образную форму. На его поверхности с двух сторон будут располагаться первичная и вторичные обмотки оборудования.
Поэтому расчет площади сечения магнитопровода Sсерд. необходимы в обязательном порядке. Ее значение имеет квадратичную зависимость от мощности первичной обмотки , исходя из принципа работы трансформатора, как электротехнического устройства.
Формула 14. Расчет площади сечения исходя из мощности первичной обмотки:
Sсерд. = 1,2 х
Sсерд. = 1,2 х = 1,2 х 9,7 = 11.63 см2
3 этап
Следующий шаг так же направлен на просчет параметров первичной обмотки – количество витков в ней на единицу напряжения 1В по Формуле 5:
N1v = 60 / 11,63 = 5,16 витка
На единицу напряжения количество витков получено. Используя его значение по Формула 6 найдем значение витков на вводной обмотке оборудования преобразования всего:
Wv1 = 5.16 x 220 = 1135 витков – первичная обмотка посчитана по количеству витков, аналогичные действия проведем для вторички, используя тоже количество витков на 1В и Формуле 6:
Wv2 = 5.16 x 36 = 186 витков – намотка вторичной обмотки по виткам тоже стала известна.
4 этап
Номинальные токи нагрузки трансформатора тоже необходимо узнать, чтобы провести проверку трансформатора согласно методике испытаний. Исходя из Форм. 1 можно вывести формулу токового значения.
Формула 15. Расчет номинального тока обмоток трансформатора:
I1 = P1 / U1
I2 = P2 / U2, где
I1, I2 – номинальные токи трансформаторных обмоток;
P1, P2 – электрические мощности ввода и вывода устройства;
U1, U2 – номинальные напряжения первичной и вторичной стороны трансформатора.
I1 = 94 / 220 = 0,43А;
I2 = 75 / 36 = 2,08А.
5 этап
Новые параметр, которые не рассматривался ранее – это диаметр проводника обмоток трансформатора (зависит от номинального тока на каждой обмотке).
Формула 16. Расчет диаметра проводника обмоток трансформатора:
D1 = 0,8
D2 = 0,8 , где
D1, D2 – диаметр проводника первичной и вторичной обмоток;
I1, I2 – номинальные токи обмоток первичной и вторичной намотки;
0,8 – постоянный поправочный коэффициент расчетов диаметров.
D1 = 0,8 = 0,8*0,66 = 0,5 мм.
Для проводников первичной и для проводника вторичной обмоток:
D2 = 0,8 = 0,8*1,44 = 1,15 мм.
6 этап
В электротехнике кабельно-проводниковая продукция всегда представлена в значения площади поперечного сечения жилы, а значит, чтобы не возникало проблем с реальным подбором проводника требуется перевести полученные диаметры в площадь поперечного сечения с помощью электронных конвекторов по Формуле 17. Перевод из диаметра в сечение провода:
SКПП= D2 * 0.8
Отсюда для каждого из диаметров получаем:
- SКПП1= (0,5)2 * 0.8 = 0,2 мм2 – провод для первичной обмотки;
- SКПП2= (1,15)2 * 0.8 = 1,0 мм2 – провод для вторичной обмотки.
Далее получив все расчетные значения по трансформатору из примера, приступают к практической части намотки витков с обеих сторон одновременно, коммутации их выводов и другим работам.
Как рассчитать Ш-образный трансформатор
Универсальность конструкции Ш-образного магнитопровода позволяет одинаково эффективно использовать, закладывать форму сердечника в проекты расчета, как импульсных– современных трансформаторов, участвующих в процессах обеспечения питания электронной бытовой и мультимедийной техники, так и проводить серьезные проектные расчеты силовых трансформаторов напряжения, находящийся в составе высоковольтных подстанций, основного и аварийного питания значительного количества потребителей (в случае двух трансформаторной структуры энергоснабжения).
Расчеты Ш-образного трансформатора по своим характеристикам ничем особенным не может отличаться от основных пунктов упрощенного или детального расчета преобразователей энергии. Для него могут использоваться формулы нахождения параметрических величин или применяться расчеты онлайн автоматизации проектов. Второй метод несколько универсален и быстротечен, в том плане, что для его использования достаточно знать исходную геометрию и номинальные значения выходных величин, что авто программа расчетов смогла предоставить необходимые значения для оборудования.
Единственным нюансом для Ш-образного магнитопровода может быть расчет номинальной мощности вторичных обмоток, если у него она не одна, тогда расчет мощности можно выполнить по Формуле 3. И расчет толщины набора сердечника будет зависеть от расчетов и данных Ш-образного магнитопровода по Формула 8
В остальном в зависимости от параметров можно применять все вышеуказанные формулы, исходя из конкретных электрических величин Ш-образного сердечника.
Определение параметров ТТ
Измерительный преобразователь тока, в основном принципе своей работы имеет некоторые важные отличительные особенности по сравнению с силовыми трансформаторами питания электропотребителей или трансформаторов напряжения.
Отличия заключаются в токовой величине его вторичной обмотки. Ток «вторички» ТТ независим от нагрузки цепей в ней, и имеет сопротивление, которое всегда соответствует количеству витков первичной обмотки с минимальным значением по величине в сравнении с сопротивлением силовых цепей первичного подключения.
Рисунок 2. Принципиальная схема трансформатора тока.
К тому же протекающий ток I2 через цепь вторичной обмотки имеет постоянное направление, при помощи которого производится размагничивание сердечника данного устройства. I1 обозначено направление тока первичной обмотки ТТ.
В связи с условием что верхний конец первичной обмотки находится там же, где и верхний конец первичной обмотки, учитывая из физики равенства магнитных потоков его обмоток можно составить определенный алгоритм расчета такого оборудования преобразования тока с учетом нюансов изделия:
- Определяется номинальное напряжение первичного обмотки ТТ – величина выбор которой производится из стандартных паспортных значений таблиц и измеряется в киловольтах: 0,66/ 3/6/10/15/20/24/ 27/ 35/ 110/ 150/ 220/ 330/ 750.
