Как найти амплитудное значение синусоидального тока

Какое напряжение между фазой и нулём в отечественной электросети: 220 или 310? На самом деле и одно и другое! Всё дело в том, что в наших сетях протекает синусоидальный ток, а у синусоиды есть ряд характеристик и особенностей, которые мы попытаемся рассмотреть простым языком в этой статье.

Речь далее пойдет только о синусоидальном переменном токе или напряжении. Для тока другой формы всё сказанное далее, в принципе, справедливо, но будут отличаться формулы для вычисления и, соответственно, числовые значения.

Синусоида, её амплитуда и другие характеристики

Все мы знаем, что между фазой и нулём 220 вольт (230В по ГОСТу), но многие знают что выпрямленное и сглаженное сетевое напряжение превышает 300 вольт, да и конденсаторы в фильтры выпрямителей подбирают не ниже чем 400 вольт, откуда они берутся? Для начала рассмотрим график, на котором изображено синусоидальное напряжение в привычной всем розетке 220В.

Рисунок 1 — график синусоидально изменяющегося напряжения
Рисунок 1 — график синусоидально изменяющегося напряжения

На рисунке 1 по вертикали размечено напряжение в вольтах, а по горизонтали время. Обратите внимание, что напряжение в электросети периодично изменяется от -310 вольт, до + 310 вольт, каждый период изменений длится 20 миллисекунд, после чего повторяется.

Точно описать любую величину, изменяющуюся по синусоидальному закону можно с помощью трёх характеристик:

  1. Амплитуда — это высота синусоиды от нуля до верхней или нижней точки. В нашем случае это 310В. Обозначается буквами Im или Um, для тока и напряжения соответственно.
  2. Период — расстояние между двумя соседними максимумами или минимумами синусоиды. В электросетях РФ он равен 20 миллисекунд, так как стандартная частота — 50 Гц. Обозначается буквой T.
  3. Начальный фазовый угол — это величина, которая отражает насколько сдвинута синусоида по горизонтали относительно начального момента времени наблюдения (нулевой секунды). Если проще, то на графике выше фаза в начале графика начинается с 0, значит она не сдвинута, если бы начиналась с другой величины — то была бы сдвинутой на определенный угол.

При рассмотрении однофазной сети начальный фазовый угол нас не интересует, он используется при исследовании трёхфазного напряжения.

Рассмотрим этот график еще раз, но отметим на нём амплитуду и период.

Рисунок 2 — амплитуда и период синусоидального напряжения
Рисунок 2 — амплитуда и период синусоидального напряжения

График описывает формула синусоидального напряжения (для тока аналогично, но U меняется на I):

где: Um – амплитуда; ω – угловая частота (равна 2×pi×f); t – время, ф — начальная фаза
где: Um – амплитуда; ω – угловая частота (равна 2×pi×f); t – время, ф — начальная фаза

Из этого следует, что величина напряжения (или тока) в каждый конкретный момент времени разная, такая величина называется мгновенной. Соответственно и мгновенная мощность, выделяемая на активной нагрузке (R) в каждый момент будет разной:

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

Это подходящая формула для описания мгновенного состояния электрической цепи, но совершенно неудобная и неподходящая для измерения параметров и описания электрических цепей в общем. Поэтому используют какие-то усреднённые значения электрической мощности, напряжения и тока.

В литературе принято объяснять смысл действующих и амплитудных значений на примере силы тока. К тому же по определения, формулы и их смысл аналогичны, и для напряжения, и для тока. Поэтому я немного отойду от синусоидального напряжения, и далее пойдет речь о токе.

Действующее, среднеквадратичное, эффективное?

Теперь вы знаете, что амплитуда фазного напряжения в электросети равна 310В, но что такое 220В и откуда они берутся? Дело в том, что — 220В это действующее напряжение, его же называют среднеквадратичным или эффективным.

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

Это значит, что если на лампочку накаливания или нагревательную спираль подать переменный ток с действующим значением (силой) в 1 ампер, то на ней выделится та же мощность (количество тепла), как если бы через неё протекал постоянный ток в 1 ампер.

Для нахождения среднего значения переменного синусоидального тока за половину периода, необходимо проинтегрировать формулу этого тока, при этом пределами интегрирования выбирается половина периода:

где Iср – среднее значение, Im – амплитудное значение.
где Iср – среднее значение, Im – амплитудное значение.

Как отмечалось выше, формула для среднего переменного синусоидального напряжения (как и для ЭДС) будет аналогичной:

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

Но это средние величины, которые на практике не используется так часто, как действующие величины. Действующее напряжение или ток, находится подобным образом, при вычислениях интегрируется та же формула, но возведенная в квадрат, после чего извлекается корень. Пределы интегрирования уже не половина, а целый период. Кстати, поэтому действующее значение называется еще и «среднеквадратичным». Формулу действующего значения переменного синусоидального тока:

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

Действующий ток (Iд) или напряжение (Uд), в корень из двух раз меньше, чем амплитудное. Чтобы его вычислить, нужно амплитудное значение разделить на 1.41, или умножить на 0.707.

Uд=Um/1.41=0.707*Um

И наоборот, чтобы узнать амплитудное значение при известном действующем, нужно умножить его на 1.41 или разделить на 0.707. Приведем пример, из графика на рисунке 1, мы узнали, что амплитуда напряжения в однофазной электросети 310 вольт, найдем его действующее значение:

Uд=Um/1.41=310/1.41=219,8~220В

Мы получили привычные нам 220В. Как отмечалось ранее, действующие значения напряжения и тока удобно использовать для расчетов и описания электрических цепей, поэтому и говорят «в розетке 220В», «линейное напряжение 380В» и так далее.

Повторим пройденное: непрерывное тепловое воздействие переменного синусоидального тока на какую-то активную нагрузку за определенный период времени будет численно равно тепловому воздействию постоянного тока за тот же период, при условии, что величина постоянного тока была в 1.41 раз меньше амплитуды переменного. То есть за то же время выделится столько же теплоты.

В таком случае, при активной нагрузке (резисторы, ТЭНы, нихромовые спирали, лампы накаливания), можно приравнять действующее значение переменного тока или напряжения, к такому же по величине постоянному току или напряжению.

Какое напряжение измеряет мультиметр, амперметр или вольтметр?

