Как найти амфотерные соединения

Амфотерные соединения

05-Дек-2014 | комментария 4 | Лолита Окольнова

Амфотерные соединения

и их свойства

амфотерные соединения

 Автор статьи — Саид Лутфуллин

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K2O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие  кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO3 и кислотный гидроксид H2SO4 (серную кислоту):

sernaya-kislota

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью. Таким оксидам и гидроксидам и будет  приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4, например (Al2O3, Al(OH)3, Fe2O3, Fe(OH)3)

И четыре исключения: металлы Zn, Be, Pb, Sn образуют следующие оксиды и гидроксиды: ZnO, Zn(OH)2, BeO, Be(OH)2, PbO, Pb(OH)2, SnO, Sn(OH)2, в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства.

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH)2, BeO, Be(OH)2, PbO, Pb(OH)2, SnO, Sn(OH)2, Al2O3, Al(OH)3, Fe2O3, Fe(OH)3, Cr2O3, Cr(OH)3.

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами.

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Оксиды:

Al2O3 + 6HCl → 2AlCl3 + 3H2O

ZnO + H2SO4 → ZnSO4 + H2O

BeO + HNO3 → Be(NO3)2 + H2O

Точно так же реагируют гидроксиды:

Fe(OH)3 + 3HCl → FeCl3 + 3H2O

Pb(OH)2 + 2HCl → PbCl2 + 2H2O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

  • Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn(OH)2 как кислоту. У кислоты водород спереди, вынесем его: H2ZnO2. И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO22- двухвалентный:

2KOH(тв.) + H2ZnO2(тв.) (t,сплавление)→ K2ZnO2 + 2H2O

Полученное вещество K2ZnO2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H2ZnO2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H2ZnO2 – нехорошо. Пишем как обычно Zn(OH)2, но подразумеваем (для собственного удобства), что это «кислота»:

2KOH(тв.) + Zn(OH)2(тв.) (t,сплавление)→ K2ZnO2 + 2H2O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH)2(тв.) + 2NaOH(тв.) (t,сплавление)→ 2H2O + Na2BeO2 (метабериллат натрия, или бериллат)

Pb(OH)2(тв.) + 2NaOH(тв.) (t,сплавление)→ 2H2O + Na2PbO2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al(OH)3, Cr(OH)3, Fe(OH)3) немного иначе.

Разберем на примере гидроксида алюминия: Al(OH)3, запишем в виде кислоты: H3AlO3, но в таком виде не оставляем, а выносим оттуда воду:

H3AlO3H2OHAlO2 + H2O.

Вот с этой «кислотой» (HAlO2) мы и работаем:

HAlO2 + KOHH2O + KAlO(метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH)3(тв.) + KOH(тв.) (t,сплавление)→ 2H2O + KAlO2(метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH)3 → H3CrO3 → HCrO2

Cr(OH)3(тв.) + KOH(тв.) (t,сплавление)→ 2H2O + KCrO2(метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH)4 → H4SnO4 → H2SnO3

Pb(OH)4 → H4PbO4 → H2PbO3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn(OH)2, Pb(OH)2), и +4 (Sn(OH)4, Pb(OH)4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

+2

+4

Формула гидроксида

Sn(OH)2

Pb(OH)2

Sn(OH)4

Pb(OH)4

Формула гидроксида в виде кислоты

H2SnO2

H2PbO2

H2SnO3

H2PbO3

Соль (калиевая)

K2SnO2

K2PbO2

K2SnO3

K2PbO3

Название соли

станнИТ

блюмбИТ

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

амфотерные соединения

Взаимодействия:

 Запомните, реакции, приведенные ниже, протекают при сплавлении.

  1. Амфотерного оксида с сильноосновным оксидом:

ZnO(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 (метацинкат калия, или просто цинкат калия)

  1. Амфотерного оксида со щелочью:

ZnO(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + H2O

  1. Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO(тв.) + K2CO3(тв.) (t,сплавление)→ K2ZnO2 + CO2

  1. Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH)2(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 + H2O↑

  1. Амфотерного гидроксида со щелочью:

Zn(OH)2(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + 2H2O

  1. Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn(OH)2(тв.) + K2CO3(тв.) (t,сплавление)→ K2ZnO2 + CO2↑ + H2O

  1. Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO3(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 + CO2

  1. Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO3(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + CO2↑ + H2O

  1. Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO3(тв.) + K2CO3(тв.) (t,сплавление)→ K2ZnO2 + 2CO2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Оксид

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Соль

Название соли

BeO

Be(OH)2

H2BeO2

BeO22-

K2BeO2

Метабериллат (бериллат)

ZnO

Zn(OH)2

H2ZnO2

ZnO22-

K2ZnO2

Метацинкат (цинкат)

Al2O3

Al(OH)3

HAlO2

AlO2

KAlO2

Метаалюминат (алюминат)

Fe2O3

Fe(OH)3

HFeO2

FeO2

KFeO2

Метаферрат (НО НЕ ФЕРРАТ)

SnO

Sn(OH)2

H2SnO2

SnO22-

K2SnO2

СтаннИТ

PbO

Pb(OH)2

H2PbO2

PbO22-

K2PbO2

БлюмбИТ

SnO2

Sn(OH)4

H2SnO3

SnO32-

K2SnO3

МетастаннАТ (станнат)

PbO2

Pb(OH)4

H2PbO3

PbO32-

K2PbO3

МетаблюмбАТ (плюмбат)

Cr2O3

Cr(OH)3

HCrO2

CrO2

KCrO2

Метахромат (НО НЕ ХРОМАТ)

  • Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами, и когда он окружен шестью гидроксид-ионами.

