Как найти аминокислоты по трнк

Задача для обсуждения 1.3. Об установлении нуклеотидной последовательности участка тРНК и аминокислоты

Известно, что у клеточных организмов все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ГАЦ ЦТА ЦАГ ТГЦ ЦАГ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если антикодону тРНК соответствует третий триплет.

Для решения задачи используйте таблицу генетического кода.

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице – нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
“генетическом языке”. Скоро вы все поймете – мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится – перерисуйте его себе 🙂

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) – АТЦ. На иРНК этим нуклеотидам будут соответствовать – УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись – АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) – в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А – У, Т – А, Г – Ц, Ц – Г (загляните в “генетический словарик”
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК – промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК – терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень – в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним – мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ – метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) – У (урацил), Г (гуанин) – Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно – образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка – полипептидной цепи из аминокислот – в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция – завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй – из верхнего горизонтального,
третий – из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота 🙂

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА – Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота – Ала, ААА – Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

“Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода”

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

“Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК”

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова “Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК “. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК – другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой – мы записываем их линейно через тире.

Третий триплет ДНК – АЦГ соответствует антикодону тРНК – УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК – УГЦ в кодон иРНК – АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ – Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК – так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% – (20%+20%) = 60% – столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Строение транспортной РНК и кодирование аминокислот

Транспортные РНК (тРНК) представляют собой небольшие молекулы с количеством нуклеотидов от 70 до 90. На долю тРНК приходится примерно 15 % всех РНК клетки. Функция тРНК зависит от ее строения. Изучение структуры молекул тРНК показало, что они свернуты определенным образом и имеют вид клеверного листа (рис. 20). В молекуле выделяются петли и двойные участки, соединенные за счет взаимодействия комплементарных оснований. Наиболее важной является центральная петля, в которой находится антикодон — нуклеотидный триплет, соответствующий коду определенной аминокислоты. Своим антикодоном тРНК способна соединяться с соответствующим кодоном на иРНК по принципу комплементарности.

Рис. 20. Строение молекулы тРНК: 1 — антикодон; 2 — место присоединения аминокислоты

Рис. 20. Строение молекулы тРНК: 1 — антикодон; 2 — место присоединения аминокислоты

Каждая тРНК может переносить только одну из 20 аминокислот. Значит, для каждой аминокислоты имеется по меньшей мере одна тРНК. Так как аминокислота может иметь несколько триплетов, то и количество видов тРНК равно числу триплетов аминокислоты. Таким образом, общее число видов тРНК соответствует числу кодонов и равно 61. Трем стоп-кодам не соответствует ни одна тРНК.

На одном конце молекулы тРНК всегда находится нуклеотид гуанин (5′-конец), а на другом (3′-конце) всегда три нуклеотида ЦЦА. Именно к этому концу идет присоединение аминокислоты (рис. 21). Каждая аминокислота присоединяется к своей специфической тРНК с соответствующим антикодоном. Механизм этого присоединения связан с работой специфических ферментов — аминоацил-тРНК-синтетазами, которые присоединяют каждую аминокислоту к соответствующей тРНК. Для каждой аминокислоты имеется своя синтетаза. Соединение аминокислоты с тРНК осуществляется за счет энергии АТФ, при этом макроэргическая связь переходит в связь между тРНК и аминокислотой. Так происходит активирование и кодирование аминокислот.

Этапы биосинтеза белка. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называется трансляцией. Информационная РНК (иРНК) является посредником в передаче информации о первичной структуре белка, тРНК переносит закодированные аминокислоты к месту синтеза и обеспечивает последовательность их соединений. В рибосомах осуществляется сборка полипептидной цепи.

Рис. 21. Активирование и кодирование аминокислоты: 1 — тРНК; 2 — аминокислота

Рис. 21. Активирование и кодирование аминокислоты: 1 — тРНК; 2 — аминокислота

В рибосоме имеются три центра, с которыми связываются молекулы РНК: один центр для иPHК и два — для тРНК. Одна тРНК с аминокислотой удерживается в аминоацильном центре, а другая — в пептидном центре, где идет рост полипептидной цепи.

Первый этап — инициация. Синтезированная в процессе транскрипции иPHК выходит из ядра и направляется в цитоплазму к месту синтеза белка — рибосоме. За счет различных белковых факторов и энергии АТФ происходит соединение иPHК и двух субъединиц рибосом, которые до этого момента находились в диссоциированном состоянии. Прежде чем рибосома начнет синтез полипептидной цепи, к иРНК должна присоединиться особая молекула — инициаторная тРНК с аминокислотой. С нее всегда начинается синтез белка. По принципу комплементарности тРНК своим антикодоном соединяется с кодоном на иРНК и входит в рибосому. Этот кодон на иPHК называется старт-кодоном.

В результате взаимодействия всех компонентов образуется комплекс: рибосома — иРНК — тРНК-инициатор — аминокислота.

Вторая стадия — элонгация. Это стадия роста полипептидной цепи. Далее начинается сборка полипептидной цепи. Следующая тРНК с аминокислотой по принципу комплементарности антикодона с кодоном соединяется с иPHК и входит в рибосому. Первая тРНК закрепляется в пептидном центре, а вторая тРНК — с аминокислотой в аминоацильном центре. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь, и образуется дипептид. При этом первая тРНК освобождается и, покидая рибосому, тянет за собой иPHК, которая продвигается на один триплет.

Вторая тРНК с дипептидом перемещается в пептидный центр, а в рибосому входит третья тРНК с аминокислотой (рис. 22). Весь процесс далее вновь и вновь повторяется. иРНК, последовательно продвигаясь через рибосому, каждый раз вносит новую тРНК с аминокислотой и выносит освободившуюся тРНК. Постепенно идет наращивание полипептидной цепи. Весь процесс обеспечивается деятельностью ферментов и энергией макроэргических соединений (АТФ и др.).

Рис. 22. Схема биосинтеза полипептидной цепи. Стрелкой показано направление движения иPHК

Рис. 22. Схема биосинтеза полипептидной цепи. Стрелкой показано направление движения иPHК

Последний этап — терминация. Как только в аминоацильный центр попадает стоп-кодон, синтез прекращается. Место тРНК занимает в этом случае специфический белок-фермент, который осуществляет гидролиз связи между последней тРНК и синтезированным белком. Рибосома снимается с иPHК и распадается на две субъединицы, последняя тРНК также освобождается и попадает вновь в цитоплазму. Синтезированная молекула белка поступает в ЭПС или цитоплазму, где претерпевает изменения и приобретает соответствующие структуры.

Процесс трансляции обычно осуществляется многократно. Одна иPHК может соединяться с несколькими рибосомами, образуя поли рибосому.; или полисому, на которой идет одновременно синтез многих молекул одного белка (рис. 23).

Рис. 23. Полисома: 1 — иPHК; 2 — малая субъединица рибосомы; 3 — большая субъединица рибосомы; 4 — синтезируемая полипептидная цепь

Рис. 23. Полисома: 1 — иPHК; 2 — малая субъединица рибосомы; 3 — большая субъединица рибосомы; 4 — синтезируемая полипептидная цепь

Если синтез происходит на гранулярной эндоплазматической сети, то поли пептидная цепь поступает в канальца эндоплазматической сети. Здесь она приобретает свою окончательную структуру и превращается в молекулу белка. Далее белок поступает в аппарат Гольджи и выносится из клетки. Если синтез происходит на рибосомах в цитоплазме, то синтезированные молекулы остаются и используются клеткой.

Весь процесс синтеза одного белка длится от 20 до 500 с и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 20 с.

Структура транспортной РНК

Схема вторичной структуры тРНК в форме клеверного листа. Кружками указаны нуклеотидные остатки; линиями обозначены пары оснований; точками обозначены позиции, в которых могут быть дополнительные нуклеотиды. Инвариантные основания обозначены соответствующими знаками, где А — это аденин, Т — тимин, G — гуанин, С — цитидин, Ψ — псевдоуридин, «Pu» означает пуриновое основание, «Pyr» — пиримидиновое основание. Нуклеотиды пронумерованы стандартно, и антикодону соответствуют номера нуклеотидов 34, 35 и 36.

Транспортная РНК, тРНК[1] — рибонуклеиновая кислота, обеспечивающая взаимодействие аминокислоты, рибосомы и матричной РНК (мРНК) в ходе трансляции. Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм. тРНК, будучи ковалентно связаны с остатком аминокислоты, принимает непосредственное участие в наращивании полипептидной цепи, специфически присоединяясь к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса.

Для каждой протеиногенной аминокислоты в клетке существует собственная тРНК (одна или более).

Структура тРНК[править | править код]

Вторичную структуру тРНК обычно визуализируют в виде клеверного листа с четырьмя плечами. Более длинные тРНК имеют короткое дополнительное пятое плечо, называемое вариабельной шпилькой. В трёхмерном пространстве молекула тРНК за счет коаксиального наложения спиралей сложена в L-образную структуру, которая позволяет тРНК вписываться в P-сайт и A-сайт рибосом[2]. Длина плеч и диаметр петель во вторичной укладке молекулы тРНК варьирует от вида к виду[2][3].
Основными составляющими молекулы тРНК являются следующие структуры и функциональные группы:

  • 5′-концевая фосфатная группа. Большинство тРНК на 5′-конце несут остаток гуанилата (фГ).
  • Акцепторное плечо с акцепторным стеблем и ЦЦА-хвостом. Акцепторный стебель образован двумя комплементарно соединёнными концевыми частями молекулы тРНК, он состоит из 7-9 пар оснований. Акцепторный стебель может содержать пары оснований, отличные от канонических нуклеотидных пар по Уотсон-Крику, например, пару АГ. 3′-конец акцепторного плеча несколько длиннее, он формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу аминоацил-тРНК-синтетаза присоединяет транспортируемую аминокислоту. Аминокислота, загруженная на тРНК аминоацил-тРНК-синтетазой, ковалентно связана с 3′-гидроксильной группой последнего аденозина. Концевая ЦЦА последовательность важна для распознавания тРНК ферментами и трансляции[2][4][5][6][7][8]. У некоторых прокариот последовательность ЦЦА имеется в последовательности гена, однако в подавляющем большинстве случаев концевая ЦЦА-последовательность добавляется во время процессинга тРНК, следовательно, отсутствует в гене тРНК[9].
  • D-плечо имеет стебель длиной от 4 до 6 пар оснований, оканчивающийся петлёй, которая часто содержит дигидроуридин[2]
  • Антикодоновое плечо имеет стебель длиной 5 пар оснований, на конце которого находится петля с антикодоном[2].
  • TΨC-плечо имеет стебель длиной 4-5 пар оснований, а петля на конце плеча обычно содержит риботимидин T и  псевдоуридин Ψ[2].