- Второй важный параметр токового устройство – определение номинального тока первичной обмотки – учитывая перегрузочные способности, данная величина рассчитывается большей или равной (> =) номинального тока первичной цепи электроустановки. Его токовый ряд первичной обмотки выбирается из ГОСТ значений: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. Измеряется в амперах и кило амперах. В случае выбора ТТ на пусковое, генераторное оборудование к его номинальному току прибавляется 10% значение и от полученной суммы выбирается первичный ток ТТ.
- Ведут проверки преобразователя по термической и электродинамической стойкости согласно формулам из паспортных формуляров проверок.
- Выбирается и проверяется ТТ по мощности вторичных нагрузок – учитывая формулу 18:
Sном2 > Sнагр2, где
Sном2 – номинальная мощность вторичной обмотки;
Sнагр2 – мощность вторичной нагрузки, где будет установлен ТТ.
Кроме основных параметров выбора ТТ – это измерительное оборудование, учитывая значение номинала класса точности выбирается для питания и защиты цепей РЗиА, а так же преобразователи с завышенным коэффициентом трансформации и повышенным классом точности подбирают для питания токовых обмоток энергоучета.
Трансформаторы тока подключаются по каждому изделию на каждую фазу для включения в состав защитных, измерительных или учетных цепей.
Важное для расчета ТТ должно выполняться равенство по форм. 19:
(I1*N1) – (I2*N2) = 0, где
I1, I2 – значения токов первичной и вторичной обмотки;
N1, N2 – количество витков в обмотках ТТ.
Отсюда для вычисления количество витков в обмотке вторичного подключения определяется его токовое значение, совместно с основными понятиями магнитных характеристик:
- Lind – значения индуктивности ТТ;
- XLreac – сопротивления реактивной мощности ТТ;
- Rc – сопротивления нагрузки вторичной цепи.
Вычисления значений по формулам достаточно трудоемкий факт работы, поэтому в большинстве случаев, чтобы получить понимание выбора определенного трансформатора тока пользуются или целиком справочно-паспортными значениями их выбора или калькуляторами расчета параметров устройств.
Сердечники трансформаторов могут изготавливаться из ферромагнитных материалов или пластин Ш-образной формы электротехнической стали. Возможны кольцевые магнитопроводы из ленточно-проволочных материалов производства.
Особенности расчета сетевого трансформатора
Трансформаторы типа сетевой являют собой преобразователи напряжения, участвующие в цепях питания различных маломощных, относительно электроустановок силовых трансформаторов, энергопотребителей, приборов и устройств автоматики, контроля, телемеханики. Они очень популярны и широко распространены в мире подобного оборудования.
В связи с этим их выбор должен обладать определенными критериями по мимо основных номинальных электрических величин:
- номинальные токи первичной и вторичной обмотки;
- номинальные напряжения первичной и вторичной обмотки;
- мощности первичной и вторичной обмотки;
- полной мощности трансформатора;
Их выбор может варьироваться от отличий параметров конструкции и их различных типов. Главные из которых выделено рассматриваются ниже.
Выбор магнитопровода
Этот центральный элемент устройства обладает сразу несколькими характеристиками выбора.
Прежде всего, в зависимости от места установки и сферы применения сердечник трансформатора должен отвечать параметрам прочности, износостойкости, электрической прочности, экономичности.
Технология изготовления
Следующий параметр выбора зависит от его электромагнитных свойств. Технология изготовления делит магнитопроводы на два типа:
- Пластинчатые – выполненные из пластин электротехнической стали, изолированных и спрессованных между собой в определенные формы, габаритные размеры.
- Ленточные – выполнение из навивки стальной проволоки (менее распространены).
Формы серденичков
Каждый из двух видов в свою очередь подразделяется на формы и конструктивные различия стержней, окон для намотки проводников обмоток, диаметры которых зависят от электрических параметров оборудования. Формы сердечников бывают:
- Стержневые – в пластинчатом исполнении производятся из пластин П-образной формы одинаковой ширины. Имеют одно окно с определенным размером прохода намотки обмоток. Замыкаются прямоугольными пластинами.
- Броневые – Ш-образные пластины собираются в двух оконный магнитопровод, который замыкается прямоугольными пластинами из стали. Набираются переплетом для уменьшения магнитного сопротивления в местах стыка. С целью уменьшения вихревых токов производятся методом прессования.
Что касается таких же форм ленточных сердечников – набираются прямоугольной формы с разрезами вдоль и поперек. Для уменьшения магнитного сопротивления их сердечники подвергаются шлифовки.
Существуют еще кольцевые формы сердечников, которые обладают отличными магнитными свойствами в работе, но трудоемки в своем изготовлении. Некоторое время их производили в виде трансформаторов для питания освещения, но в настоящее время используют редко.
Самыми популярными в зависимости от токовых и мощностных характеристик выступают Ш-образные и П-образные сердечники при изготовлении сетевых трансформаторов. Для вторичных цепей много катушечного характера используют стержневой тип сердечников. Броневое исполнение содержит на каждой стороне только по одной катушке, что является его ограничительным фактором применения.