Запишем сокращенное ионное уравнение этих процессов:

Al(OH)3 + OH → Al(OH)4

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH)3 + 3OH → Al(OH)63-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно. Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al(OH)4 или Al(OH)63-.

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки.

Al(OH)3 + KOHK[Al(OH)4] (тетрагидроксоалюминат калия)

Al(OH)3 + 3KOHK3[Al(OH)6] (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K3[Al(OH)6] (допустимо образование K[Al(OH)4]». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al2O3 + NaOH → Na[Al(OH)4]

Al2O3 + NaOH → Na3[Al(OH)6]

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]

Al2O3 + 6NaOH + 3H2O → 2Na3[Al(OH)6]

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

2Al + 6NaOH + 6H2O → 2Na3[Al(OH)6] + 3H2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Соль

Название соли

Реакции

Al

Al2O3

Al(OH)3

Na[Al(OH)4]

Тетрагидроксоалюминат натрия

Al(OH)3 + NaOH → Na[Al(OH)4]

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Na3[Al(OH)6]

Гексагидроксоалюминат натрия

Al(OH)3 + 3NaOH → Na3[Al(OH)6]

Al2O3 + 6NaOH + 3H2O → 2Na3[Al(OH)6]

2Al + 6NaOH + 6H2O → 2Na3[Al(OH)6] + 3H2

Zn

ZnO

Zn(OH)2

K2[Zn(OH)4]

Тетрагидроксоцинкат натрия

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]

ZnO + 2NaOH + H2O → Na2[Zn(OH)4]

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4]+ H2

K4[Zn(OH)6]

Гексагидроксоцинкат натрия

Zn(OH)2 + 4NaOH → Na4[Zn(OH)6]

ZnO + 4NaOH + H2O → Na4[Zn(OH)6]

Zn + 4NaOH + 2H2O → Na4[Zn(OH)6]+ H2

Be

BeO

Be(OH)2

Li2[Be(OH)4]

Тетрагидроксобериллат лития

Be(OH)2 + 2LiOH → Li2[Be(OH)4]

BeO + 2LiOH + H2O → Li2[Be(OH)4]

Be + 2LiOH + 2H2O → Li2[Be(OH)4]+ H2

Li4[Be(OH)6]

Гексагидроксобериллат лития

Be(OH)2 + 4LiOH → Li4[Be(OH)6]

BeO + 4LiOH + H2O → Li4[Be(OH)6]

Be + 4LiOH + 2H2O → Li4[Be(OH)6]+ H2

Cr2O3

Cr(OH)3

Na[Cr(OH)4]

Тетрагидроксохромат натрия

Cr(OH)3 + NaOH → Na[Cr(OH)4]

Cr2O3 + 2NaOH + 3H2O → 2Na[Cr(OH)4]

Na3[Cr(OH)6]

Гексагидроксохромат натрия

Cr(OH)3 + 3NaOH → Na3[Cr(OH)6]

Cr2O3 + 6NaOH + 3H2O → 2Na3[Cr(OH)6]

Fe2O3

Fe(OH)3

Na[Fe(OH)4]

Тетрагидроксоферрат натрия

Fe(OH)3 + NaOH → Na[Fe(OH)4]

Fe2O3 + 2NaOH + 3H2O → 2Na[Fe(OH)4]

Na3[Fe(OH)6]

Гексагидроксоферрат натрия

Fe(OH)3 + 3NaOH → Na3[Fe(OH)6]

Fe2O3 + 6NaOH + 3H2O → 2Na3[Fe(OH)6]

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na3[Al(OH)6] + 6H2SO4 → 3Na2SO4 + Al2(SO4)3 + 12H2O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Обсуждение: “Амфотерные соединения”

(Правила комментирования)

Амфотерность

Это определение было введено при изучении общей теоретической химии в области ведущих и кислотных взаимодействий при наступлении определенных условий.

Отмечается влияние смены растворяющего вещества на дуальные характеристики.

Амфотерные свойства

В концепции электролитической диссоциации, когда происходит распадение проводящего вещества на отдельные ионы при сплавлении или растворении, субстанция реагирует по кислотному механизму или основным свойствам. В первом случае отщепляются частицы гидроксония, Н+, во втором варианте отделяются гидроксид-анионы, ОН. Электролиты получают ионы одновременно из нейтральных молекул и атомов, процесс проходит под совместным действием кислотных и генеральных качеств вещества. В этом случае проводящие смеси имеют название амфолитов.

Гидроксиды элементов и их сцеплений из таблицы Менделеева, которые относятся к амфотерным соединениям:

  • элементы головных подгрупп (алюминий, бериллий, сурьма, галлий, селен, мышьяк);
  • участники дополнительных подвидов (вольфрам, цинк, молибден).

 амфотерные гидроксиды

Чаще всего вещества проявляют одно из взаимодействий, которое изменяет характер при перемене условий. Например, происходят процессы ионизации азотной кислоты, при этом получаются нитрозильные анионы и нитрит-катионы, в качестве амфолита выступает вода.

Амфотерность рассматривается в виде способности проводящего вещества быть донором и акцептировать протоны в рамках протеолитической концепции Бренстеда и Лоури. В этом случае вода проявляет свойства самоионизации в форме обратимой передачи молекул между жидкостями, в результате появляется одинаковое число анионов и катионов.

Амфолитами являются субстанции с содержанием структурных включений органических молекул, которые передают свойственные характеристики разного характера.

Такие вещества представлены пептидами, белками и аминокислотами. Эти группы частично ионизируются при помещении в раствор.