В подавляющем большинстве случаев если на измерительном приборе вы выбираете режим измерения переменного тока или напряжения (U~, I~), вы измерите именно действующие значения. Однако есть и специфичные приборы, измеряющие амплитудные значения параметров в электрической сети, а также на электронных осциллографах могут выводится и действующие, и амплитудные величины измеряемых сигналов. Измерение амплитудных значений может обозначаться как Im.

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

При этом далеко не все приборы могут измерять переменный ток по форме отличный от синусоидального — пилообразный, прямоугольный и так далее. Вы могли видеть, что на хороших мультиметрах написано загадочное «TRUE RMS», что расшифровывается как: «True Root Mean Sqare», а переводится как — истинное среднеквадратичное значение. Такие измерительные приборы показывают действующие значения напряжений и токов любых форм (не только синусоидальных).

В завершение этой статьи, предлагаю вам закрепить знания и ознакомиться с прекрасным советским плакатом, на эту тему

Откуда в розетке 310В? Или что такое действующие и амплитудное напряжение и ток

2.1. Общие сведения

В электроэнергетике используют в
основном переменный ток. В настоящее
время почти вся электрическая энергия
вырабатывается в виде энергии переменного
тока. Основное преимущество переменного
тока по сравнению с постоянным током
заключается в возможности просто и с
минимальными потерями пре­образовывать
напряжение при передаче энергии.
Генераторы и двигатели перемен­ного
тока имеют более простое устройство,
надежней в работе и проще в эксплуата­ции
по сравнению с машинами постоянного
тока.

2.1.1. Амплитуда, частота и фаза синусоидального тока и напряжения

В современной технике широко используются
переменные токи: синусоидаль­ные,
прямоугольные, треугольные и др. (рис.
2.1). Значение тока в любой момент времени
называется мгновеннымзначением.
Мгновенные значе­ния тока, напряжения,
ЭДС обозначаются буквами.

Токи, мгновенные значения которых
повторяются через равные промежутки
времени, называютпе­риодическими,
а наименьший про­межуток времени,
через который эти повторения наблюдаются,
назы­ваютпериодомТ(рис.
2.1).

Если кривая изменения пе–

Рис. 2.1
рио­дического тока описывается
синусоидой, ток называется синусоидальным.
Если кривая отличается от синусоиды –
ток несинусоидальный. В электрических
це­пях переменного тока наиболее
часто используют синусоидальную форму,
харак­теризующуюся тем, что все
напряжения и токи являются синусоидальными
функ­циями времени. В генераторах
переменного тока стремятся получить
ЭДС, изме­няющуюся во времени по закону
синуса. Тем самым обеспечивается наиболее
вы­годный эксплуатационный режим
работы электрических установок.

Все синусоидальные функции времени
(например, ток) записывают в одина­ковой
форме:

(2.1)

где

мгновенное значение тока;максимальное (амплитудное)значение
тока (рис. 2.2);– угловая частота;– начальная фаза.

Аргумент синуса
называетсяфазой.
Угол
равен фазе в начальный момент времени=
0 и по­этому называетсяначальной
фазой
. Фаза
с течением времени непрерывно растет
(рис 2.2). После ее увеличения на
весь цикл изменения тока повто­ряется.
В течение периодафаза увеличивается на.
Поэтому отношениеопределяет скорость изменения фазы и
называетсяугловой
часто­той

Рис. 2.2

(2.2)

где
– частота, равная числу периодов в
секунду,Гц. При
стандартной частоте
=
50 Гцугловая частотаЗа
аргумент си­нусоидальной функции
принимают времяили угол.

Таким образом, для
определения мгновенных значений
инеобходимо опре­делить их параметры:
амплитуду, угловую частоту и начальную
фазу.

Постоянный ток
можно рассматривать как частный случай
переменного тока, частота которого
равна нулю. В современной технике
используется широ­кий диапазон частот
переменных токов от сотых долей до
миллиардов Герц. В электроэнергетике
нашей страны и Европы стандартная
частота 50 Гц,
США – 60 Гц.

Рис. 2.3

Синусоидальные ЭДС в современной
технике получают различными мето­дами
в электромашинных или электрон­ных
генераторах и других устройствах.
Наглядным примером является наведе­ние
ЭДС за счет электромагнитной ин­дукции
в рамке, вращающейся в одно­родном
магнитном поле (рис. 2.3).

Допустим, что рамка площадью
содержитвитков и вращается с посто­янной
угловой скоростьюв магнит­ном поле с индукцией.
Тогда потокосцепление рамки

.

По закону электромагнитной индукции
в рамке наводится ЭДС

.

Следовательно, ЭДС изменяется по
синусоидальному закону.

Рассмотренный способ получения ЭДС
является лишь наглядной иллюстра­цией
и в технике не используется ввиду
экономической нецелесообразности
соз­давать достаточно сильное
равномерное магнитное поле в таком
большом воз­душном промежутке.

В промышленности для получения
синусоидальных ЭДС применяют электри­ческие
машины – синхронные генераторы,
приводимые во вращение теп­ловыми,
газовыми, гидравлическими и др.
двигателями.

Соседние файлы в папке Лекции

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Переменный электрический ток


Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC.
Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC – Direct Current – постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.

Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения


Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота  f – величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz). Частота f = 1/T


Циклическая частота  ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза  ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t);   u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt);   u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ);   u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|;   Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.


Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой
амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.

Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.

Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1


Замечания и предложения принимаются и приветствуются!

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Часть III. Цепи синусоидального тока

Тема 3. Цепи синусоидального тока

  1. Общие сведения и определения
  2. Комплексная амплитуда
  3. Действующие значения синусоидальной функции
  4. Изображение синусоидальных функций векторами. Векторная диаграмма
  5. Изображение синусоидальной функции комплексными числами
  6. Закон Ома в комплексной форме
  7. Уравнения элементов в комплексной форме
  • § 3.1. Общие сведения и определения:

Переменный ток имеет большее распространение, чем постоянный.

  • конструкция электродвигателей и генераторов переменного тока гораздо проще;
  • генераторы переменного тока могут быть выполнены для более высокого напряжения;
  • переменный ток легко преобразовывается с помощью трансформатора, что необходимо при распределении электроэнергии и т.д.

Переменный ток – ток, периодически меняющий свое значение и направление. Наибольшее значение переменного тока – его амплитуда.

Переменный ток характеризуется:

Амплитуда – наибольшие (положительные или отрицательные) величины.

Период – время, в течение которого происходит полное колебание тока в проводнике.