Варианты размещения катушек
С учетом конструктивных исполнений магнитопровода, электромагнитных характеристик устройства, его механики, следует различать несколько основных типов размещения обмоток:
- прямоугольный провод класс «Цилиндр – 1-2слоя» – преимущества – имеет хорошее охлаждение при эксплуатации, простота изготовления. К недостаткам относится малая прочность;
- прямоугольный провод класс «Цилиндр – многослой» – достоинства имеет в отличных магнитных свойствах системы, простоте изготовления. Минусы вида обмотки в плохом охлаждении в момент работы;
- круглый провод класс «Цилиндр – многослой» – плюсы варианта в простоте изготовления, минусы в плохой теплоотдаче, возможности перегрева;
- прямоугольный провод класс «Винтовая на 1-2 или многоход» – достоинства состоят в высокой прочности отличной изоляции, хорошем охлаждении. Минус в дороговизне при производстве;
- прямоугольный провод класс «Непрерывный» – механическая и электрическая прочность, хорошее охлаждение придают этому варианту положительных характеристик, но неудобство при обслуживании относят к недостаткам;
- алюминиевая фольга класс «Катушечный многослой или цилиндр» – достоинства в механической прочности, магнитных свойствах. Минус в сложности изготовления.
Так же есть катушки в виде дискового формата. Соединяемые между собой. В целом тип катушки и форма обмотки выбирается от электрических параметров необходимых в конкретном применении с учетом экономичной стороны и технологий.
Краткая справка о материалах магнитопровода
Для изготовления сердечников трансформаторов в обязательном порядке отбирают материалы, имеющие высокую магнитную проницаемость, малую площадь петли гистерезиса, минимальные энергетические потери при возникновении в них вихревых токов.
Сталь низкоуглеродистого состава – основа для производства сердечников. Мощные трансформаторы, которые имеют сложные структуры магнитопроводов, в генераторных системах и подобных им имеют сердечники, изготовленные из малоуглеродистых стальных материалов.
Для эксплуатации в высокочастотных режимах работы преобразователей энергии, их сердечник выполняют из ферритов или подобных им композитов (прессованные порошки с свойствами магнитной мягкости по типу магнетитов или карбонильного железа). Такие системы связывают с диэлектрической структурой в виде эпоксидных смол. В итоге получается собрание мелкозернистого порошка ферромагнитного (вещества в твердом состоянии, кристаллах, обладающих свойством намагниченности) состава, изолированного друг друга токопроводящей смолой.
Распространенная технология сердечников связана с набором отдельных пластин в пакетную стальную структуру с малым содержанием углерода
Исходные данные
Для выполнения проектных расчетов силовых агрегатов преобразования энергии, сетевых трансформаторов напряжения, импульсных энергетических преобразователей необходимо иметь часть справочно-табличных данных, исходя из составов материалов проводов обмоток, изоляции, стали сердечников, таких как:
- Величина максимальной индуктивности – для точного расчета габаритной мощности.
- Значение плотности тока – аналогичное участие справочного значения в расчете размерной мощности изделия.
- Коэффициенты мощности конкретного устройства – для расчета мощностного параметра.
- Сопротивления материалов сердечников и значение в проводниках обмоток для возможности расчета полной мощности.
Необходимы номинально-заданные параметры оборудования исходя из конкретного применения, нагрузки, которая будет использоваться в расчетном преобразователи:
- габаритные размеры сердечника и материалы из чего он изготовлен, тип и форма – размеры окна магнитопровода по длине и ширине особенно важны, т.к. связаны с площадью сечения магнитопровода, от которой идут дальнейшие расчеты;
- номинальные токи обмоток первичной и вторичной стороны устройства;
- номинальные напряжения в сети со стороны первичной и вторичной обмотки;
- значение и функционал трансформатора, на который направлен расчет;
- мощность по активной составляющей (первичной или вторичной обмотки)
- количество обмоток со стороны нагрузок;
- прочие детали или возможные подробности по изделию и функционалу его применения.
На основании исходных данных номинального и справочного характера вполне реально произвести ручной расчет трансформатора согласно формулам или воспользоваться автоматизированным сервисам в сети Интернет.
Как посчитать магнитопровод
В совокупности справочных и расчетных материалов, параметрических значений расчета трансформатора достаточно несложно произвести расчет его магнитопровода.
1 шаг
Расчету подвергается произведение площади сечения стержня Sст на площадь сердечника Sсер согласно равенству форм. 20:
Sст x Sсер = Pгаб x 102 / (2,22F х B х j x КПД x Nster x Kc x Km), где:
- Pгаб – габаритная мощность рассчитываемого трансформатора;
- F – частота переменного тока 50Гц
- B – максимальная индукция трансформатора, Тл;
- J – значение плотности тока А/м2;
- КПД – базовый коэффициент полезного действия устройства;
- Nster – Число стержней сердечника;
- Kc – коэффициент заполнения сечения сердечника магнитной сталью;
- Km – коэффициент заполнения окна стержня магнитной сталью;
Частично данные берутся из исходных номинальных значений оборудования, но большая часть вытекает из технической справочной литературы и табличных параметров и величин согласно указанному сердечнику изделия. В них входят: индукция, КПД оборудования, плотность тока, А/м2, коэффициенты заполнения сердечника и его окна.
2 шаг
Следующий шаг в расчете предполагает получение значения толщины сечения сердечника по Формуле 8, опубликованной в обзоре выше.
3 шаг
Последним шагом для расчета магнитопровода необходимо посчитать еще одно равенство значений узнав ширину ленты сердечника по форм. 21:
Bline= Sст x Sсер / (A x С x H), где
- Bline – ширина ленты сердечника для расчета, мм;
- Sст x Sсер -площади сечения стержня и самого сердечника, см2;
- A x С x H – размеры сторон сердечника, мм.
После чего, имея на руках три основных параметра магнитопровода с помощью литературы подбора, методом сравнительного анализа полученного значения с ближайшим стандартом производится выбор марки, размеров и всех данных магнитопровода трансформатора.
Определение параметров обмоток
Параметрические составляющие в обмотках в расчете ручных формул начинаются с определения ЭДС одного витка обмотки Е по формуле 22:
Е = 4,44 x F x В х Sст x Kc x 10-4, где
- F -частота переменного тока, ГЦ;
- В – максимум индукции, ТЛ;
- Sст –площадь сечения стержня;
- Kc – – коэффициент заполнения стержня.