Плечи D и TΨC обеспечивают важные взаимодействия при укладке молекул тРНК, TΨC-плечо участвует во взаимодействии с рРНК большой субъединицы рибосомы.

Процессинг тРНК[править | править код]

тРНК синтезируются обычной РНК-полимеразой в случае прокариот и РНК-полимеразой III в случае эукариот. Транскрипты генов тРНК подвергаются многостадийному процессингу, который в конце концов приводит к формированию типичной для тРНК пространственной структуры. Процессинг тРНК включает 5 ключевых этапов[10]:

  • удаление 5′-лидерной нуклеотидной последовательности;
  • удаление 3′-концевой последовательности;
  • добавление последовательности ЦЦА на 3′-конец;
  • вырезание интронов (у эукариот и архей);
  • модификации отдельных нуклеотидов.

По окончании созревания эукариотические тРНК должны быть перенесены в цитоплазму, где они участвуют в биосинтезе белка. Транспорт тРНК осуществляется по Ran-зависимому пути при участии транспортного фактора экспортина t (Los1 у дрожжей), который распознаёт характерную вторичную и третичную структуру зрелой тРНК: короткие двуспиральные участки и правильно процессированные 5′- и 3′-концы. Такой механизм обеспечивает экспорт из ядра только зрелых тРНК. Предположительно, экспортин 5 может быть вспомогательным белком, способным переносить тРНК через ядерные поры наряду с экспортином t[11].

См. также[править | править код]

  • Биосинтез белка

Примечания[править | править код]

  1. Рибосома могла быть мостиком между доклеточной и клеточной жизнью. Дата обращения: 1 марта 2015. Архивировано 1 марта 2015 года.
  2. 1 2 3 4 5 6 Itoh Y, Sekine S, Suetsugu S, Yokoyama S (July 2013). “Tertiary structure of bacterial selenocysteine tRNA”. Nucleic Acids Research. 41 (13): 6729—6738. DOI:10.1093/nar/gkt321. PMC 3711452. PMID 23649835.
  3. Goodenbour JM, Pan T (29 October 2006). “Diversity of tRNA genes in eukaryotes”. Nucleic Acids Research. 34 (21): 6137—6146. DOI:10.1093/nar/gkl725. PMC 1693877. PMID 17088292.
  4. Jahn M, Rogers MJ, Söll D (July 1991). “Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase”. Nature. 352 (6332): 258—260. Bibcode:1991Natur.352..258J. DOI:10.1038/352258a0. PMID 1857423.
  5. О.-Я. Л. Беиш. Медицинская биология. — Витебск: Ураджай, 2000. — С. 22.
  6. Ibba M, Soll D (June 2000). “Aminoacyl-tRNA synthesis”. Annual Review of Biochemistry. 69 (1): 617—650. DOI:10.1146/annurev.biochem.69.1.617. PMID 10966471.
  7. Sprinzl M, Cramer F (1979). “The -C-C-A end of tRNA and its role in protein biosynthesis”. Progress in Nucleic Acid Research and Molecular Biology. 22: 1—69. DOI:10.1016/s0079-6603(08)60798-9. ISBN 978-0-12-540022-0. PMID 392600.
  8. Green R, Noller HF (1997). “Ribosomes and translation”. Annual Review of Biochemistry. 66: 679—716. DOI:10.1146/annurev.biochem.66.1.679. PMID 9242921.
  9. Aebi M, Kirchner G, Chen JY, Vijayraghavan U, Jacobson A, Martin NC, Abelson J, et al. (September 1990). “Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae”. The Journal of Biological Chemistry. 265 (27): 16216—16220. DOI:10.1016/S0021-9258(17)46210-7. PMID 2204621.
  10. Hopper A. K., Phizicky E. M. tRNA transfers to the limelight // Genes Dev.. — 2003. — Т. 17, вып. 2. — С. 162—180. — doi:10.1101/gad.1049103. — PMID 12533506. Архивировано 19 сентября 2017 года.
  11. Köhler A., Hurt E. Exporting RNA from the nucleus to the cytoplasm // Nat. Rev. Mol. Cell Biol.. — 2007. — Т. 8, вып. 10. — С. 761—773. — doi:10.1038/nrm2255. — PMID 17786152.

Ссылки[править | править код]

  • База данных тРНК из геномов разных организмов (англ.)

Добавить комментарий