Молекулы и частицы аминокислот имеют равновесные состояния:

  • заряженная (цвиттер-ион);
  • незаряженная форма.

В этих случаях вещество представлено кислотой (воспроизводят катионы) и протоны или работает по основному свойству и акцептирует катионы и протоны.

Характеристики гидроксидов

Способность амфотерного элемента проявляется и в форме взаимодействия с кислотами и основаниями.

Амфотерные свойства

Так ведут себя оксиды, комплексные соединения, гидроксиды и отдельные р-элементы на средней стадии окисления. Для неорганических связей с присутствием гидроксильной группы ОН такое взаимодействие является общей характеристикой.

Традиционная теория об амфотерности гидроксидов в процессе разложения на ионы по основному и кислотному виду не подтверждается. Амфотерное поведение гидроксидов заключается в реакции обмена частицами среды с молекулами, имеющими связь с акцепторным центром. Гидроксиды обладают особенностью выделять соль и по-разному взаимодействовать в кислотной среде и растворе щелочи.

В первом случае они действуют по типу оснований, а вторая среда заставляет проявлять реакцию кислот.

Амфотерность гидроксидов и оксидов проявляется в продуцировании 2 рядов солей. Двойственность свойств используется при проведении качественного анализа и отделения веществ с подобными характеристиками от других элементов. Интервал появления осадка проявляется узким промежутком, поэтому внимание уделяется тщательности регулировки растворной среды.

Номенклатура и химические особенности

На особом положении в ряду амфотерных элементов находится алюминий, он стоит на границе между кислотами и основаниями. Это ведет к его диссоциации по двум типам поведения.

Амфотерные металлы и неметаллы обладают свойствами:

 амфотерные элементы

  • гидроксиды слабо растворяются в водной среде, поэтому не способствуют приобретению водой основных или кислотных характеристик;
  • оксид-гидроксиды имеют особенности, типичные для электроположительных веществ;
  • гидроксиды активных металлических групп чаще проявляют характеристики акцепторов элементарных частиц;
  • по мере перехода к неметаллам свойства переходят от типичных оснований к амфотерным связкам, т. е. вещества выступают донорами протонов;
  • в категории основных гидроксидов с положительными катионами существует ионная спайка, а кислород присоединяется к водороду с помощью ковалентной связи;
  • в группе кислотных оксидов кислород имеет ковалентную связь с положительными электрочастицами, а с водородом соединяется полярной сцепкой ионов.

Гидроксиды с двойственными свойствами имеют физические промежуточные характеристики, доказать амфотерность можно на примере взаимодействия комплексных соединений из списка веществ 3 периода таблицы Менделеева.

 как доказать амфотерность

В химии свойства однотипных сульфидов и оксидов, а также гидросульфитов и гидроксидов имеют разную реакцию в пределах отличающихся периодов. Свойство оснований проявляют сульфиды типичных металлов, а кислотные характеристики присутствуют в бинарных соединениях неметаллических субстанций. Различие химического происхождения наблюдается при обменной реакции между действующим веществом и растворителем, а также во взаимодействии сульфидов друг с другом.

Амфотерность гидроксидов металлических элементов объясняется тем, что в воде вещество распадается на отдельные ионы водорода по кислотному виду, а образование гидроксильных ионов проходит по типу основы.

Степени окисления

У некоторых веществ наблюдается несколько ступеней окисления, поэтому амфотерные свойства гидроксидов и оксидов подлежат разной классификации. Вещества с низкими окислительными характеристиками тяготеют к группе оснований, а сам элемент обладает свойствами металла, поскольку содержится в категории катионов. Субстанции с высокой степенью окисления являются участниками кислотных групп и проявляют неметаллические показатели, так как представляют собой анионы.

 амфотерные соединения

Например, у гидроксида и оксида марганца (2) главными являются основные свойства, а сам элемент входит в категорию катионов. У разновидности марганца (Vil) преобладают показатели кислоты, а само вещество относится к анионовой группы (тип МПО4).

Свойства оксидов и гидроксидов проявляются в зависимости от характеристики металла. Для элементов подвида бора (исключается таллий) типичной является 3-я степень перехода заряженных частиц от донора-восстановителя к окислительному акцептору. В результате свойства основания для элемента ослабляются.

При переходе к 3 группе встречаются вещества, которые образуют кислоты и неорганические кислоты. Последние обладают сочетанием химических и физических показателей, характерных для кислот и являются типовыми для многих элементов, за исключением щелочноземельных и щелочных металлов.

Свойства металлов

Рост свойств основного вещества происходит при увеличении радиуса движения ионов. Некоторые субстанции имеют почти одинаковую степень диссоциации с получением ионов, а у других аморфные показатели выражаются слабо.

В соединениях развитие основных свойств происходит медленно. Это объясняется тем, что атомы веществ 3 группы представляют собой аналоги с характерным строением внешней оболочки по типу благородных газов. Другие субстанции отличаются наружным слоем атома в форме электронной оболочки с 10 электронами. В таблице после алюминия наблюдается увеличение радиусов ионов, отмечается диагональное сходство, что ведет к постепенному усилению основных характеристик.

Процессы при диссоциации

В некоторых случаях амфотерные характеристики металлических гидроксидов проявляются не только в водной среде, но под действием кислотного и щелочного раствора. Если в случае с кислотой при продуцировании нейтральных частиц выделяется вода и появляется ион металла (свойство основания), то в щелочной среде не происходит отщепление протона.