Следующим расчетным показателем требуется получить падения напряжения на каждой обмотке трансформатора по формуле 23:
^U1 = 1,5*U1 *J*A*10-3
^U2 = 1,5*U2 *J*A*10-3
А от падения напряжения рассчитываются количество витков первичной и вторичной обмотки по новым формулам.
Формула 24. Расчет количества витков на основе падения напряжения:
N1= (U1- ^U1) / E
N2= (U2- ^U2) / E
Получив количество витков возможно узнать диаметры проводников (форм. 25):
D1 = 1.13
D2 = 1.13
Обычно при этом расчет обмоток завершается по проектному трансформатору, однако в его содержании возможно еще высчитывать средние длины витка обмоток, длины витков каждой обмотки и их массы. Допустимо вывести расчет и массы магнитопровода, для более детальных и точных вычислений.
Мощность потерь
Их зависимость просматривается от воздействия силы магнитного поля на сердечник. Деление по виду потерь сердечника происходит в двух формациях:
- Статические потери Pstat – перемагничивание магнитопровода. Они прямо пропорциональны длине петли магнитного потока Sпетли, частоте переменного тока F и весу магнитопровода G:
Pstat = Sпетли х F х G (форм. 26)
Еще их называют потерями на гистерезисе. При уменьшении толщины ленты начинает рост таких потерь, аналогично при росте петли, частоты сети или весу сердечника.
Второй тип потерь:
- Динамические потери – потери, которые происходят при возникновении в сердечники вихревых токов.
Постоянный ток имеет нулевую частоту петли гистерезиса, как только частота начинает расти – идет возникновение динамических потерь в сердечнике.
Особенности расчета автотрансформатора
Автотрансформатор – преобразователь напряжений, имеющий в отличии от обычного трансформатора, единую и единственную обмотку с одним или несколькими промежуточными выводами.
Рисунок 3. Внешний вид автотрансформатора.
Если коэффициент трансформации нагруженного электротехнического устройства малого значения – автотрансформатор становится более экономически выгодным обычного преобразователя напряжения, т.к. расход медного провода его катушки заметно меньше, чем у двух обмоточного обычного трансформатора.
Рисунок 4. Принципиальная схема автотрансформатора.
В общей точке обмотки судя по схеме на Рисунок 4 обмотки устройства протекает ток с определенным значением дельты:
Важно! Вход и Выход изделия напрямую связаны. Это означает опасность и запрет в проведении защитного заземления схемы, в которую включен нагруженный автотрансформатор.
Устройство автотрансформатора в нагруженном состоянии или в режиме холостого хода имеет дополнительную обмотку, без какой-либо связи с основной. И как только значение мощности дополнительной катушки больше мощности основной обмотки – экономическая и выгода автотрансформатора падает с критической скоростью.
Для расчета мощности во вторичной обмотке устройства представляет собой сумму двух значений:
Preborn = Uii x I + Pprox= Uii x I1, где
- Ppreborn – преобразовательная мощность, величина проходящая в зону вторичной обмотки по средствам магнитной связи;
- Pprox – проходящая мощность во вторичную обмотку посредством электрической связи
- Uii, I – напряжение, ток автотрансформатора.
Расчет автотрансформатора похож систему расчета силового преобразователя напряжения с одной поправкой – магнитопровод автотрансформатора рассчитывается на единицу значения преобразовательной мощности:
Ppreborn = 1,1*Pa * , где
Pa – мощность автотрансформатора, общая, Вт;
коэффициент трансформации оборудования.
Автотрансформаторы, как бы парадоксальны их свойства и устройства не были, в однофазных и трехфазных сетях низковольтного и высоковольтного напряжения достаточно популярны за счет своих характеристик и возможности изменять выходную электрическую величину, низкой стоимости и коэффициентом полезного действия около 99%.
Мощные автотрансформаторы, начиная с напряжения 110 кВ используются в регулировочных ступенчатых узлах распределительных установок.
Слабые устройства, небольшой мощности, внешнего вида, как на Рисунок 3 стали очень популярны в научно-исследовательских организациях, как стендовое оборудование, позволяющее проводить многие тесты. Это касается и учебных заведениях. В них используются лабораторные автотрансформаторы (ЛАТР) для проведения работ и испытаний с целью обучения молодых специалистов.
Как посчитать пленочный трансформатор
Инновация в разработках сверхпроводников, в области криоэлектроники представлена в виде криогенного устройства на сверхпроводниках. Схематически его основные элементы представлены ниже на Рисунке 5 Это и есть – пленочный трансформатор магнитного потока.
Рисунок 5. Схематика пленочного трансформатора.
Квадратообразный обруч с активной полоской, изолирующей пленку, помещается между активной полосой трансформатора магнитного потока и магниточувствительным элементом.
С помощью преобразовательного устройства на сверхпроводниках происходит повышение умножение трансформатора магнитного потока.
Сверхпроводниковый трансформатор магнитного потока – пленочный трансформатор – устройство разработанная в научно-исследовательских институтах, имеет определенные свойства и преимущества:
- увеличение чувствительности датчиков;
- расширение динамического диапазона;
- увеличение помехозащищенности.
Пленочные трансформаторы сверхпроводимости нашли широкое применение в медицине в магнита-резонансных установках, позволяющих снять информацию сразу по всему организму и телу человека.
Рисунок 6. Схематика пленочного трансформатора с движением потока.
Однородность магнитного поля в активной полосе трансформатора увеличивается как показано на Рис. 7.
Рисунок 7. Схемы активных пластин.
Концентрация магнитного поля имеет определенный темп увеличения эффективности, рассчитываемый по формуле:
Наконец-то на последней схематике приведен эскиз активной полосы и приведены ее основные параметры для расчета:
В настоящее время на сверхпроводниках реализованы лишь пленочные трансформаторы способные увеличивая магнитный поток воздействовать на магниточувствительным элемент для проведения определенной работы. Если сверхпроводимость войдет в нашу жизнь для любого материала изменится не только конкретный преобразователь энергии, но и весь человеческий мир.