Фаза – характеризует состояние переменного тока в любой момент времени.

Основным видом переменного тока является синусоидальный (гармонический) ток. Закон изменения такого тока описывается синусоидальной функцией.

В линейных электрических цепях, в которых действуют синусоидальные источники, все электрические параметры изменяются по синусоидальному закону.

ЭДС: .

Напряжение: .

Ток: ;

e(t), u(t), i(t) – мгновенные значения;

ω = 2π – угловая частота, [рад/с];

ƒ = 1 Т – циклическая частота, [Гц];

Любую синусоидальную функцию можно изобразить в виде графика, который называется графиком временных значений или временной диаграммой.

Расчет цепей синусоидального тока с использованием мгновенных значений требует громоздкой вычислительной работы и применим для простейших электрических цепей.

Для расчета цепей синусоидального тока синусоидальную функцию заменяют эквивалентной величиной.

где j = √ — 1 – мнимая единица.

– комплексная амплитуда.

– сопряженная комплексная амплитуда.

– поворотный множитель.

Последняя запись означает, что синусоидальное напряжение можно представить на комплексной плоскости в виде двух векторов, длина которых равна Um и которые равномерно вращаются со скоростями, равными ω в противоположные стороны.

  • § 3.3. Действующие значения синусоидальной функции:

Действующее значение синусоидальной функции – ее количественная оценка.

Действующие значения – среднеквадратичные за период значения синусоидальной функции, то есть, если:

Аналогично и для тока I и ЭДС ε .

Часто используются выражения, связывающие между собой амплитуду и действующее значение:

Действующее значение – это постоянная величина, которую обычно обозначают той же буквой, что и амплитуду, только без индекса m.

Действующее значение тока оказывает такое же тепловое действие на проводник с сопротивлением R , что и переменный ток, в течение времени, равном периоду. Поэтому большинство электроизмерительных приборов фиксируют и реагируют на действующие значения.

  • § 3.4. Изображение синусоидальных функций векторами. Векторная диаграмма:

где a – проекция вектора на ось y в момент времени t.

рис. а рис. б

Любому равномерно вращающемуся радиус-вектору соответствует некоторая синусоидальная функция, и наоборот.

Посмотрим, как условный графический образ синусоидальной функции – радиус-вектор – может быть применим при расчетах цепей переменного тока. Определим ток:

если: и .

Как известно, сумма двух синусоид одинаковой частоты ω представляет собой также синусоиду частотой ω , то есть i = Imsin (ωt + ψ ) и, следовательно, задача сводится к нахождению амплитуды Im и начальной фазы Ψ суммарного тока i. Искомые параметры Im и Ψ можно найти, воспользовавшись известными тригонометрическими преобразованиями.

Проведем решение задачи с помощью радиус-векторов I1m и I2m , вращающихся с частотой ω, положение которых для момента времени t = 0 показаны на рисунке ниже и осуществим геометрическое суммирование этих радиус-векторов по правилу параллелограмма. Результирующий радиус-вектор Im будет вращаться с частотой ω и является изображением некоторой синусоидальной функцией времени.

Следовательно, i = i1 + i2 – геометрическое изображение искомого тока.

Измерив дугу суммарного радиус-вектора и, зная выбранный масштаб, можно определить амплитуду Im тока. Непосредственно по чертежу определяется и начальная фаза Ψ.

Рассмотренная совокупность радиус-векторов, изображающих синусоидальные функции времени, называется векторной диаграммой.

  • § 3.5. Изображение синусоидальной функции комплексными числами:

Для введения комплексного изображения перенесем радиус-вектор, изображающий синусоидальную функцию времени в декартовой плоскости на плоскость комплексных чисел. Для чего совместим ось x с осью действительных чисел Re, а ось y – с Im.

Любому вектору A, расположенному на комплексной плоскости, однозначно соответствует комплексное число, которое может быть записано в трех формах:

Все три формы записи в соответствии с формулой Эйлера равнозначны:

Переход от одной формы записи к другой:

где a1 – действительная часть;

Запишем в трех формах выражение для единичных действительных и мнимых комплексных чисел ( A = 1 ):

Отношение комплексной амплитуды напряжения к комплексной амплитуде тока называется комплексным сопротивлением:

Модуль комплексного сопротивления, называемый полным сопротивлением, равен отношению амплитуды напряжения к амплитуде тока, а аргумент Ψ комплексного сопротивления – разности начальных фаз напряжения и тока:

Закон Ома в комплексной форме соответственно для амплитудных и действительных значений:

.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Содержание:

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны (Электрические цепи синусоидального тока = 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Электрические цепи синусоидального тока

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на Электрические цепи синусоидального тока =1,41.

Электрические цепи синусоидального тока

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Электрические цепи синусоидального тока

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной Электрические цепи синусоидального тока, изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Электрические цепи синусоидального тока

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

Электрические цепи синусоидального тока

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Электрические цепи синусоидального тока

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току Электрические цепи синусоидального тока называют омическим сопротивлением и определяют выражением (2.8) Электрические цепи синусоидального тока Сопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е. Электрические цепи синусоидального тока

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Электрические цепи синусоидального тока

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта Электрические цепи синусоидального тока(кси)

Электрические цепи синусоидального тока

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости Электрические цепи синусоидального тока, магнитной проницаемости материала проводника Электрические цепи синусоидального тока и частоты переменного тока Электрические цепи синусоидального тока, проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты Электрические цепи синусоидального тока (радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Электрические цепи синусоидального тока

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток Электрические цепи синусоидального тока, то этот ток создает в катушке синусоидальный магнитный поток Электрические цепи синусоидального тока, который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока

Очевидно, эта ЭДС достигает своего амплитудного значения Электрические цепи синусоидального тока тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = Электрические цепи синусоидального тока (рис. 11.46, в).   

По второму закону Кирхгофа для мгновенных значений можно записать

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Электрические цепи синусоидального тока

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= Электрические цепи синусоидального тока (рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС Электрические цепи синусоидального тока противодействует изменению тока.

Если уравнение (11.10) разделить на Электрические цепи синусоидального тока=1,41, то получается Электрические цепи синусоидального тока=Электрические цепи синусоидального тока, откуда

Электрические цепи синусоидального тока

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Таким образом,

Электрические цепи синусоидального тока

Закон Ома для этой цепи можно записать иначе:

Электрические цепи синусоидального тока

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Полученное уравнение умножают и делят на 2:

Электрические цепи синусоидального тока

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность (Электрические цепи синусоидального тока) в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Электрические цепи синусоидального тока

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Электрические цепи синусоидального тока

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 – конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение Электрические цепи синусоидального тока, то в цепи конденсатора проходит ток i (рис. 11.6а):

Электрические цепи синусоидального тока

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=Электрические цепи синусоидального тока

Следовательно, напряжение отстает по фазе от тока на 90° = Электрические цепи синусоидального тока(рис. 11.66). 

Если уравнение (11.17) разделить на Электрические цепи синусоидального тока = 1,41, то получится равенство Электрические цепи синусоидального тока или

Электрические цепи синусоидального тока

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Электрические цепи синусоидального тока

Когда закон Ома для цепи с конденсатором можно записать:

Электрические цепи синусоидального тока

Емкостное сопротивление – это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью Электрические цепи синусоидального тока = 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Электрические цепи синусоидального тока

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Электрические цепи синусоидального тока

Мгновенная мощность в цепи с конденсатором

Электрические цепи синусоидального тока

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

Электрические цепи синусоидального тока

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Электрические цепи синусоидального тока

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) – аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток Электрические цепи синусоидального тока (рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки Электрические цепи синусоидального тока

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Электрические цепи синусоидального тока

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано Электрические цепи синусоидального тока. Индуктивное напряжение Электрические цепи синусоидального тока опережает ток на угол 90° = Электрические цепи синусоидального тока.

Электрические цепи синусоидального тока

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений Электрические цепи синусоидального тока согласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Электрические цепи синусоидального тока

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток Электрические цепи синусоидального тока на угол ф. Мгновенное значение этого напряжения может быть записано:

Электрические цепи синусоидального тока

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

Электрические цепи синусоидального тока

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

Электрические цепи синусоидального тока

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Электрические цепи синусоидального тока

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

Электрические цепи синусоидального тока

которая измеряется в вольт-амперах, т.е. Электрические цепи синусоидального тока

Однако потребляется в цепи только часть полной мощности – активная мощность

Электрические цепи синусоидального тока

где cos ф показывает, какая часть полной мощности Электрические цепи синусоидального тока потребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Электрические цепи синусоидального тока

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Электрические цепи синусоидального тока

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на активном сопротивлении Электрические цепи синусоидального тока и на емкостном сопротивлении Электрические цепи синусоидального тока. Векторная диаграмма для этой цепи изображена на рис. 12.36.

Электрические цепи синусоидального тока

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф < 90°, т. е.

Электрические цепи синусоидального тока

Действующее значение напряжения U, приложенного к этой цепи, определяется по векторной диаграмме (рис. 12.3):

Электрические цепи синусоидального тока

Откуда математическое выражение закона Ома для этой цепи:

Электрические цепи синусоидального тока

Пример 12.1

К цепи с последовательно включенными сопротивлениями R= 8 Ом и Хс= 6 Ом (рис. 12.3а) приложено напряжение U= 220 В. Определить ток цепи I, напряжение на активном Электрические цепи синусоидального тока и реактивном Up участках, полную S, активную Р и реактивную Q мощности.

Решение

Для определения тока вычислим полное сопротивление цепи

Электрические цепи синусоидального тока

Тогда ток будет равен

Электрические цепи синусоидального тока

Напряжения на участках:

Электрические цепи синусоидального тока

Полная мощность Электрические цепи синусоидального тока

Активная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Реактивная мощность Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Неразветвленная цепь с активным сопротивлением, индуктивностью и емкостью

Если в неразветвленной цепи с R, L и С (рис. 12.4а) протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на всех участках цепи: Электрические цепи синусоидального тока и Электрические цепи синусоидального тока.

Мгновенное значение напряжения цепи определяется по формуле

Электрические цепи синусоидального тока

Так как в рассматриваемой цепи включены два реактивных сопротивления XL и Хс, то возможны три режима работы цепи: Электрические цепи синусоидального тока

Векторная диаграмма цепи для режима Электрические цепи синусоидального тока изображена на рис. 12.46.

Электрические цепи синусоидального тока

Знак перед углом сдвига фаз ф зависит от режима работы цепи Если в рассматриваемой цепи преобладает индуктивное напряжение (сопротивление), т. е. Электрические цепи синусоидального тока, то цепь имеет индуктивный характер и напряжение U опережает по фазе ток Электрические цепи синусоидального тока.

Если в цепи преобладает емкостное напряжение (сопротивление), т.е. Электрические цепи синусоидального тока, то цепь имеет емкостной характер и напряжение U отстает по фазе от тока I (—ф).

Из векторной диаграммы (рис. 12.46) следует:

Электрические цепи синусоидального тока

Сопротивление R может включать в себя сопротивление самостоятельного резистора или активное сопротивление реальной катушки и конденсатора.

Математическое выражение закона Ома для неразветвленной цепи с активным сопротивлением, индуктивностью и емкость:

Электрические цепи синусоидального тока

где Z — полное (или кажущееся) сопротивление неразветвленной цепи с R, L и С, т. е.

Электрические цепи синусоидального тока

На рис. 12.5 изображены треугольники напряжений, сопротивлений и мощностей для рассматриваемой цепи.

Знак и значение угла ф можно определить из треугольника сопротивлений (рис. 12.56):

Электрические цепи синусоидального тока

или

Электрические цепи синусоидального тока

Из выражений (12.20) и (12.21) видно, что если Электрические цепи синусоидального тока, то угол ф положителен (+ф), если Электрические цепи синусоидального тока, то угол ф отрицательный (—ф).

Из треугольника мощностей (рис. 12.5в) видно, что в цепи с R, L и С кроме активной мощности Электрические цепи синусоидального тока имеется реактивная мощность Электрические цепи синусоидального тока. Кроме того, в цепи происходит колебание мощности (меньшей из двух реактивных, в нашем случае Uc) между электрическим полем конденсатора С и магнитным полем катушки индуктивности L, так как мощности QL и Qc изменяются в противофазе. Но эта мощность (1—2 на рис. 12.5в) не считается реактивной, так как она не загружает источник и провода.

Из треугольника мощностей (рис. 12.5в) видно, что реактивная мощность, которая загружает источник и провода, Q= QL– Qc. Эта реактивная мощность (энергия) колеблется между источником и магнитным полем катушки индуктивности, так как Электрические цепи синусоидального тока

Полная мощность цепи определяется по формуле

Электрические цепи синусоидального тока

Колебательный контур

Электрические цепи, в которых происходят периодические изменения токов, напряжений, энергии называются колебательными.

Для того чтобы исследовать резонансные явления, необходимо иметь представления о процессах в колебательном контуре, состоящем из идеальной катушки и конденсатора без потерь.

Если конденсатор емкостью С зарядить до напряжения Um, то в электрическом поле этого конденсатора накопится энергия, максимальное значение которой согласно выражению (6.21):

Электрические цепи синусоидального тока

Если к заряженному конденсатору подключить индуктивность L замыканием ключа К (рис. 12.6), то конденсатор будет

разряжаться через индуктивность переменным током i. При этом в индуктивности L создается ЭДС самоиндукции eL, и в магнитном поле ее накапливается энергия, максимальное значение которой (9.12):

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока    

Источником энергии в этом контуре является конденсатор. Ток в контуре, состоящем из индуктивности L и конденсатора С, не прекращается даже когда конденсатор полностью разрядится. За счет ЭДС самоиндукции и энергии, накопившейся в магнитном поле индуктивности, конденсатор будет заряжаться, и энергия магнитного поля индуктивности переходит в электрическое поле конденсатора. При этом источником энергии в этом контуре является индуктивность. Дальше процесс повторяется.

Таким образом, в замкнутом контуре, состоящем из индуктивности и емкости, происходит колебание энергии между электрическим полем конденсатора С и магнитным полем индуктивности L. Поэтому такой замкнутый контур называется колебательным контуром.

Колебание энергии в колебательном контуре происходит с определенной частотой Электрические цепи синусоидального тока, которую называют частотой собственных колебаний контура. Частоту собственных колебаний со0 определяют из условия равенства энергии электрического и магнитного полей:

Электрические цепи синусоидального тока

так как из (11.19) в цепи переменного тока с емкостью Электрические цепи синусоидального тока

Откуда

Электрические цепи синусоидального тока

Таким образом, частота собственных колебаний колебательного контура определяется параметрами этого контура L и С.

Если в колебательном контуре отсутствуют потери (идеальный контур), то колебания в нем будут незатухающими с неизменной амплитудой. Если в колебательном контуре имеется активное сопротивление, т.е. возникают потери, то колебания энергии в нем будут затухающие, с уменьшающейся амплитудой, если эти потери не компенсируются.

Резонанс напряжений

Если в цепи синусоидального тока с последовательно соединенными конденсатором емкостью С и катушкой с сопротивлением R И индуктивностью L (рис. 12.7а) равны реактивные сопротивления, то в цепи наступает резонанс напряжений. Равенство реактивных сопротивлений является условием резонанса напряжений.

Электрические цепи синусоидального тока

Из (12.25) следует Электрические цепи синусоидального тока, тогда частота резонанса опреляется выражением
Электрические цепи синусоидального тока

Из (12.26) следует, что резонанс напряжений имеет место в неразветвленной цепи с L и С тогда, когда частота вынужденных колебаний (частота источника) Электрические цепи синусоидального тока будет равна частоте собственных колебаний резонансного контура Электрические цепи синусоидального тока. Следовательно, добиться резонанса напряжений можно изменением частоты источника Электрические цепи синусоидального тока или изменением параметров колебательного контура L или С. т. е. изменением частоты собственных колебаний Электрические цепи синусоидального тока.

Полное (кажущееся) сопротивление цепи (рис. 12.7а) при резонансе напряжений определяется по формуле

Электрические цепи синусоидального тока

так как XL-Xc=0.

То есть полное сопротивление неразветвленной цепи при резонансе напряжений Электрические цепи синусоидального тока становится минимальным и равным активному сопротивлению цепи R.

Следовательно, ток в неразветвленной цепи при резонансе напряжений максимальный:

Электрические цепи синусоидального тока

Реактивные сопротивления при резонансе напряжений равны между собой, т. е.
(12.29)

Электрические цепи синусоидального тока

Таким образом, реактивные сопротивления при резонансе напряжений равны (каждое) волновому сопротивлению Электрические цепи синусоидального тока, которое называют характеристическим сопротивлением:

Электрические цепи синусоидального тока

Напряжения на индуктивности UL и на емкости Uc при резонансе напряжений равны между собой, так как равны сопротивления, см. (12.25).

Электрические цепи синусоидального тока

Равенство (12.31) определяет название «резонанс напряжений».

Так как UL и Uc изменяются в противофазе, то напряжение в резонансном режиме равно напряжению на активном сопротивлении Электрические цепи синусоидального тока, т. е. Электрические цепи синусоидального тока, что видно на векторной диаграмме (рис. 12.76).

При резонансе напряжений каждое из реактивных напряжений UL и Uc может оказаться большим, чем напряжение цепи U.

Электрические цепи синусоидального тока

где Q — добротность резонансного контура.

Добротность контура Q показывает, во сколько раз напряжение на индуктивности UL и емкости Uc (каждое) больше напряжения цепи U.

Высокая добротность резонансного контура (при малом активном сопротивлении контура) нашла широкое применение в радиотехнике, в частности в антенном контуре.

Из векторной диаграммы (рис. 12.76) видно, что при резонансе напряжение цепи U совпадает по фазе с током Электрические цепи синусоидального тока, угол между Электрические цепи синусоидального тока и U ф = 0 и cos ф = 1. Следовательно, кажущаяся мощность цепи S при резонансе вся потребляется, т. е. является активной:

Электрические цепи синусоидального тока

Колеблющаяся между магнитным полем индуктивности и электрическим полем емкости мощность (Электрические цепи синусоидального тока) не является реактивной, так как не загружает источник и провода.

Из выражения (12.33) следует, что при отсутствии активной Мощности Р (активного сопротивления R) резонансный контур становится при резонансе идеальным колебательным контуром. Следовательно, при наличии активного сопротивления R источник расходует свою мощность на компенсацию потерь в контуре, за счет чего колебания в цепи будут незатухающими.

Электрические цепи синусоидального тока

Кроме активного сопротивления R резонансной цепи и напряжения, приложенного к ней, все параметры резонансной цепи (Электрические цепи синусоидального тока) изменяются с изменением частоты сети Электрические цепи синусоидального тока.

Эти изменения параметров резонансной цепи наглядно иллюстрируются резонансными кривыми, изображенными на рис. 12.8.

На резонансных кривых четко просматриваются значения этих параметров при частоте резонанса Электрические цепи синусоидального тока.

Общий случай неразветвленной цепи

Для неразветвленной цепи, содержащей несколько активных и реактивных сопротивлений различного характера (рис. 12.9а), справедливо геометрическое равенство напряжений (баланс напряжений)

Электрические цепи синусоидального тока

которое лежит в основе построения векторной диаграммы (рис. 12.96).

Таким образом, напряжение цепи равно геометрической сумме напряжений на всех участках этой цепи.

Из векторной диаграммы следует (рис. 12.96)

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока — активное напряжение цепи равно арифметической сумме напряжений на активных участках цепи; Электрические цепи синусоидального тока — реактивное напряжение цепи равно алгебраической сумме напряжений на реактивных участках цепи.

Те же рассуждения можно отнести и к сопротивлениям:

– полное сопротивление цепи Электрические цепи синусоидального тока;

– активное сопротивление цепи Электрические цепи синусоидального тока;

– реактивное сопротивление цепи Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Напряжение на каком-либо участке неразветвленной цепи (рис. 12.9а), например на участке АВ, определяется так:_

Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

Вектор напряжения UAB показан на векторной диаграмме (рис. 12.96).

Пример 12.2

Напряжение, приложенное к неразветвленной цепи (рис. 12.10) U=220 В, частота тока сети f = 50 Гц. Начальная фаза тока Электрические цепи синусоидального тока = 0.

Сопротивление участков цепи: Электрические цепи синусоидального тока Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Требуется:

1. Вычислить ток цепи I и записать его мгновенное значение.

2. Записать мгновенное значение напряжения цепи иАЕ, определив предварительно угол ср и характер цепи.

3. Определить напряжение между точками АВ и CD.

4. Построить в масштабе векторную диаграмму цепи, определив едварительно напряжение на каждом сопротивлении.

5. Определить мощности S, Р и Q цепи.

6. Определить частоту, при которой в цепи наступит резонанс напряжений, и ток при резонансе.

7. Определить максимальную энергию, запасенную в магнитном поле катушек WmL и электрическом поле конденсаторов WmC. Как нужно изменить емкость конденсаторов, чтобы в цепи пил резонанс напряжений при частоте f = 50 Гц?

Решение

1. Для определения тока цепи I необходимо вычислить полное сопротивление цепи:

Электрические цепи синусоидального тока

Действующее значение тока Электрические цепи синусоидального тока = 8,8 А, а амплитудное значение тока Электрические цепи синусоидального тока

Угловая частота Электрические цепи синусоидального тока рад/с.

Мгновенное значение тока цепи:

Электрические цепи синусоидального тока

2. Угол сдвига фаз ф и характер цепи определяется через tg ф:

Электрические цепи синусоидального тока

Таким образом, угол ф = 37° (из таблицы), характер цепи индуктивный (+ф).

Тогда мгновенное значение напряжения цепи

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

3. Напряжение на участках:

Электрические цепи синусоидального тока

4. Для построения векторной диаграммы определяются напряжения:

Электрические цепи синусоидального тока

Векторная диаграмма цепи (отображает только характер участков, но не величины напряжений на них) изображена на рис. 12.11.

5. Полная мощность цепи Электрические цепи синусоидального тока активная мощность Р=Электрические цепи синусоидального тока (так как Электрические цепи синусоидального тока), реактивная мощность Электрические цепи синусоидального тока вар, (так как Электрические цепи синусоидального тока).

6. Для определения частоты резонанса вычисляется индуктивность L и емкость С цепи:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Тогда

Электрические цепи синусоидального тока

Ток цепи при резонансе Электрические цепи синусоидального тока А.

7. Максимальная энергия, запасенная в магнитном поле катушек:

Электрические цепи синусоидального тока

Максимальная энергия, запасенная в электрическом поле конденсаторов:

Электрические цепи синусоидального тока

8. Условие резонанса XL = XC.

По условию задачи Электрические цепи синусоидального тока, а Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока Ом. Этому Хс соответствует емкость С = Электрические цепи синусоидального тока Ф при f = 50 Гц. Для того чтобы выполнить условие резонанса при сохранении частоты 50 Гц, необходимо Хс увеличить до 38 Ом. Чтобы емкостное сопротивление равнялось 38 Ом, величина емкости С должна быть равна

Электрические цепи синусоидального тока

т. е. емкость конденсаторов нужно уменьшить на

Электрические цепи синусоидального тока

Разветвленная цепь синусоидального тока

Активный и реактивный токи:

Для расчета разветвленных цепей синусоидального тока вводятся расчетные величины активного и реактивного токов цепи.

Если к цепи, содержащей активное сопротивление R и индуктивное XL (рис. 13.1а), приложено синусоидальное напряжение Электрические цепи синусоидального тока, то синусоидальный ток в цепи, вызванный этим напряжением, отстает от него по фазе на угол ф (рис. 12.1 в), Электрические цепи синусоидального тока.

Векторная диаграмма в этом случае изображена на рис. 13.16.

Электрические цепи синусоидального тока

Ток цепи I (рис. 13.16) раскладывается на две составляющие, одна из которых Электрические цепи синусоидального тока совпадает по фазе с напряжением, другая Электрические цепи синусоидального тока — сдвинута на 90°. Составляющая тока Электрические цепи синусоидального тока, совпадающая по фазе с напряжением, называется активной составляющей, или активным током. Составляющая тока Электрические цепи синусоидального тока, имеющая относительно напряжения сдвиг по фазе на угол 90°, называется реактивной составляющей, или реактивным током.

Активный и реактивный токи физического смысла не имеют. Они являются расчетными величинами, так как в неразветвленной цепи (рис. 13.1а) ток на всех участках имеет одинаковое значение. Однако понятия активный Электрические цепи синусоидального тока и реактивный Электрические цепи синусоидального тока токи значительно облегчают расчет разветвленных цепей синусоидального тока. Соотношения между токами определяются из треугольника токов (рис. 13.16)

13.2. Проводимости

Из треугольника токов для рассматриваемой цепи (рис. 13.16) следует: Электрические цепи синусоидального тока.

С другой стороны, известно, что Электрические цепи синусоидального тока (см. (12.6)), a Электрические цепи синусоидального тока и Электрические цепи синусоидального тока (см. (12.9)).

Тогда

Электрические цепи синусоидального тока

где g — активная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина, на которую умножают напряжение, чтобы получить ток, называют проводимостью.

А так как g определяет активный ток Электрические цепи синусоидального тока, то ее и называют активной проводимостью.

Таким образом, активная проводимость g определяется величиной активного сопротивления, деленного на квадрат полного (кажущегося) сопротивления цепи.

Величина реактивного тока определяется выражением

Электрические цепи синусоидального тока

где b — реактивная проводимость цепи, равная

Электрические цепи синусоидального тока

Величина полного тока цепи равна

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока так как для цепи синусоидального тока с Электрические цепи синусоидального тока (рис. 13.1а) Электрические цепи синусоидального тока

Таким образом, у — полная, или кажущаяся, проводимость цепи:

Электрические цепи синусоидального тока

Полная (кажущаяся) проводимость цепи «у» является обратной величиной полного (кажущегося) сопротивления цепи.

Активная Электрические цепи синусоидального тока и реактивная Электрические цепи синусоидального тока проводимости являются соответственно обратными величинами активного R и реактивного X сопротивлений только в том случае, если эти сопротивления (R и X) являются единственными в цепи или ветви, т. е. Электрические цепи синусоидального тока и Электрические цепи синусоидального тока

Если же в неразветвленной цепи (или ветви) включены сопротивления Электрические цепи синусоидального тока то для определения проводимостей можно воспользоваться выражениями (13.2), (13.4), (13.6). Треугольник проводимостей для рассматриваемой цепи (рис. 13.1а) изображен на рис. 13.1 в. Соотношения между проводимостями определяются из этого треугольника.
 

Параллельное соединение катушки и конденсатора

Если к источнику синусоидального напряжения Электрические цепи синусоидального тока подключить параллельно реальную катушку с активным сопротивлением Электрические цепи синусоидального тока и индуктивным Электрические цепи синусоидального тока и конденсатор с активным сопротивлением Электрические цепи синусоидального тока и емкостным Электрические цепи синусоидального тока (рис. 13.2а), то токи в параллельных ветвях этой цепи изменяются по синусоидальному закону:

Электрические цепи синусоидального тока

Действующие значения этих токов будут соответственно равны
Электрические цепи синусоидального тока
Электрические цепи синусоидального тока

Ток в неразветвленной цепи Электрические цепи синусоидального тока равен геометрической сумме токов в ветвях, так как токи не совпадают по фазе:

Электрические цепи синусоидального тока

Для определения этого тока строится векторная диаграмма цепи (рис. 13.26), из которой следует:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока
Таким образом, ток в неразветвленной части цепи Электрические цепи синусоидального тока определяется произведением напряжения U и полной проводимости цепи Электрические цепи синусоидального тока

Реактивные проводимости в ветвях имеют различные знаки, так как сопротивления в ветвях различного характера (индуктивное и емкостное).

Треугольник проводимостей рассматриваемой цепи изображен на рис. 13.2в.

Характер разветвленной цепи определяется так же, как и неразветвленной. Если ток цепи Электрические цепи синусоидального тока отстает от напряжения Электрические цепи синусоидального тока (как в рассматриваемом случае), то цепь индуктивного характера, если же ток Электрические цепи синусоидального тока опережает напряжение Электрические цепи синусоидального тока то цепь емкостного характера.
 

Резонанс токов

Резонанс токов в цепи (рис. 13.2а) с параллельным включением катушки и конденсатора (в различных ветвях) возникает при равенстве реактивных проводимостей в ветвях:
Электрические цепи синусоидального тока
Выражение (13.9) является условием резонанса токов в разветвленных цепях синусоидального тока. Полная (кажущаяся) проводимость при этом условии

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока
 

Таким образом, полная проводимость цепи при резонансе токов Электрические цепи синусоидального тока минимальна по величине и равна активной проводимости Электрические цепи синусоидального тока Следовательно, и ток в неразветвленной части цепи при резонансе токов имеет минимальную величину

Электрические цепи синусоидального тока

Реактивные токи в ветвях при резонансе токов равны между собой

Электрические цепи синусоидального тока

Это равенство и определяет название «резонанс токов».

На основании равенства (13.12) строится векторная диаграмма при резонансе токов (рис. 13.3). Реактивные токи находятся в противофазе, поэтому ток в неразветвленной части цепи Электрические цепи синусоидального тока при резонансе токов равен активному току Электрические цепи синусоидального тока и совпадает по фазе с напряжением, т.е. Электрические цепи синусоидального тока Следовательно, вся мощность цепи 5 при резонансе токов является активной Р:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Эта активная мощность компенсирует потери на активном сопротивлении в параллельном резонансном контуре. Мощность (энергия), которая колеблется между электрическим полем конденсатора и магнитным полем индуктивности при резонансе, не является реактивной, так как не загружает источник и провода.

Частота резонанса токов в параллельном резонансном контуре может быть определена из условия резонанса токов, т. е. равенства реактивных проводимостей в ветвях Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

После ряда преобразований равенства (13.13) определяется частота резонанса токов
Электрические цепи синусоидального тока
Резонансная частота зависит не только от параметров колебательного контура Электрические цепи синусоидального тока но и от активных сопротивлений в ветвях реального резонансного контура.

Если в резонансном контуре отсутствуют активные сопротивления в ветвях, то частота резонанса токов Электрические цепи синусоидального тока становится равной частоте собственных колебаний идеального резонансного контура

Электрические цепи синусоидального тока

Если в резонансном контуре Электрические цепи синусоидального тока или Электрические цепи синусоидального тока то резонанса токов добиться невозможно.

Резонанс токов нашел широкое применение в радиотехнике и выпрямительной технике (в резонансных фильтрах) и др.

Пример 13.1

Напряжение, приложенное к параллельно включенным катушке и конденсатору (рис. 13.4а), Электрические цепи синусоидального тока частота сети Электрические цепи синусоидального тока Гц. Параметры цепи: Электрические цепи синусоидального тока Определить:

1) токи всех участков цепи: Электрические цепи синусоидального тока

2) углы сдвига фаз этих токов относительно напряжения: Электрические цепи синусоидального токаЭлектрические цепи синусоидального тока

3) полную S, активную Р и реактивную Q мощности цепи;

4) частоту, при которой наступит резонанс токов в этой цепи. Построить векторную диаграмму.

РешениеЭлектрические цепи синусоидального тока

1. Сопротивление участков цепи:

Электрические цепи синусоидального тока
где Электрические цепи синусоидального тока

Сопротивление 1-й ветви:

Электрические цепи синусоидального тока

Токи в ветвях соответственно равны

Электрические цепи синусоидального тока

Для определения тока Электрические цепи синусоидального тока в неразветвленной части цепи определяются проводимости:

Электрические цепи синусоидального тока

Тогда полная проводимость цепи будет равна

Электрические цепи синусоидального тока

Ток в неразветвленной части цепи

Электрические цепи синусоидального тока

2. Углы сдвига фаз:

.Электрические цепи синусоидального тока

Знак «минус» перед значением угла Электрические цепи синусоидального тока параллельного контура означает, что цепь имеет емкостной характер, так как Электрические цепи синусоидального тока

3. Полная мощность цепи Электрические цепи синусоидального тока

Активная мощность цепи Электрические цепи синусоидального тока так как Электрические цепи синусоидального тока

Реактивная мощность цепи Электрические цепи синусоидального тока вар, так как Электрические цепи синусоидального тока

4. Угловая частота резонанса токов в цепи равна

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Для построения векторной диаграммы определяют активные и реактивные токи в ветвях:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока так как в ветви с емкостью отсутствует активное сопротивление, т.е. Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Векторная диаграмма для рассматриваемой цепи изображена на рис. 13.46.

На векторной диаграмме видно, что ток I опережает напряжение U на угол 53°30′ (цепь емкостного характера).
 

Коэффициент мощности

Номинальные параметры, т.е. мощность источника Электрические цепи синусоидального тока мощность потребителя Электрические цепи синусоидального тока и коэффициент мощности Электрические цепи синусоидального тока связаны следующим соотношением

Электрические цепи синусоидального тока

Из (13.15) следует, что чем меньше Электрические цепи синусоидального тока тем большую мощность Электрические цепи синусоидального тока должен иметь источник для питания этого потребителя, т. е. тем больше его габариты, вес, расход материалов, стоимость и др.

Ток в цепи потребителя с определенным Электрические цепи синусоидального тока согласно выражению (12.11) равенЭлектрические цепи синусоидального тока

Из (13.16) видно, что чем меньше Электрические цепи синусоидального тока, тем больше ток потребителя Электрические цепи синусоидального тока тем больший ток проходит по проводам линий электропередачи, тем больше потери энергии в этой линии и меньше КПД ее и всей системы (3.11). Кроме того, увеличение тока требует для его передачи проводов большего сечения, т. е. большего расхода цветных металлов.

Таким образом, низкий коэффициент мощности потребителя Электрические цепи синусоидального тока приводит к увеличению мощности источника, питающего этот потребитель, уменьшению КПД линии электропередачи и к увеличению сечения проводов линий электропередачи. 4В России установлен минимально допустимый коэффициент мощности не менее 0,93, т.е. Электрические цепи синусоидального тока должен быть равен или больше 0,93 Электрические цепи синусоидального тока

Однако Электрические цепи синусоидального тока большинства электрических потребителей переменного тока меньше этой нормы. Так, например, Электрические цепи синусоидального тока асинхронных двигателей, в зависимости от нагрузки, составляет Электрические цепи синусоидального тока трансформаторов – Электрические цепи синусоидального тока выпрямителей – Электрические цепи синусоидального тока и т.д. Следовательно, коэффициент мощности этих потребителей необходимо повышать.

Так как большинство потребителей представляет собой нагрузку индуктивного характера, то для улучшения Электрические цепи синусоидального тока параллельно с ним подключаются конденсаторы (рис. 13.5а).

Электрические цепи синусоидального тока

Из векторной диаграммы (рис. 13.56) видно, что с подключением конденсатора С (ключ К замкнут) появляется Электрические цепи синусоидального тока за счет которого уменьшается угол Электрические цепи синусоидального тока и увеличивается Электрические цепи синусоидального тока установки. При этом уменьшается ток цепи Электрические цепи синусоидального тока который до подключения конденсатора был равен току нагрузки Электрические цепи синусоидального тока

Для повышения коэффициента мощности Электрические цепи синусоидального тока конденсатор можно включить последовательно с потребителем индуктивного характера. Однако при этом нарушается режим работы (напряжение) потребителя. Поэтому для улучшения Электрические цепи синусоидального тока конденсатор подключают параллельно с нагрузкой (рис. 13.5а).

Коэффициент мощности можно повысить, увеличив активную нагрузку. При этом увеличивается потребляемая энергия, что экономически нерационально (уменьшается КПД установки).

Пример 13.2

Асинхронный двигатель, включенный в сеть с напряжением Электрические цепи синусоидального тока и частотой Электрические цепи синусоидального тока развивает на валу мощность Электрические цепи синусоидального тока КПД двигателя Электрические цепи синусоидального тока при Электрические цепи синусоидального тока Определить емкость конденсатора С, который необходимо включить параллельно с двигателем (рис. 13.5а), чтобы повысить Электрические цепи синусоидального тока установки до 0,95.

Решение

Мощность, потребляемая двигателем из сети:

Электрические цепи синусоидального тока

Ток нагрузки Электрические цепи синусоидального тока т.е. ток двигателя (рис. 13.5а), равен

Электрические цепи синусоидального тока

Реактивная составляющая тока двигателя Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

(по таблице Электрические цепи синусоидального тока).

Ток установки Электрические цепи синусоидального тока при подключении конденсатора, т. е. при Электрические цепи синусоидального тока будет равен

Электрические цепи синусоидального тока

При Электрические цепи синусоидального тока Реактивная составляющая тока установки (рис. 13.56)

Электрические цепи синусоидального тока

Ток конденсатора Электрические цепи синусоидального тока (рис. 13.56)

Электрические цепи синусоидального тока

Емкостное сопротивление конденсаторов

Электрические цепи синусоидального тока

Емкость конденсаторов, которые нужно подключить параллельно двигателю для улучшения Электрические цепи синусоидального тока до 0,95:

Электрические цепи синусоидального тока

  • Электрические цепи несинусоидального тока
  • Несинусоидальный ток
  • Электрические цепи с распределенными параметрами
  • Резистивные электрические цепи и их расчёт
  • Резонанс токов
  • Трехфазные симметричные цепи
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле

Добавить комментарий