Оксиды

При тяготении азота к висмуту степень окисления стабилизируется и усиливаются показатели основного характера. Такие соединительные субстанции выполняют одновременно окислительные и восстановительные функции. Двойственный процесс объясняется ионизацией молекулы воды, которая располагается во внутренней сфере, а протон перемещается к иону ОН.

В этом случае затрудняется определение развитости кислотных и основных показателей вещества, так как оно не имеет в составе подвижного водородного атома.

В результате из бокситов получаются другие элементы, что служит показателем использования химических характеристик при разделении. Метод основывается на применении свойства амфотерности алюминия. К этому же разряду относится выделение магния из воды морей и океанов.

Реакции взаимного действия с расплавами щелочей и кислотами ведут к появлению молекул воды и соли, а в результате степень окисления остается неизменной.

Двойственные показатели

Ионный потенциал вещества увеличивается в результате проявления двойственного механизма при диссоциации амфотерных соединений. Например, Мл (0Н) является неуравновешенным основанием, а Мп (0Н)4 представляет собой амфотерный элемент, который в равной степени проявляет кислотные особенности. НМПО4 переходит в категорию усиленных кислот, при этом снижаются свойства основания.

Химические свойства амфотерных гидроксидов

Щелочная среда используется для восстановления элементов с образованием гидросолей, например, гексагидроксоалюминат натрия. Если судить о тетрагидроксиде титана, то название подчеркивает возможность взаимной реакции с кислотами. Эта же субстанция гидроокиси называется ортокислотой при характеристике ее реагирования в условиях щелочной среды.

Активные металлические соединения образовывают сильнополярные ионные связи, поэтому относятся к группе оснований. Уменьшение динамичности характера вещества изменяется в сторону кислотного реагирования: НМпО, КОН, 5с (ОН)3, Са (ОН)2, НУО3 и другие.

Амфотерные оксиды М2О3 и соответствующие им гидроксиды М (ОН)3 (при этом исключается В2О3) плохо растворяются в водном растворе.

Гидроксиды характеризуются неравномерным изменением двойственных характеристик:

  1. А1 (0Н)3 имеет небольшое показание в области диссоциации, как основание, и представляет собой амфотерный проводящий электролит.
  2. Оа (0Н)3 является дуалистическим гидроксидом с неизменной константой распада, которая характеризует вещество в качестве основания и одновременно кислоты.
  3. Переход от Оа (0Н)3 к Т1 (0Н)3 происходит постепенно, также равномерно изменяется реакция в сторону кислотного взаимодействия в результате увеличения металлизации.

Другие вещества

Соединение гидроксида циркония является малорастворимым в воде и проявляет устойчивость к этой среде. Вещество относится к классу полимеров с положительно заряженными частицами, который содержит периодические цепи, расположенные в клеточном порядке. Материал не реагирует на основания, восстановительных и окислительных агентов.

Амфотерные свойства гидроксида алюминия

В кислых растворах гидроксид циркония переводит анионы С1, НО3, СГО4, 8Ог на ионы ОН. Увеличение температурных показателей почти не сказывается на скорости обмена. В случае с цирконием не происходит образование определенных гидратов, термогравиметрические измерения показывают осадок полимерных частиц с образованием структурного слоя.

Германий находится ближе к группе металлов и образовывает связи, в которых его степень окисления расценивается по 2 категории. Соединения являются менее прочными, по сравнению с контактами германиевого аналога свинцовой группы, и отличаются восстановительными характеристиками. Амфотерный гидроксид с явно выраженными кислотными свойствами соответствует черному оксиду германия, молекулы которого не растворяются в жидкости. Последний носит название германистой кислоты, а его осадочные соли — германитов.

Если элемент в зависимости от условий образовывает несколько различающихся по составу оснований, то наиболее сильным признается то, которое отличается низкой окислительной степенью.

Качества основания в таких веществах выражаются ярко. Сильной является кислота, анионы которой содержат множество кислородных атомов в случае появления у элемента нескольких кислотосодержащих соединений.

План урока:

Основное понятие амфотерности

Расположение амфотерных элементов в таблице Менделеева

Представители амфотерных элементов

Свойства металлов Al и Zn как простых веществ

Получение алюминия и цинка

Химические свойства алюминия и цинка

Оксиды цинка и алюминия

Применение алюминия и цинка

Сплавы алюминия и цинка

Основное понятие амфотерности

Что такое металлы и неметаллы – понять нетрудно. Металлы обладают восстановительными свойствами и в химической реакции отдают электроны. При этом, гидроксиды металлов – это основания. Неметаллы, напротив, являются окислителями и забирают электроны. Гидроксиды неметаллов – это кислоты.

1 delenie oksida
Источник

Амфотерные соединения могут проявлять как окислительные, так и восстановительные свойства в зависимости от реакционной среды. Гидроксиды таких атомов могут выступать в качестве кислот или оснований.

Расположение амфотерных элементов в таблице Менделеева

В таблице Менделеева положение того или иного атома сообщает значительную часть информации о строении атома этого элемента и его химических свойствах. Периодической эта система называется, потому что в разных периодах (горизонтальные строчки) и группах (вертикальные столбцы) повторяется определенное качество элементов. Так, вся первая группа является щелочными металлами, а седьмая – галогенами (неметаллами), восьмая – инертными газами. Но, это характерно только для главной подгруппы. В побочной группе располагаются амфотерные элементы.

Строение атома амфотерных элементов

Особенность химических свойств амфотерных элементов связана со строением их атомов. У них происходит предзаполнение s-подуровня, из-за этого, незаполненным оказывается всегда d-подуровень. Все представители побочных подгрупп являются p- или d-элементами. В различных условиях может происходить перескок электронов с подуровней и увеличение неспаренных электронов.

Таблица. Строение атомов некоторых амфотерных элементов

2 stroenie atomov nekotoryh amfoternyh elementov

Для некоторых из них характерен проскок электрона. Это состояние, при котором электрон с последнего уровня перескакивает на следующий. По этой причине оказывается неспаренным s-электрон.

Представители амфотерных элементов

Все элементы побочных групп являются амфотерными и проявляют сходные химические свойства. Наиболее распространены в природе три элемента: Al, Zn и Cr.

Цинк как амфотерный элемент

Цинк — это относительно мягкий светло-серый металл. Является одним из самых распространенных амфотерных элементов. В природе цинк встречается в составе 66 минералов, наиболее распространенные представлены в таблице.

3 cinkit

Таблица. Минералы, в состав которых входит Zn

4 mineraly v kotorye vhodit cink

Цинк является d-элементом.

5 cink yavlyaetsya d elementom

1s22s22p63s23p63d104s2

Химические свойства цинка обусловлены наличием незаполненной p-обитали. С s-подуровня происходит перескок электрона, за счет чего появляется два неспаренных электрона: Zn* 1s22s22p63s23p63d104s14p1.

Алюминий как амфотерный элемент

Al является самым распространенных элементом не только среди металлов, но и во всей таблице Менделеева. Он занимает 3 место после кислорода (O2) и кремния (Si).

Это мягкое вещество серебристо-серого цвета с низкой температурой плавления. В природе встречается как в виде минералов, так и в виде самородков. Является примесью многих минералов.

Наиболее распространенные минералы, содержащие Al:

  • Авгит ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6)
  • Боксит (Al2O3xH2O)
  • Нефелин (Элиолит) ((NaK)AlSiO4)
  • Алунит (K2SO4Al2(SO4)3·4Al(OH)3)
  • Силлиманит ((Al2O3)(SiO2))
  • Корунд (Al2O3)

Последний минерал в зависимости от примесей имеет разный окрас. Применяется в ювелирном деле и считается полудрагоценным камнем.

6 mineraly

Его атом содержит 13 электронов, распределенных по 3 электронным уровням: 1s22s22p63s23p1. Это р-элемент, у которого может происходить переход электрона с s-подуровня на свободную р-орбиталь. За счет этого, металл приобретает 3 неспаренных электрона: Al* 1s22s22p63s13p2

Свойства металлов Al и Zn как простых веществ

Цинк – довольно плотный металл. Сохраняет свои качества в небольшом диапазоне температур: при низких значениях (до -30) становится хрупким, при температурах выше 1000 С очень пластичен. Это используется в металлургии, прокатывая цинковые листы толщиной несколько миллиметров (цинковая фольга). Некоторые примеси резко повышают хрупкость металла, поэтому используется очищенный материал.

7 aluminii

Al – сильно пластичный легкий металл с низкой температурой плавления. Обладает высокой ковкостью и электропроводностью.

На воздухе он покрывается оксидной пленкой поэтому практически не подвергается коррозии. Благодаря этому он используется при изготовлении проводов и корпусов машинной техники.

Получение алюминия и цинка

Основной способ получения металлов – выделение их из состава руды. Для этого используется наиболее богатая металлом горная порода. Алюминий получают из боксита. Этот процесс состоит из трех этапов:

  • Добыча горной породы;
  • Обогащение (увеличение концентрации метала за счет очистки от примесей);
  • Выделение чистого вещества путем электролиза.

Получение цинка производится несколькими методами – электролитическим (так же как и Al) и пирометаллургический. Второй способ основан на восстановлении цинка из его оксида углеродом или оксидом углерода II (угарным газом):

ZnO + C ⇄ Zn + CO

ZnO + CO ⇄ Zn + CO2

Достоинство этого метода в том, что продукты первой реакции могут использоваться во второй, что снижает количество выбросов в атмосферу.

8 poluchenie aluminiya

Химические свойства алюминия и цинка

Оба вещества способны реагировать как обычные металлы. Так же, есть ряд специфических реакций.

Взаимодействие с неметаллами

С неметаллами и оба вещества взаимодействуют с образованием бинарных соединений – солей. Как правило, скорость течения реакции и условия зависят от активности неметалла. Так, с кислородом реакция идет реакция образования оксида при нагревании с цинком:

2Zn + O2 = 2ZnO

с алюминием в обычных условиях:

4Al + 3O2 = 2Al2O3

Оксид алюминия покрывает изделие плотной пленкой (оксидная пленка) и доступ кислорода прекращается, поэтому, для полной реакции его нужно брать в порошке.

Zn не реагирует с Br, N2, Si, C, H2.

Al не вступает в реакцию только с H2.

Взаимодействие с металлами

С восстановителями оба металла образуют сплавы:

  • Алюминиды CuAl2, CrAl7, FeAl3
  • Латунь ZnCu

Это не является химической реакцией, так как не происходит передачи электронов или изменения химических свойств веществ.

Взаимодействие с кислотами и щелочами

С кислотами и алюминий, и цинк взаимодействуют при обычных условиях с образованием солей:

8Al + 30HNO3 = 8Al(NO3)3 + 3N2O + 15H2O;

2Al + 6HCl = 2AlCl3 + 3H2;

Zn + 2HCl = ZnCl2 + H2;

Zn + H2SO4 = ZnSO4 + H2.

Результат реакции со щелочами зависит от условий реакции: если реакция идет в растворе (в присутствии воды), то образуются комплексные соли:

2Al + 2NaOH + 10H2O = 2Na[Al(H2O)2(OH)4] + 3H2;

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2.

В безводной среде (сплавление) образуются соли металлических кислот:

Zn + 2KOH = K2ZnO2 + H2 (K2ZnO2 – цинкат калия);

2Al + 6KOH = 2KAlO2 + 2K2O + 3H2 (KAlO2 – алюминат калия).

Взаимодействие с водой

Алюминий активно взаимодействует с водой, если очистить оксидную пленку. Реакцию нужно проводить быстро, так как пленка образуется практически мгновенно:

2Al + 6H2O = 2Al(OH)3 + 3H2;

Zn реагирует с водой при очень высокой температуре (при накаливании до красного состояния):

Zn + H2O = ZnO + H2.

Оксиды цинка и алюминия

ZnO – оксид, широко используемый в химической промышленности. Он применяется для получения солей. В реакции со щелочами образуются комплексные соли, легко разрушаемые кислотами.

Al2O3 –глинозем. Имеет очень плотную кристаллическую решетку, из-за чего практически не реагирует при обычных условиях. При экстремально высоких температурах вступает в реакцию со щелочами:

 Al2O3 + 2KOH = 2KAlO2 + H2O

Может вступать в реакцию с кипящими кислотами с образованием комплексных солей.

Применение алюминия и цинка

Al как самый распространенный элемент широко используется в химической промышленности. Он способен вытеснять восстановители из соединений, поэтому применяется для получения металлов. Такой метод называется алюмотермия.

9 ispolzovanie aluminiya

Благодаря оксидной пленке и низкой плотности используется в автомобиле-, самолето- и ракетостроении для снижения массы изделия. В строительстве алюминий применяется для изготовления каркасов высотных зданий.

Zn применяется для снижения коррозии металлических изделий –цинкование. Порошок этого металла используется для изготовления масляных красок с металлическим блеском. Также, оксид служит в качестве антисептика. Мази на основе цинкового порошка используются в лечении лишаев и других инфекционных поражений кожи.

Сплавы алюминия и цинка

В металлургии практически не применяются в чистом виде из-за высокой пластичности. Для того чтобы сохранить достоинства металлов, но убрать недостатки осуществляют сплавление с другими металлами.

Сплавы алюминия

10 splav aluminia

Сплавы алюминия делятся на две группы:

  • Литейные (без сохранения пластичности);
  • Конструкционные (деформируемые).

Таблица. Характеристика основных сплавов алюминия

11 harakteristika osnovnyh splavov aluminia

Сплавы цинка

Самый используемый сплав цинка – латунь (Cu — Zn). Он обладает хорошими сварными свойствами, поэтому применяется в изготовлении кухонной утвари и различных изделий интерьера.

12 splavy czinka

Если к этому сплаву добавляют свинец, этот сплав называется мунц-металл. Оба сплава применяются при литье труб и каркасов.

ЕГЭ по химии

Амфотерные оксиды. Получение, химические свойства, образование средних и комплексных солей

Материал по химии

Оглавление

  • Какие оксиды называют амфотерными?
  • Химические свойства амфотерных оксидов
  • Получение амфотерных оксидов

Амфотерность – способность веществ проявлять кислотные или основные свойства в зависимости от реагента. Так, оксид алюминия, с кислотными оксидами и кислотами ведёт себя как основный оксид, а со щелочами и основными оксидами – как кислотный оксид.

Какие оксиды называют амфотерными?

К амфотерным относят в основном оксиды металлов +3 и +4 степени окисления, но также можно встретить амфотерные оксиды и в степени окисления «+2».

Таблица 1. – Примеры амфотерных оксидов в различных степенях окисления

Амфотерные оксиды. Получение, химические свойства, образование средних и комплексных солей


Примеры амфотерных оксидов

В таблице представлены лишь самые популярные примеры оксидов, встречающихся на ЕГЭ, многие другие оксиды при различных условиях реагируют как со щелочами, так и с кислотами.

Подробнее о классификации оксидов можно узнать в статье Классификация оксидов

Амфотерность – способность веществ проявлять кислотные или основные свойства в зависимости от реагента. Так, оксид алюминия, с кислотными оксидами и кислотами ведёт себя как основный оксид, а со щелочами и основными оксидами – как кислотный оксид.

Химические свойства амфотерных оксидов

  1. Амфотерные оксиды проявляют свойств основных оксидов в реакции с кислотами:

ZnO + 2HCl = ZnCl2 + H2O

Al2O3 + 3H2SO4 = Al2(SO4)3 + 3H2O

BeO + 2HBr = BeBr2 + H2O

  1. Амфотерные оксиды проявляют основность при реакции с кислотными оксидами:

ZnO + SO3 = ZnSO4

BeO + N2O5 = Be(NO3)2

  1. Амфотерные оксиды проявляют свойства кислотных оксидов при взаимодействии со щелочами (растворимыми основаниями). При этом реакция осуществима как в растворах с концентрированными щелочами, так и при сплавлении.

В растворах:

ZnO + 2NaOH + H2O = Na2[Zn(OH)4]

Полученную соль называют тетрагидроксоцинкат натрия

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Полученную соль называют тетрагидроксоалюминат натрия.

Формула полученной соли зависит от количества воды и щелочи, вступивших в реакцию, так в избытке щелочи образуется гексагидроксоалюминат, а не тетрагидроксоалюминат:

Al2O3 + 6NaOH + 3H2O = 2Na3[Al(OH)6]

При сплавлении:

ZnO + 2NaOH = Na2ZnO2 + H2O

Полученная соль называется цинкат натрия.

Al2O3 + KOH = KAlO2 + H2O

Полученная соль называется алюминатом калия (метаалюминат)

Амфотерные оксиды с расплавами и растворами щелочей

В следующих таблицах приведены некоторые средние и комплексные анионы, в состав которых входят амфотерные металлы.

Таблица 2. – Анионы, содержащие амфотерные металлы в валентности II.

Соли, соответствующие амфотерным оксидам и гидроксидам (цинкаты, бериллаты, плюмбиты)

Таблица 3. – Анионы, содержащие амфотерные металлы в валентности III.

Соли, соответствующие амфотерным оксидам и гидроксидам (алюминаты, хромиты, ферриты)

Соли с координационным числом «6» образуются в сильном избытке щелочи.

Таблица 4. – Наиболее распространенные ионы, содержащие амфотерные металлы в валентности IV.

Соли, соответствующие амфотерным оксидам и гидроксидам (манганиты, плюмбаты, станнаты)

Пользуясь данными таблицами, можно назвать многие соли, например, средние соли:

KAlO2 – алюминат калия

Ca(AlO2)2 – алюминат кальция

NaAlO2 – алюминат натрия

K2ZnO2 – цинкат калия

BaZnO2 – цинкат бария

Na2BeO2 – бериллат натрия

CaBeO2 – бериллат кальция

K2PbO2 – плюмбит калия, содержит свинец (II)

BaPbO2 – плюмбит бария

K4PbO4 – плюмбат (ортоплюмбат) калия, содержит свинец (IV)

Ca2PbO4 – плюмбат кальция

Na2SnO3 – станнат натрия

KCrO2 – хромит калия

NaFeO2 – феррит натрия

И комплексные соли:

K[Al(OH)4] – тетрагидроксоалюминат калия

K3[Al(OH)6] – гексагидроксоалюминат калия

Na2[Zn(OH)4] – тетрагидроксоцинкат натрия

Ca[Zn(OH)4] – тетрагидроксоцинкат кальция

K2[Be(OH)4] – тетрагидроксобериллат калия

Ba[Be(OH)4] – тетрагидроксобериллат бария

Na2[Pb(OH)4] – тетрагидроксоплюмбит натрия

Na2[Pb(OH)6] – гексагидроксоплюмбат натрия

Ca[Sn(OH)6] – гексагидроксостаннат кальция

Na[Cr(OH)4] – тетрагидроксохромит натрия

K3[Cr(OH)6] – гексагидроксохромит калия

Ca3[Cr(OH)6] – гексагидроксохромит кальция

Na3[Fe(OH)6] – гексагидроксоферрит натрия

Как составлять формулы безводных солей?

Например, в реакции участвовал оксид свинца IV и оксид кальция:

PbO2 + CaO = ?

В первую очередь необходимо знать остатки соответствующих кислот, следовательно и формулы кислот, содержащих амфотерный металл. И хоть многие из них не выделены, теоретически мы можем установить их формулы. Для амфотерных металлов в III и IV валентности можно установить орто- и  мета-формулы кислот. Для металлов в II валентности выделяют только одну форму кислоты, поэтому для них не указывают уточняющую приставку «орто-» или «мета-», а вывод формулы соответствует выводу как орто- так и мета-формул кислот и их остатков у металлов в III и IV валентности.

Орто-формула соответствует гидроксиду амфотерного металла с учетом того, что в кислоте порядок элементов меняется (водород должен стоять на первом месте).

Амфотерные гидроксиды в кислотной и основной форме

Таблица 5. – Амфотерные оксиды и кислотные остатки, соответствующие им

Для амфотерных металлов в III валентности можно выделить общую формулу орто-кислоты и орто-аниона: H3MeO3 и MeO33-.

Для амфотерных металлов в IV валентности можно выделить общую формулу орто-кислоты и орто-аниона: H4MeO4 и MeO44-.

Таким образом, в реакции оксида свинца IV и оксида кальция можно получить ортоплюмбат кальция:

PbO2 + 2CaO = Ca2PbO4 (ортоплюмбат кальция)

Для этих же металлов можно вывести мета-формулы кислот и их остатков, для этого при образовании формулы используются наименьшие значения индексов. Так, формула орто-хромистой кислоты, как и любого другого гидроксида в кислотной форме, начинается с водорода, а заканчивается кислородом, степень окисления хрома «+3» учитывается при установке индексов:

Формула метахромистой кислоты

Подробнее о таком способе можно прочитать в статье Свойства кислотных оксидов

Таким образом, оксиду алюминия и оксиду свинца IV соответствуют следующие мета-формулы:

Таблица 6. – Амфотерные оксиды и кислотные остатки, соответствующие им

Метаалюминат и метаплюмбат

Поэтому в реакции между оксидом кальция и диоксидом свинца может образоваться и метаплюмбат кальция.

PbO2 + CaO = CaPbO3

  1. Амфотерные оксиды проявляют свойства кислотных в реакциях с основными оксидами. Реакция происходит при сплавлении:

ZnO + CaO = CaZnO2 – цинкат кальция

Fe2O3 + BaO = Ba(FeO2)2 – феррит бария

Al2O3 + SrO = Sr(AlO2)2 – алюминат (метаалюминат) стронция

  1. Амфотерные оксиды способны вытеснять летучие оксиды из солей:

ZnO + K2CO3 = K2ZnO2 + CO2

Al2O3 + Na2SO3 = NaAlO2 + SO2

  1. Как и многие другие нерастворимые оксиды, амфотерные оксиды реагируют с восстановителями (C, CO, H2, NH3, CH4, более активные металлы). Реакции идут только при нагревании.

ZnO + C = Zn + CO↑

Cr2O3 + Al = Al2O3 + Cr

Fe2O3 + Mg = MgO + Fe

Получение амфотерных оксидов

  1. Термическое разложение амфотерных гидроксидов:

2Al(OH)3 = Al2O3 + 3H2O

Zn(OH)2 = ZnO + H2O

  1. Прямым взаимодействием металла с кислородом:

2Be + O2 = 2BeO

2Zn + O2 = 2ZnO

4Al + 3O2 = 2Al2O3

Данная реакция не подходит для получения оксида железа III, так как при окислении железа образуется двойной оксид Fe3O4.

  1. Термическим разложением нитратов. Причем, если в состав катиона входит металл с переменной степенью окисления, в продукте его степень окисления может измениться:

4Fe(NO3)2 = 2Fe2O3 + 8NO2↑ + O2

4Cr(NO3)2 = 2Cr2O3 + 8NO2↑ + O2

Оксиды хрома и железа в III валентности разлагаются без изменения степени окисления металла:

4Fe(NO3)3 = 2Fe2O3 + 12NO2↑ + 3O2

4Cr(NO3)3 = 2Cr2O3 + 12NO2↑ + 3O2

  1. Окислением оксидов с более низкой степенью окисления:

FeO + O2 = Fe2O3

CrO + O2 = Cr2O3


Вся основная информация об амфотерных соединениях в рамках школьной программы в одном месте.

Как полноценная химическая грамотность, так и государственная аттестация в виде ОГЭ и ЕГЭ, требуют от современного человека определённого уровня владения таким понятием как амфотерность. И, что логично, прежде всего мы попытаемся его определить.

Собственно определение
Собственно определение

Таким образом амфотерные вещества занимают промежуточное место между основаниями и кислотами, проявляя в зависимости от условий те или иные свойства. Конечно, правильнее было заранее обосновать, какие вещества мы называем кислотами и основаниями, а так же какие приписываем им свойства, но вдохновению не прикажешь, и мы можем только выразить надежду, что и об этом мы с удовольствием поговорим, но позднее.
А пока что обозначим очень ограниченный перечень самых часто упоминаемых в контексте амфотерности веществ.

Амфотерные металлы, оксиды и гидроксиды
Амфотерные металлы, оксиды и гидроксиды

Как мы можем видеть, амфотерными свойствами обладают бериллий, цинк, алюминий, некоторые их соединения, а так же оксиды и гидроксиды железа (III) и хрома (III). Это, разумеется, не исчерпывающий перечень и при желании его можно дополнять.

Нас же ждёт материал посвящённый химическим свойствам амфотерных соединений. Как известно, такие противоположные классы неорганических соединений, как кислоты (химические свойства кислот) и основания (химические свойства оснований), чаще всего прекрасно реагируют друг с другом. Нас же это подводит к мысли о том, что амфотерные соединения, проявляют основные свойства, реагируя с кислотами, и проявляют кислотные свойства, реагируя с основаниями (преимущественно с сильными основаниями – щелочами).

Амфотерные соединения реагируют как с кислотами, так и с основаниями.

Химические же свойства амфотерных соединений по моему мнению удобнее всего разделить на три группы: свойства амфотерных металлов, амфотерных оксидов и амфотерных гидроксидов.
В качестве примера я избрал
алюминий и его соединения:

Химические свойства амфотерного металла на примере алюминия
Химические свойства амфотерного металла на примере алюминия

Попробуем провести некоторую аналитику изложенных уравнений реакций. Алюминий как амфотерный металл, реагирует как с кислотами, так и со щелочами (сильными основаниями), в обоих случаях при этом образуется соль и как бы вытесняется водород.
Однако, если соль хлорида алюминия не способна нас удивить, то комплексная соль
тетрагидроксоалюмината натрия может вызвать вопросы. Дело в том, что реагируя со щёлочью (сильными основанием), алюминий проявляет свои кислотные свойства и тем самым даёт начало кислотному остатку алюминат-аниону, существующему в растворе в виде комплекса, который кстати в ряде источников обозначают как гексагидроксоалюминат, но пусть Вас это не пугает, оба способа обозначения считаются правильными.
Обратите так же внимание, что для написания уравнения реакции со щёлочью, в перечень исходных необходимо добавить воду.

Химические свойства амфотерного оксида на примере оксида алюминия
Химические свойства амфотерного оксида на примере оксида алюминия

Значительно интереснее дела обстоят с амфотерными оксидами.
Как мы видим, амфотерный оксид, оксид алюминия, по прежнему, проявляя свои амфотерные свойства, реагирует как с кислотами, так и со щелочами.
Однако взаимодействие амфотерных оксидов со щелочами может протекать по-разному в зависимости от условий протекания реакции.
Так
в растворе, или как я иногда в шутку говорю, в луже, при обозначении воды в перечне исходных, образуется уже знакомая нам комплексная соль.
А
при нагревании, на печке, водичка испаряется, и мы получаем уже не комплексную соль, а твёрдый алюминат натрия. Формулу алюмината натрия можно получить, как бы отщепив от тетрагидроксоалюмината две молекулы воды. Это и логично, ведь, как мы уже сказали, при нагревании вода испаряется.

Химические свойства амфотерного гидроксида на примере гидроксида алюминия
Химические свойства амфотерного гидроксида на примере гидроксида алюминия

В случае амфотерных гидроксидов, принимая во внимание всё вышесказанное, мы получаем наиболее простые и логичные уравнения. Здесь ни воды в перечне исходных, ни водорода среди продуктов в качестве простого вещества, нет.

А на этом у меня всё. Всего доброго, пока.

Добавить комментарий