Обзор онлайн сервисов
Произвести расчеты трансформаторов любого типа, их составных частей или комплектующих помимо технических справок и таблиц, научной литературы в настоящее время довольно много качественных онлайн сервисов расчет электротехнических параметров или оборудования по конкретному запросу.
Если брать расчет трансформаторов – онлайн площадки в богатом остатке предлагают различные онлайн калькуляторы, расчетам которых вполне можно доверять.
Они не требуют никаких сложных значений или данных – достаточно иметь несколько основных исходных параметров электрических величин и знания геометрии оборудования.
Несколько вариантов онлайн площадок расчета трансформаторов предлагается в обзоре статьи на справедливую оценку и тестирование любым радиолюбителем или бывалым специалистом электронщиком:
- Интересная программа онлайн доступа и расчета с возможностью провести расчет как по стержневому виду, так и броневому виду сердечника, что увеличивает функционал и улучшает поддержку: Калькулятор расчета трансформатора №1.
- Помощь в расчете «Пуш-Пулл» трансформатора – простота и умение наращивать мощность являются основными преимуществами трансформаторов «Push-Pull», что в переводе с английского языка означает – двухтактный – трансформатор напряжения использующий импульсный трансформатор и становится трансформатор с двунаправленным возбуждением. Расчет такого устройства по формулам в ручном режиме может занять весомую часть времени. Помочь в этом может автоматизация расчета программой «ExcellentIT».
- Любые расчеты преобразователей электрической энергии, блоков питания, сложных устройств, которые так хочется собрать многими радиолюбителями и электронщиками-самоучками, но не хватает технической базы и формул, теперь возможно производить с помощью «Сборника Расчетных программ».
Но не стоит автоматизированные, онлайн сервисы делать панацеей в расчетах и проектировании преобразующих, питающих энергоустройств и систем электроники. Нужно помнить, что любая автоматика или компьютеризация без человека – оператора не стоит и не может ничего.
Примеры расчета
Для получения практических навыков расчета преобразователей напряжения упрощенными формулами в ручном режиме произведем:
Расчет силового трансформатора, который должен запитывать N-оборудование
Условия и исходные данные для расчета
- Тип оборудования: трансформатор напряжения силовой;
- Напряжение обмотки ВН: 660В;
- Ток обмотки ВН: 60mA;
- Напряжение обмотки НН: 12В;
- Ток обмотки НН: 6А;
- Тип сердечника: П-образный / коэффициентом количества витков на 1В = 50;
- Размеры окна сердечника: А = 10 см, И = 3 см.
Расчет силового трансформатора пошагово
- Т.к. обмотки ВН и НН в единственном экземпляре определить общую мощность трансформатора можно по формуле:
Pобщ = (Uвн * Iвн) + (Uнн * Iнн);
Pобщ = (660 * 0,06) + (12 * 6) = 39,6 + 72 = 111,6 Вт;
- Следующий шаг определение мощности первичной цепи обмотки по формуле:
P1 = 1,25 * Pобщ;
P1 = 1,25 * 111,6 = 139,5 Вт;
- Третий шаг определить площадь сечения сердечника из формулы:
- Определение количества витков на 1В и номинальный ток первичной обмотки можно:
N1v = K / Sсеч = 50 / 11,8 = 4,2;
I1 = P1 / Uнн = 139,5 / 220 = 0,63А;
- Остается найти число витков и диаметр проводников для первичной и вторичной обмотки:
- N1 = N1v * Uнн = 4,2 * 220 = 924 витков;
- D1 = 0,8 * = 0,8 * = 0,8 * 0,79 = 0,63 mm;
- N2 = N1v * Uвн = 4,2 * 660 = 2772 витка;
- D2 = 0,8 * = 0,8 * = 0,8 * 0,24 = 0,2 mm;
- С учетом того, что в исходных данных у нас есть размеры окна сердечника найдем ее площадь поперечного сечения, через который проверим войдут ли проводники в заданную площадь:
Sser = A * В = 10 * 3 = 30 см2 = 3000 мм2
Зная параметры диаметра проводников на каждой обмотке, можно вычислить опытную площадь проводников, которая должна быть меньше расчетной окна сердечника.
Этот расчет является защитным и проверочным предохранителем от ненужной траты сил и материалов по заранее ошибочным расчетным данным:
- S1 Первичная: 0,8 * D1 * N1 = 0,8 * 0,63 * 924 = 465 мм2;
- S2 Вторичная: 0,8 * D2 * N2 = 0,8 * 0,2 * 2772 = 444 мм2;
- Sser> (S1 + S2) – Необходимое условие
«Что и требовалось доказать»
3000> (444 + 465) – условие правильности расчета выполняется.
Остальные расчеты трансформаторов напряжения проводятся примерно в таком же формате, что и пример выше. Если позволяется – используют калькуляторы расчета в сети интернет.
Оборудование преобразования других величин электрической энергии проверяется расчетными методами по своим правилам и формулам или в тех же сервисах компьютерных программ.
При выборе
трансформаторов, сечения кабелей,
выключающей аппаратуры и т. п. необходимо
знать, на какой ток они должны быть
рассчитаны. Для этого недостаточно,
если известны только напряжение и
активная мощность Р, следует еще
определить cosнагрузки. При наличии нескольких
приемников энергии с различным cosэти расчеты существенно усложняются.
Для облегчения подобных расчетов введены
две вспомогательные величины: полнаяS=U Iи реактивнаяQ=U
I sin=U Iмощности.
Соотношения между
ними и активной мощностью наглядно
показывает треугольник мощностей. Чтобы
построить его, можно взять треугольник
напряжений и все стороны его умножить
на ток I(рис. 2.11).
Полученный таким путем треугольник
мощностей будет подобен треугольнику
напряжений. Его гипотенуза будет
изображать полную мощностьS, а
катеты — активнуюРи реактивнуюQмощности. Соотношения между ними
(2.1)
На щитках генераторов
и трансформаторов указывается пол
мощность. Изоляция генераторов и
трансформаторов рассчитывается
определенное номинальное напряжение,
а сечение проводов обмоток — определенный
номинальный ток. Тем самым отдельно
ограничивай напряжение и ток, причем
эти ограничения не зависят от сдвига
фаз между
напряжением и током. Таким образом,
произведение действующих значений
напряжения и тока определяет полную
номинальную мощностьSнгенератора, трансформатора и других
устройств переменного тока, Как показано
выше, активная мощностьР=SH
cos . Следовательно,
значение допустимой активной мощности
при неизменной полной мощности уменьшается
с уменьшениемcos .
Рис.2.11
Построение треугольника мощностей: а-
треугольник напряжений, б – треугольник
мощностей
Единицей полной
мощности служит вольт-ампер (ВА) и
киловольт-ампер (кВА). Это изменение
наименования упрощает указания мощности
в каталогах, расчетах и т. п.: достаточно
написать, например, 500кВА, чтобы тем
самым показать, что рассматривается
полная, а не активная мощность.
Понятие реактивной
мощности Qиспользуется для расчета
полной мощности установки, например,
при определении мощности трансформатора,
необходимого для промышленного
предприятия. Различные приемники
электроэнергии потребляют как активную,
так и реактивную мощности. Полная
мощность, на которую должен быть
установлен трансформатор, определяется
на основании суммы активных мощностей
всех приемниковPи суммы их реактивных мощностейQпо формуле:
(2.2)
Реактивная мощность
измеряется в вольт-амперах реактивных
(ВАр) и киловольт-амперах реактивных
(кВАр).
Условно принято
считать реактивную емкостную мощность
отрицательной, в соответствии с чем
конденсаторы нужно считать генераторами
реактивной мощности Qc, а индуктивные
приемникиQL— ее
потребителями. При наличии среди
приемников конденсаторов и индуктивных
катушек общая полная мощность установки
(2.3)
Посредством
емкостной реактивной мощности,
компенсирующей индуктивную мощность
электродвигателей, повышается cos промышленных предприятий.
Раздел 3. Трехфазный электрический ток
3.1. Элементы трехфазной системы
В настоящее время
получение, передача и распределение
электроэнергии в большинстве случаев
производится посредством трехфазной
системы.
Эта система была
изобретена и практически разработана
во всех основных се частях выдающимся
русским инженером М. О. Доливо-Добровольским.
Как показывает
само название, трехфазная система
состоит из трех источников электроэнергии
и трех цепей, соединенных общими проводами
линии передачи.
Источником энергии
для всех фаз системы является трехфазный
генератор (рис. 3.1). Он отличается от
однофазного генератора переменного
тока тем, что у него на статоре размещены
три изолированные друг от друга одинаковые
обмотки. Они расположены так, чтобы
индуктируемые в них э.д.с. были сдвинуты
по фазе одна относительно другой на
120°.
Если генератор
двухполюсный, как на рис. 3.1, то оси
катушек обмоток фазы сдвинуты одна по
отношению к другой на одну треть
окружности статора.
Рис.3.1
Схема устройства трехфазного генератора.
Рис.3.2
Кривые мгновенных значений э.д.с.
трехфазной системы.
При вращении ротора
его постоянное магнитное поле пересекает
проводники обмоток не одновременно.
Э.д.с. обмотки Адостигает своего
максимального значения, когда мимо нее
проходит середина полюса ротора. Э.д.с.
в следующей обмоткеВдостигает
максимума позже, когда ротор повернется
на 1/3 оборота. В двухполюсном генераторе
повороту на 1/3 оборота соответствует
1/3 периода индуктируемой э.д.с.
Следовательно, э.д.с. в обмоткеВотстает по фазе от э.д.с. в обмоткеАна 1/3 периода. В свою очередь, э.д.с. в
обмоткеСотстает по фазе от э.д.с.
обмоткиД на 1/3 периода и от э.д.с.
обмоткиАна 2/3 периода. При такой
симметрии устройства генератора
максимальные значения этих э.д.с.
одинаковы. Конструкция генератора
должна обеспечивать их синусоидальность.
Уравнения мгновенных
значений э.д.с. будут:
EA
= Em
sin t
(3.1)
Кривые
мгновенных значении э.д.с. показаны на
рис. 3.2. На рис. 3.3 дана векторная диаграмма
для их действующих значений
Сумма этих векторов
образует замкнутый треугольник: ЕА
+ ЕВ + ЕС = О— это трехфазная симметричная система
э.д.с. Алгебраическая сумма мгновенных
значений э.д.с.eА
+ еB + еC
= 0, что легко проверить, подставив
выражения этих значений как синусоидальных
функций времени.
Рис.
3.3 Векторы э.д.с. трехфазной системы.
Изображения э.д.с.
трехфазной системы в комплексной форме
будут:
ĖA
= Eф ·
ej0
= Eф
(3-2)
От последовательности
фаз системы зависит направление вращения
трехфазных двигателей, поэтому в
трехфазных устройствах она проверяется
специальными указателями последовательности
фаз и обозначается раскраской шин на
распределительных устройствах; приняты
следующие цвета: фаза А— желтый,
фазаВ— зеленый и фазаС—
красный; незаземленная нейтраль —
белый, заземленная нейтраль — черный.
Зажимы обмоток генератора различают:
началаA, В, С, концыX, Y, Z.
Два основных
способа соединения обмоток генераторов,
трансформаторов и приемников в трехфазных
цепях: звездой и треугольником.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Что такое мощность электрического тока
Под мощностью электрического тока понимают некоторые изменения, связанные с энергией. Например, передача электроэнергии по проводам. В этом случае определяется мощность линии.
Или это может быть преобразование, так электродвигатель может совершать какую-то механическую работу, телефон преобразует электричество в радиоволны, расходует энергию на работу процессора, экрана и тому подобное. Получается, что под мощностью понимают потребление энергии за определенный промежуток времени.
Но есть и обратный процесс. Так генератор, напротив, вырабатывает электроэнергию, отдавая ее потребителю, обладает какой-то мощностью. Аккумулятор может быть как источником энергии, так и потребителем во время заряда. По своей сущности мощность является скалярной величиной и определяется в точечном отрезке времени.
Скалярная – величина, определяемая только числом, без указания направления движения электрического тока.
Кроме того, сам потребитель может менять свою мощность в зависимости от поставленной задачи. На примере съемочной камеры это легче объяснить.
При работе камеры ток потребления один, если делается фотосъемка, то мощность другая, а если применяется вспышка, то мощность уже третья. И каждый раз можно определить потребление энергии с помощью простой формулы.
Как рассчитать мощность трансформатора
Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.
Расчет обмотки преобразователя напряжения и его мощности
По сечению сердечника
Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.
Читать также: Для чего нужен транзистор в электрической цепи
Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.
Расчетная формула такой взаимосвязи:
Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где
- Sо — показатели площади окна сердечника;
- Sс — площадь поперечного сечения сердечника;
- Рг — габаритная мощность;
- Bс — магнитная индукция внутри сердечника;
- А — токовая плотность в проводниках на обмотках;
- F — показатели частоты переменного тока;
- Ко — коэффициент наполненности окна;
- Кс — коэффициент наполненности сердечника.
Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.
По нагрузке
При выборе трансформатора учитывается несколько основных параметров, представленных:
- категорией электрического снабжения;
- перегрузочной способностью;
- шкалой стандартных мощностей приборов;
- графиком нагрузочного распределения.
В настоящее время типовая мощность трансформатора стандартизирована.
Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.
Формула расчета мощности, тока и напряжения
Сначала следует определить входящие в формулу единицы измерения мощности или определить, что делает электрическую энергию способной выполнять какие-либо действия?
Электрический заряд, из которого состоит ток, должен перемещаться, только в этом случае возможно его проявление, так как по определению электрический ток – это движение заряженных частиц по замкнутой цепи. Поэтому мощность напрямую зависит от количества перемещенной энергии за точку времени в определенной цепи.
Что заставляет заряды перемещаться? Это создаваемая источником питания разность потенциалов. Измеряется она в Вольтах и называется напряжением. Другое, что еще нужно учесть – количество зарядов, проходящих в этот момент через поперечное сечение проводника. Это называется силой тока и измеряется в Амперах. Вот две составляющие, которые необходимы для упрощенной формулы.
Что нужно сделать с этими составляющими? Чтобы проще было понять, будем считать, что напряжение отвечает за скорость передвижения, а ток за количество заряда. Пусть напряжение будет равно 1 единице, а ток начнется с 2 зарядов. В этом случае за единицу времени будет перемещено 2 заряда.
А если напряжение увеличить до 2 единиц? Тогда и зарядов будет перемещено в два раза больше, поскольку скорость перемещения будет увеличена.
Из этого делаем вывод: чтобы узнать мощность (количество перемещенных зарядов), необходимо напряжение умножить на ток. Подставив условные обозначения, получим формулу мощности: P=UI;
- где P – мощность,
- U – напряжение,
- I – сила тока.
Осталось узнать, в чем измеряется электрическая мощность.
Перегрузки силовых трансформаторов
Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:
Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.
Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.
Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.
На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.
Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.
Читать также: Как определить где фаза а где ноль
Ватт и другие единицы измерения мощности
Впервые понятие ватт было использовано в 1882 году. До этого мощность измерялась в лошадиных силах. В международную систему этот термин был включен в 1960 году. Для обозначения используют букву W в международной системе и Вт, как русский эквивалент. Понятие мощности используется не только в электротехнике, мощность может быть:
- механической;
- тепловой;
- электромагнитной и так далее.
Если разбираться в чем измеряется мощность тока, то здесь существуют производные от основной единицы. Полный список приводится в таблице.
В быту чаще всего используются Ватты и килоВатты. И здесь может возникнуть путаница. Когда нужно узнать, в чем измеряется мощность, то следует уточнять, о чем идет речь. Дело в том, что есть еще одно измерение – киловатт в час. В чем разница между килоВатт и килоВатт в час?
Первое понятие указывает на мощность прибора, то есть способность прибора преобразовывать электрическую энергию во что-то другое. Например, лампочка мощностью 1 кВт способна за один час потребить энергию равную мощности в 1 кВт.
Лампочка мощностью 100 Вт за 10 часов потребит такую же энергию. А счетчик, который контролирует потребление энергии, за один час учитывает потребление всей энергии, проходящей через него. За этот же час может быть расходовано несколько килоВатт.
Получается, что мощность прибора не зависит от времени работы, а вот потребляемая мощность, напротив, напрямую связана со временем. Поскольку речь пошла о переменном токе, то следует также отметить, что и здесь не все так просто.
Расчет номинальной мощности трансформатора
Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения
Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.
Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.
При этом коэффициент заполнения суточного графика нагрузки трансформаторов кн в условиях его перегрузки должен быть не более 0,75, а коэффициент начальной нагрузки кпн — не более 0,93.
Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.
Завышение коэффициента к приводит к завышению суммарной установленной мощности трансформаторов на подстанции.
Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.
Таким образом, для двухтрансформаторной подстанции
В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.
Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.
Тогда ошибка, связанная с упрощением выражения (3.13) до (3.14), не превышает инженерную ошибку 10%, которая включает в себя и приблизительность значения 0,7, и ошибку в определении фиксированного Рмах
Таким образом, суммарная установленная мощность двухтрансформаторной подстанции
При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.
При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.
Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).
Аварийные перегрузки масляных трансформаторов со всеми видами охлаждения:
Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.
В чем измеряется активная, реактивная и полная мощность
Когда речь идет о постоянном токе, тогда приведенная выше формула применима к вычислению. Она также может быть использована для измерения мгновенного значения мощности в переменном токе, но что касается определения мощности в длительном временно́м значении, то здесь эта формула неприменима. Дело в том, что в переменном токе существует несколько определяемых мощностей:
- активная;
- реактивная;
- полная.
Сразу отметим, что полная мощность включает в себя активную и реактивную мощности. Что представляют собой эти составляющие и в чем измеряется мощность каждой из них?
Реактивная мощность, если не вдаваться в сложности, состоит из мощности нагрузки, в цепи которой включены индуктивности и (или) емкости.
Индуктивностью называются катушки, с сердечником или без. Например, трансформатор, двигатель, дроссель. Под емкостью подразумевают конденсаторы.
Она определяется по формуле Q=U·I·sinφ. Единицей измерения служит ВАр (Вольт-Ампер реактивный) или var. Новая составляющая sinφ определяет сдвиг фазы в градусах или радианах. Что это значит?
При прохождении переменного тока через индуктивность ток начинает опаздывать от меняющегося напряжения. Связано это с электромагнитным полем, возникающим при прохождении через проводник тока. Это поле мешает менять направление. Такой сдвиг называют положительным.
Емкость, напротив, действует в обратном направлении. Конденсатор стремится сравнять разность потенциалов на своих обкладках. Поэтому ток опережает напряжение. Такой сдвиг называют отрицательным.
Активная мощность определяется по формуле P=U·I·cosφ. В цепи с активной нагрузкой емкостные и индуктивные составляющие выражены очень слабо. Измеряется в Ваттах (Вт).
Полная мощность определяется суммой активной и реактивной мощности для вектора. Измеряется в Вольт Амперах для СИ, в России используется ВА (Вольт-Ампер).
Упрощенный расчет 220/36 В
Стандартный трансформатор с 220/36 В, представлен тремя основными компонентами в виде первичной и вторичной обмотки, а также магнитопровода. Упрощенный расчет силового трансформатора включает в себя определение сечения сердечника, количества обмоточных витков и диаметра кабеля. Исходные данные для простейшего расчета представлены напряжением на первичной U1 и на вторичной обмотке – U2, а также током на вторичной обмотке или I2.
В результате упрощенного расчета устанавливается зависимость между сечением сердечника Sсм², возведенным в квадрат и общей трансформаторной мощностью, измеряемой в Вт. Например, прибором с сердечником, имеющим сечение 6,0 см², легко «перерабатывается» мощность в 36 Вт.
При расчете используются заведомо известные параметры в виде мощности и напряжения на вторичной цепи, что позволяет вычислить токовые показатели первичной цепи. Одним из важных параметров является КПД, не превышающий у стандартных трансформаторов 0,8 единиц или 80%.
Сами занимаетесь установкой электрооборудования? Схема подключения трансформатора представлена на нашем сайте.
Подозреваете, что трансформатор неисправен? О том, как проверить его мультиметром, вы можете почитать тут.
Читать также: Приставка к бензопиле для резки металла
Чем отличается трансформатор от автотрансформатора, вы узнаете из этой темы.
Показатели полной или полезной мощности многообмоточных трансформаторов, являются суммой мощностей на всех вторичных обмотках прибора. Знание достаточно простых формул позволяет не только легко произвести расчёт мощности прибора, но также самостоятельно изготовить надежный и долговечный трансформатор, функционирующий в оптимальном режиме.
Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007
В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:
Мощность не всех приборов указана в Вт, например:
- Мощность трансформаторов указывается в ВА:
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение) - Мощность конденсаторов указывается в Варах:
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение) - Примеры других нагрузок – см. приложения ниже.
Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.
Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.
Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:
- Активная мощность: обозначение P, единица измерения: Ватт
- Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
- Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
- Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина
Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S
Также cosФ называется коэффициентом мощности (Power Factor – PF)
Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.
Например, электромоторы, лампы (разрядные) – в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)
То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.
Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.
См. учебники по электротехнике, например:
1. Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.
2. Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.
3. Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.
Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)
Приложение
Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)
Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)
Однофазные автотрансформаторы | ||
TDGC2-0.5 kVa, 2A | АОСН-2-220-82 | |
TDGC2-1.0 kVa, 4A | Латр 1.25 | АОСН-4-220-82 |
TDGC2-2.0 kVa, 8A | Латр 2.5 | АОСН-8-220-82 |
TDGC2-3.0 kVa, 12A | ||
TDGC2-4.0 kVa, 16A | ||
TDGC2-5.0 kVa, 20A | АОСН-20-220 | |
TDGC2-7.0 kVa, 28A | ||
TDGC2-10 kVa, 40A | АОМН-40-220 | |
TDGC2-15 kVa, 60A | ||
TDGC2-20 kVa, 80A |
http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)
Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)
Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ
Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. – в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)
http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)
Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)
http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)
Дополнение 1
Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.
Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.
Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.
Дополнение 2
Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.
Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения
Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.
В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.
Дополнение 4
Наглядные примеры чистой активной и чистой реактивных нагрузок:
- К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
- К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5
Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:
+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.
– (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.
Дополнение 6
В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.
Дополнительные вопросы
Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?
Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].
Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:
- Полное сопротивление (импеданс) Z=R+iX
- Полная мощность S=P+iQ
- Диэлектрическая проницаемость e=e’+ie”
- Магнитная проницаемость m=m’+im”
- и др.
Вопрос 2:
На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?
Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.
Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.
Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:
См. дополнительную литературу, например:
[1]. Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.
[2]. Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.
[3]. Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.
[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)
[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013
[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН