Как найти амплитуду гармонических колебаний маятника

План урока:

Колебательное движение

Период и частота колебаний

Свободные колебания

Амплитуда колебаний

Колебательные системы

Гармонические колебания

Величины, характеризующие колебательное движение

Затухающие колебания

Вынужденные колебания

Колебательное движение

В самом широком смысле, колебательное движение – это любое движение, повторяющееся с течением времени. Например, птица, машущая крыльями вверх-вниз, совершает ими колебательные движения. Ребенок, качающийся на качелях, тоже совершает колебательные движения. Игла швейной машины при шитье – тоже.

Но как же так, ведь в названных примерах тела движутся абсолютно по-разному? Крылья птицы и игла швейной машины движутся вертикально вверх-вниз (прямолинейно), ребенок на качелях движется горизонтально и по дуге (криволинейно). Это все неважно. Главный признак колебательного движения – его повторяемость через определенный промежуток времени, то есть через период колебаний.

Период и частота колебаний

Период колебаний (T) – это время, за которое тело совершает полный цикл движения, т.е. совершает одно колебание.

В случае с движением крыльев птицы, если считать, что один взмах начинается с верхней точки, полным колебанием будет считаться, когда крылья пройдут от верхней точки через середину до нижней и вернутся от нижней точки через середину до верхней (рисунок 1).

1 odnosostavnye predlozheniya
Рисунок 1 – Взмах крыльев птицы как пример полного колебания   

Период колебаний обозначается латинской буквой T. По определению период – это время, значит, единица измерения периода будет такой же, как и единица измерения времени. В СИ это секунда.

[T] = 1 с

Как же можно вычислить период колебаний?

Самый простой способ – это посчитать количество колебаний и секундомером измерить время, за которое эти колебания были совершены. Например, ребенок на качелях совершает N = 10 колебаний за t = 30 секунд. Нетрудно подсчитать, что время совершения одного полного колебания будет 30/10 = 3 с. Если обобщить, получится формула для нахождения периода колебаний:

2 odnosostavnye predlozheniya

где t – время, за которое совершено N колебаний.

Рассмотрим еще одну важную характеристику.

Частота колебаний (ν) – это количество колебаний, совершаемое телом за единицу времени.

Частота колебаний обозначается греческой буквой (читается как «ню»).

Если сравнить определение частоты колебаний с определением периода, можно заметить, что это обратные величины. То есть:

3 odnosostavnye predlozheniya

Гц – единица измерения, которую назвали в честь немецкого физика Генриха Герца. При решении задач одинаково часто употребляется и герц, и с-1. Можно употреблять и то, и другое – в зависимости от того, что удобнее при решении конкретной задачи.

Следует так же отметить, что иногда физики пользуются циклической частотой колебаний:

4 odnosostavnye predlozheniya

Свободные колебания

Положение равновесия при колебательном движении

Сравним две ситуации:

1. Родитель толкает качели, на которых сидит ребенок, а потом просто наблюдает, как качели качаются сами по себе.

2. Родитель толкает качели с ребенком, а потом при каждом цикле движения подталкивает качели, поддерживая качания.

Физики говорят, что в первом случае система (качели и ребенок) совершает свободные колебания, то есть колебания под действием только внутренних сил. После выведения системы из равновесия (то есть толчка родителя) к ней больше не прикладывают внешних сил. Во втором случае говорят, что система совершает вынужденные колебания – то есть колебания, под действием периодического внешнего воздействия.

Поговорим о свободных колебаниях. Для простоты рассмотрим систему, состоящую из маленького тяжелого шарика на длинной крепкой нити. Такая система называется нитяным маятником (рисунок 2).

5 odnosostavnye predlozheniya
 Рис.2 – Нитяной маятник 

Без воздействия внешних сил шарик будет находиться в положении 1. Такое состояние называется положением равновесия. Далее к шарику прикладывают силу, направленную влево и он начинает совершать колебания. Траектория шарика будет: 1-2-1-3-1 (см. рисунок 1).

Как при этом будет меняться скорость тела? Для того, чтобы рассмотреть подробно, нужно помнить определения потенциальной и кинетической энергии*, а также в чем заключается закон сохранения энергии (систему считаем замкнутой – потерь энергии не происходит, а, значит, закон сохранения энергии выполняется – энергия колебательной системы остается постоянной):

  • при движении из точки 1 в 2 шарик постепенно замедляется (уменьшается его кинетическая энергия, а потенциальная увеличивается);
  • в точке 2 он на мгновенье останавливается (кинетическая энергия равна нулю, потенциальная максимальна);
  • далее он начинает движение с ускорением, но уже в обратном направлении (кинетическая энергия увеличивается, потенциальная уменьшается) – при движении из 2 в 1 тело будет ускоряться;
  • когда шарик дойдет до точки 1 его кинетическая энергия будет максимальна, а потенциальная минимальна.

При движении от точки 1 в 3 будет происходить то же самое, что и при движении из 1 в 2 – предлагаем описать процесс изменения величин (скорости и энергии) самостоятельно.

Если обобщить все сказанное, можно сделать вывод: при колебаниях в положении равновесия кинетическая энергия тела максимальна, а потенциальная минимальна (или равна нулю, в зависимости от выбранной точки отсчета). В крайних положениях потенциальная энергия максимальна, а кинетическая равна нулю. То есть положение равновесия маятника – это такое положение, в котором его потенциальная энергия минимальна (или равна нулю, в зависимости от точки отсчета). При удалении маятника от положения равновесия кинетическая энергия будет уменьшаться, а потенциальная увеличиваться.

*Потенциальная энергия тела зависит от его положения в пространстве; кроме того, это относительная величина – она зависит от того, какая точка отсчета выбрана.

Кинетическая энергия зависит от модуля скорости тела.

Амплитуда колебаний

Помимо частоты и периода важной характеристикой колебаний является амплитуда.

Амплитуда колебаний – это модуль максимального смещения тела от положения равновесия. Другими словами, это расстояние между положением равновесия и крайней точкой траектории маятника. Рассмотрим рисунок 3. На нем изображен уже знакомый вам нитяной маятник. В идеальном случае амплитуду колебаний маятника нужно считать как длину дуги от положения равновесия до крайней точки. Но если мы считаем, что колебания малые – то есть длина нити маятника (l) гораздо больше смещения (S), можно считать, что длина дуги совпадает с длиной отрезка между проекциями положения равновесия и крайней точки на ось ОХ.

6 odnosostavnye predlozheniya
Рис.3 – Амплитуда колебаний нитяного маятника

Обычно амплитуда обозначается большой латинской буквой A.

Колебательные системы

Для того, чтобы рассмотреть колебательные движения подробнее, рассмотрим несколько колебательных систем, на примере которых будет рассматривать все закономерности.

1. Маятник

В общем случае маятник – это система, способная совершать колебания под действием каких-либо сил, например, сил трения, упругости, тяжести.

2. Пружинный маятник

Пружинный маятник – это система, состоящая из упругой пружины, один конец которой закреплен, а на другой прикреплен груз.

Такой маятник может быть вертикальным (рисунок 4а), тогда колебания будут совершаться под действием сил тяжести и упругости; и горизонтальным (рисунок 4б), тогда на груз будут действовать сил упругости и трения.

7 odnosostavnye predlozheniya
Рис.4 – Пружинный маятник

Для пружинного маятника справедливы формулы:

8 odnosostavnye predlozheniya

где T –период колебаний пружинного маятника; π ~ 3.14;  mмасса груза;kкоэффициент жесткости пружины; – частота колебаний пружинного маятника.

*Ранее говорилось, что существует такая характеристика, как циклическая частота. Формула для ее нахождения будет выглядеть так:

9 odnosostavnye predlozheniya

3. Нитяной маятник

Этот вид маятника уже рассматривался ранее (см. рисунок 3), он состоит из длинной нити и тяжелого грузика, подвешенного на ней.

Для нитяного маятника справедливы формулы:

10 odnosostavnye predlozheniya

где T – период колебаний нитяного маятника; π ~ 3.14; l –длина нити; g – ускорение свободного падения (~9,8 м/с2), v – частота колебаний.

Интересно отметить, что период нитяного маятника и, следовательно, его частота не зависят от массы грузика, прикрепленного к нити.

*Следует отметить, что все приведенные формулы справедливы только для малых колебаний.

** Циклическая частота нитяного маятника:

11 odnosostavnye predlozheniya

Гармонические колебания

При решении задач часто используется не нитяной маятник, а его упрощенная модель – математический маятник. Это идеальная колебательная система, в которой нить считается очень длинной по сравнению с амплитудой колебаний и размерами грузика; сам груз достаточно тяжелым, чтобы пренебречь массой нити. Кроме того, считается, что не происходит потерь энергии.

Рассмотрим подробно, какие силы действуют на такую систему. В первую очередь, на грузик действует сила тяжести mg, направленная вниз (см. рисунок 5). Так же на него действует сила натяжения со стороны нити F, она направлена вдоль нити. Обозначим  угол, на который смещается тело от положения равновесия.

12 odnosostavnye predlozheniya

Рис.5 – Силы, действующие на математический маятник

Запишем 2-й закон Ньютона:

13 odnosostavnye predlozheniya

14 odnosostavnye predlozheniya
Рисунок 6 – Силы, действующие на математический маятник при смещении на угол φ

В случае малых углов sinφ можно считать равным φ. Из геометрического определения синуса:

15 odnosostavnye predlozheniya

Тогда в крайней точке 2-й закон Ньютона в проекции на ось OX перепишется следующим образом:

16 odnosostavnye predlozheniya

То есть ускорение, с которым движется маятник прямо пропорционально его смещению от положения равновесия. Минус в данном выражении означает, что ускорении направлено в противоположную сторону от смещения.

Интересно заметить, что ускорение грузика, подвешенного к ниточке (а значит и самого маятника), не зависит от его массы. Период колебаний математического маятника тоже не зависит от массы грузика:

17 odnosostavnye predlozheniya

В случаях, когда колебания происходят под действием силы, пропорциональной смещению тела от положения равновесия, говорят, что тело совершает гармонические колебания.*

График зависимости смещения от времени при гармоническом колебательном движении представляет собой синусоиду или косинусоиду (см. рисунок 7).

Для лучшего понимания, почему график выглядит именно так, можно посмотреть урок в курсе алгебры «Тригонометрические функции»:

18 odnosostavnye predlozheniya
 Рис. 7 – График зависимости смещения (x) от времени (t) при гармонических колебаниях   

На графическом представлении колебаний (рисунок 7) удобно находить период и амплитуду гармонических колебаний.

*Могло сложиться впечатление, что гармонические колебания может совершать только математический маятник. Это не так. Любое тело может совершать колебания, близкие к гармоническим (нужно учитывать не идеальность систем). Например, можно говорить о гармонических колебаниях пружины, если она достаточно жесткая, чтобы она деформировалась упруго, а колебания совершаются с небольшой амплитудой.

Величины, характеризующие колебательное движение

Ранее рассматривались такие характеристики колебаний, как период, частота и амплитуда. Помимо этих величин, колебания характеризуются фазой колебаний.

Фаза колебаний

На рисунке 7 изображен график зависимости смещения от времени при гармонических колебаниях. Такой график называется синусоидой (косинусоидой). В общем случае уравнение зависимости координаты Х от времени t будет выглядеть так:

19 odnosostavnye predlozheniya

Разность фаз

Понятие «разность фаз» применяется, когда мы хотим сравнить движение двух маятников. Пусть маятник 1 и маятник 2 двигаются по законам соответственно:

20 odnosostavnye predlozheniya

Найдем разность фаз колебаний этих двух маятников.

Если взять конкретный момент времени , фаза гармонических колебаний каждого из маятников в этот момент времени будет:

21 odnosostavnye predlozheniya

22 odnosostavnye predlozheniya – это начальные фазы колебания первого и второго маятников соответственно. Эти величины являются начальными условиями, и они не изменяются во время движения, следовательно, при одинаковой частоте колебаний маятников разность фаз остается постоянной.

Затухающие колебания

Во всех рассмотренных ранее случаях считалось, что на колеблющуюся систему не действуют силы извне. На самом деле, идеальных систем не существует, поэтому любой маятник во время движения будет преодолевать внешние силы сопротивления и терять энергию. Например, пружинный маятник (рисунок 8) будет преодолевать силу трению о поверхность.

23 odnosostavnye predlozheniya
Рисунок 8 – Пружинный маятник на шероховатой поверхности  

Колебания, энергия которых уменьшается с течением времени, называются затухающими.

Амплитуда затухающих колебаний уменьшается со временем. График таких колебаний изображен на рисунке 9.

24 odnosostavnye predlozheniya
Рисунок 9 – График зависимости координаты от времени при затухающих колебаниях  

Вынужденные колебания

Собственная частота колебаний. Частота вынуждающей силы. Установившиеся вынужденные колебания

В реальных (неидеальных) системах колебания всегда нужно поддерживать внешним воздействием.

Под действием периодической внешней изменяющейся силы возникают вынужденные колебания.

Почему же обязательно сила должны быть периодически изменяющейся? Ответ на этот вопрос легко найти, представив себе качели. Если на них действовать с постоянной по модулю и направлению силой, они никогда не начнут качаться. А толчками (то есть периодической изменяющейся силой) раскачать их не составит труда.

Внешняя сила, заставляющая систему совершать колебания, называется вынуждающей силой.

Так как эта сила периодическая, необходимо ввести частоту вынуждающей силы. А чтобы не запутаться, частоту свободных колебаний называют собственной частотой системы. Как показывают эксперименты, даже если изначально собственная частота системы и частота вынуждающей силы отличались, через некоторое время система начинает колебаться с частотой вынуждающей силы. В таких случаях говорят об установившихся вынужденных колебаниях.

Если частота вынуждающей силы равна собственной частоте системы, возникает резонанс – резкое увеличение амплитуды колебаний.

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Гармонические колебания в физике – формулы и определение с примерами

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – , а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

С течением времени смещение груза уменьшается относительно , но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение () равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде ():

здесь: – циклическая частота, зависящая от параметров колеблющихся систем, – начальная фаза, () фаза колебания с течением времени .
Из математики известно, что поэтому формулу (5.2.) можно записать в виде

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями.

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений.

Основные параметры гармонических колебаний

a) период колебания – время одного полного колебания:

)

б) частота колебания – количество колебаний, совершаемых за 1 секунду:

Единица
c) циклическая частота – количество колебаний за секунд:

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются.
Это подтверждается следующими графиками и уравнениями:

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Формула и решение:

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где – масса шарика, закрепленного на пружине, — проекция ускорения шарика вдоль оси — жесткость пружины, -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение – постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения – известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение соответствует квадрату циклической частоты

Таким образом, уравнение движения пружинного маятника можно записать и так:

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь фаза колебания, — начальная фаза. Единица измерения фазы в СИ – радиан (1 рад). Фазу также можно измерять в градусах: Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

или

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника:

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник – это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Сила тяжести действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Однако, если вывести маятник из состояния равновесия, сместив его на малый угол в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити и перпендикулярная нити Сила натяжения и составляющая силы тяжести уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей “пытающейся” вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой в проекциях на ось ОХ:

Приняв во внимание, что:

Для уравнения движения математического маятника получим:

Где — длина математического маятника (нити), – ускорение свободного падения, — амплитуда колебания.

Для данной колебательной системы отношение — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение также соответствует квадрату циклической частоты

Таким образом, уравнение движения математического маятника можно записать и так:

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Так как скорость является первой производной смещения (координат) по времени, то:

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на (а).

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Так как ускорение является первой производной скорости по времени, то получим:

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на а колебания смещения на

(см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Превращения энергии при гармонических колебаниях

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения имеет максимальное значение:

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Кинетическая энергия системы, наоборот, в точке возвращения минимальна а в точке равновесия максимальна:

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени остается постоянной (трение не учитывается):

a) для пружинного маятника:

b) для математического маятника:

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают:

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:


Рис. 7. Превращения энергии при колебаниях математического маятника

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Из закона сохранения механической энергии следует (рис. 8), что

(1)

Отсюда найдем модуль максимальной скорости маятника:

(2)

Высоту можно выразить через длину маятника l и амплитуду колебаний А.

Если колебания малые, то Из треугольника KCD на рисунке 8 находим

Подставив выражение для в формулу I (2), получим

Подставляя выражения для и в соотношение (1), находим

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение , модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

где — модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Отсюда можно вывести выражение для модуля скорости груза в точке с

Так как

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю то из закона сохранения механической энергии следует (см. рис. 10), что т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Отсюда найдем модуль максимальной скорости маятника:

Высоту можно выразить через длину маятника и амплитуду колебаний. Если колебания малые, то Из (см. рис. 10) находим:

или

Подставив выражение (3) для в формулу (2), получим:

Подставляя выражения (3) для и (4) для в соотношение (1), находим:

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

В крайних положениях, когда модуль скорости маятника и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда вся энергия пружинного маятника переходит в кинетическую энергию груза:

где — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

С учетом выражений для координаты и проекции скорости груза а также для находим его потенциальную энергию и кинетическую энергию в произвольный момент времени

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Таким образом, начальное смещение определяет начальную потенциальную, а начальная скорость определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние см и при прохождении положения равновесия достигает скорости, модуль которой Определите период колебании маятника.
Дано:


Решение

По закону сохранения механической энергии


Ответ:

Пример №2

Груз массой г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Его смешают на расстояние см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Определите потенциальную и кинетическую энергию груза в начальный момент времени. Запишите кинематический закон движения груза.


Решение Потенциальная энергия груза:

Кинетическая энергия груза:

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Отсюда

Циклическая частота:

В начальный момент времени координата груза Отсюда начальная фаза:

Тогда закон гармонических колебаний имеет вид (рис. 14):

Ответ:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Амплитуда гармонических колебаний

Вы будете перенаправлены на Автор24

В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени. Эти движения мы можем наблюдать:

  • при движении планет;
  • в разных механических машинах;
  • они находятся в основе измерения времени;
  • звуковые явления объясняют механические колебания.

В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

Данный тип колебаний применяют:

  • в разных технических устройствах;
  • для целей телефонной, телеграфной и радиосвязи;
  • создания технических переменных токов;
  • свет – нечто иное, как электромагнитные колебания.

Колебания, которые происходят под воздействием сил внутри самой колебательной системы, называют собственными. Собственные колебания появляются при нарушении состояния равновесия колебательной системы.

Гармоническими называют колебания, которые описывают при помощи тригонометрических законов синуса и косинуса.

Уравнение собственных электрических колебаний

Допустим, что электрические процессы в контуре, состоящем из:

  • конденсатора (ёмкость $C$);
  • сопротивления ($R$);
  • катушки индуктивности ($L$)

являются квазистационарными. Это означает:

  1. что мгновенная сила тока $I$ одинакова в каждой точке контура;
  2. к мгновенным значениям электрических параметров можно применять законы Кирхгофа.

Изменение заряда описывает в таком контуре дифференциальное уравнение второго порядка с обыкновенными производными и постоянными коэффициентами:

где $omega_0=frac<1>$ – циклическая (круговая) частота колебаний; $alpha=frac<2L>$.

Аналогичные уравнения описывают колебания напряжения и силы тока.

Если колебания описываю при помощи линейных дифференциальных уравнений, то такие колебания являются линейными, соответствующие им колебательные системы, именуют линейными колебательными системами.

Готовые работы на аналогичную тему

Амплитуды заряда, силы тока и напряжения при колебаниях в идеальном электрическом контуре.

Для того чтобы задача описания колебаний стала полностью определенной необходимо задать начальные условия, которых должно быть два, так как мы имеем уравнение второго порядка. Обычно начальными условиями для уравнения (1) являются:

Если сопротивление контура можно считать равным нулю ($R=0$), тогда уравнение колебаний (1) принимает вид:

Общим решением уравнения (2) является гармоническое колебание:

$q=Acos (omega_0 t+varphi) (3),$

где $A$ – амплитуда колебаний; $varphi$ – начальная фаза колебаний.

Амплитуда (как и начальная фаза) определяются начальными условиями колебаний.

Подставим начальные условия в гармоническое колебание (3), получим:

$Acos varphi = q_0$, $Aomega_0sin varphi = 0 (4).$

В окончательном виде уравнение гармонического колебания (3) запишем как:

$q=q_0cos (omega_0 t) (4).$

Напряжение на конденсаторе в контуре изменяется в соответствии с законом:

$U_C=frac=U_0cos omega_0 t (5),$

где амплитуда напряжения равна первоначальному напряжению на конденсаторе: $U_0=frac.$

Силу тока в контуре найдём как:

$I=-frac

=q_0omega_0 sin (omega t)=I_0 sin (omega_0 t) (6),$

где $I_0= q_0omega_0$ – амплитуда силы тока. Сравнивая выражения (4) и (6) мы видим, что заряд и силы тока совершают изменения в соответствии с гармоническими законами, при этом:

  • колебания заряда происходят по закону косинуса;
  • сила тока колеблется по закону синуса.

Поскольку из тригонометрии мы знаем, что:

$sin (omega_0 t) = cos(omega_0 t-frac<pi><2>)$ – это означает, что между колебаниями заряда и силы тока имеется разность фаз $frac<pi><2>$, колебания силы тока отстают по фазе.

Для графического изображения колебаний по горизонтальной оси откладывать время, а по вертикальной заряд (силу тока или напряжение). В таком случае получится периодическая кривая – синусоида или косинусоида. Форму кривой определяют амплитуда колебаний физического параметра и циклическая частота $omega_0$. Положение кривой зависит от начальной фазы.

Амплитуда гармонических механических колебаниях

Рассмотрим гармонические колебания материальной точки, которая совершает движения вдоль оси $X$:

$x=Acos (omega t+delta)(7),$

где $delta$ – начальная фаза колебаний; $A$ – амплитуда колебаний – максимальное отклонение колеблющейся материальной точки от положения равновесия. $omega $ – циклическая частота колебаний.

Скорость колебаний по оси $X$ нашей материальной точки составляет:

$v=dot=-omega Asin (omega t+delta) (8),$

где амплитуда скорости равна $v_m=omega A$.

Найдем вторую производную от уравнения колебаний (7), имеем:

амплитуда ускорения нашей точки равна $a_m=omega^2A $.

Амплитуда колебаний при наличии затухания

Обратимся к реальному электрическому контуру, который обладает сопротивлением отличным от нуля. В этом случае колебания подчиняются закону (1). Если $omega_0^2$ > $alpha^2$, тогда решением дифференциального уравнения (1) служит выражение:

где $A=const$ и $varphi=const$ – задаются начальными условиями; $omega = sqrt<omega_0^2-alpha^2>$.

Уравнение (9) условно можно считать гармоническим колебанием с круговой частотой $omega$ и амплитудой, равной:

которая не является постоянной, а постоянно уменьшается со временем. Величину $alpha$ называют коэффициентом затухания.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 22 05 2021

[spoiler title=”источники:”]

http://www.evkova.org/garmonicheskie-kolebaniya-v-fizike

http://spravochnick.ru/fizika/garmonicheskie_kolebaniya/amplituda_garmonicheskih_kolebaniy/

[/spoiler]

Начиная с седьмого класса в школах начинают преподавать такую тему, как “Механические колебания”. Начиная с ОГЭ и заканчивая ЕГЭ, эта тема прослеживается во многих экзаменах и вступительных испытаниях. Важной частью ее является изучение понятия амплитуды колебаний. Поэтому для начала ознакомимся с тем, что такое амплитуда колебаний и как обозначается амплитуда колебаний в физике, ведь со временем многое забывается, а именно данной переменной почему-то во многих школах уделяют меньше всего внимания.

Что такое амплитуда колебаний?

Изомеры Пентена: строение, применение, угроза здоровью.Вам будет интересно:Изомеры Пентена: строение, применение, угроза здоровью.

Амплитуда колебаний – это максимально возможное отклонение или смещение величины в большую или меньшую сторону от положения равновесия или от среднего значения. К примеру, для пружинного маятника положение равновесия – это покоящийся на пружине груз, а когда он начинает двигаться, то обретает определенную амплитуду, которая определяется растяжением или сжатием пружины.

Для математического же маятника немного проще – максимальное отклонения груза от положения покоя – это и есть амплитуда колебаний.

В то время как амплитуда колебаний радиоволн считается именно по отклонению от среднего значения.

Теперь перейдем к тому, какой буквой обозначается амплитуда колебаний.

Обозначение

В седьмом классе детей приучают обозначать амплитуду колебаний простой буквой “А”. Например: А=4 см, то есть амплитуда равна четырем сантиметрам.

Но уже в восьмом классе ученики изучают такое понятие, как механическая работа, и именно она в физике обозначается буквой “А”. Ученики начинают путаться в этих значениях, и к 10-11-у классу не имеют четкого представления о том, как обозначается амплитуда колебаний в физике.

В случае с пружинными и математическими маятниками лучше всего записывать амплитуду через максимальные значения. То есть Хмакс. означает максимальное отклонения от положения равновесия. Например Хмакс.=10 см, то есть пружина, как вариант, растянется максимум на 10 см. Это и будет амплитудой колебаний.

В 11-м классе выпускники изучают электромагнитные колебания. И там встречаются колебания заряда, напряжения и силы тока. Для того чтобы записать амплитуду напряжения, принято обозначать ее как максимальное значение. Для заряда и прочих величин соответственно.

Как найти амплитуду колебаний?

График колебаний

Обычно в задачах на нахождение амплитуды представлен график, подобный тому, что нарисован на картинке выше. В таком случае амплитудой будет являться максимальное значение по вертикальной оси Y. Амплитуда показано красной чертой.

Например, на данном рисунке изображен график колебаний математического маятника.

график с цифрами

Зная, что амплитуда колебаний математического маятника – это максимальное удаление от положение равновесия, можем определить, что максимальное значение Х=0,3 см.

Найти амплитуду с помощью вычислений можно следующими способами:

1. Если груз совершает гармонические колебания и в задаче известны путь, который проходит тело, и количество колебаний, то амплитуда находится как отношение пути к количеству колебаний, умноженному на 4.

2. Если в задаче дан математический маятник, то при известных максимальной скорости и длине нити можно найти амплитуду, которая будет равна произведению максимальной скорости на квадратный корень из отношения длины к ускорению свободного падения. Эта формула похожа на формулу периода математического маятника.

формула периода

Только вместо 2п используется максимальная скорость.

В уравнениях же амплитудой является все то, что записано до косинуса, синуса или переменной омеги.

Заключение

В этой статье было сказано о том, как обозначается амплитуда колебаний и как она находится. Данная тема является лишь малой долей большого раздела колебательных процессов, но это не снижает ее важности. Ведь не понимая, что такое амплитуда, невозможно работать с графиками правильно и решать уравнения.

Автор:

Панкрат Ермаков

05-02-2019 22:50

Жду ваши вопросы и мнения в комментариях

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – Гармонические колебания в физике - формулы и определение с примерами, а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние Гармонические колебания в физике - формулы и определение с примерами и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

Гармонические колебания в физике - формулы и определение с примерами

С течением времени смещение груза уменьшается относительно Гармонические колебания в физике - формулы и определение с примерами, но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение (Гармонические колебания в физике - формулы и определение с примерами) равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде (Гармонические колебания в физике - формулы и определение с примерами):

Гармонические колебания в физике - формулы и определение с примерами

здесь: Гармонические колебания в физике - формулы и определение с примерами– циклическая частота, зависящая от параметров колеблющихся систем, Гармонические колебания в физике - формулы и определение с примерами – начальная фаза, (Гармонические колебания в физике - формулы и определение с примерами) фаза колебания с течением времени Гармонические колебания в физике - формулы и определение с примерами.
Из математики известно, что Гармонические колебания в физике - формулы и определение с примерами поэтому формулу (5.2.) можно записать в виде

Гармонические колебания в физике - формулы и определение с примерами

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений. 

Основные параметры гармонических колебаний

a) период колебания Гармонические колебания в физике - формулы и определение с примерами – время одного полного колебания:

Гармонические колебания в физике - формулы и определение с примерами)

б) частота колебания Гармонические колебания в физике - формулы и определение с примерами – количество колебаний, совершаемых за 1 секунду:

Гармонические колебания в физике - формулы и определение с примерами

Единица Гармонические колебания в физике - формулы и определение с примерами
c) циклическая частота Гармонические колебания в физике - формулы и определение с примерами – количество колебаний за Гармонические колебания в физике - формулы и определение с примерами секунд:

Гармонические колебания в физике - формулы и определение с примерами

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Гармонические колебания в физике - формулы и определение с примерами

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются. 
Это подтверждается следующими графиками и уравнениями:

Гармонические колебания в физике - формулы и определение с примерами

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Найти:

Гармонические колебания в физике - формулы и определение с примерами

Формула и решение:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

Гармонические колебания в физике - формулы и определение с примерами

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения Гармонические колебания в физике - формулы и определение с примерами сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где Гармонические колебания в физике - формулы и определение с примерами – масса шарика, закрепленного на пружине, Гармонические колебания в физике - формулы и определение с примерами — проекция ускорения шарика вдоль оси Гармонические колебания в физике - формулы и определение с примерами — жесткость пружины, Гармонические колебания в физике - формулы и определение с примерами -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами– постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения – известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение Гармонические колебания в физике - формулы и определение с примерами соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения пружинного маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой Гармонические колебания в физике - формулы и определение с примерами являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Гармонические колебания в физике - формулы и определение с примерами

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь Гармонические колебания в физике - формулы и определение с примерами фаза колебания, Гармонические колебания в физике - формулы и определение с примерами — начальная фаза. Единица измерения фазы в СИ – радиан (1 рад). Фазу также можно измерять в градусах: Гармонические колебания в физике - формулы и определение с примерами Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы Гармонические колебания в физике - формулы и определение с примерами В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами или Гармонические колебания в физике - формулы и определение с примерами

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника: 

Гармонические колебания в физике - формулы и определение с примерами

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник – это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Гармонические колебания в физике - формулы и определение с примерами

Сила тяжести Гармонические колебания в физике - формулы и определение с примерами действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Гармонические колебания в физике - формулы и определение с примерами Однако, если вывести маятник из состояния равновесия, сместив его на малый угол Гармонические колебания в физике - формулы и определение с примерами в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити Гармонические колебания в физике - формулы и определение с примерами и перпендикулярная нити Гармонические колебания в физике - формулы и определение с примерами Сила натяжения Гармонические колебания в физике - формулы и определение с примерами и составляющая силы тяжести Гармонические колебания в физике - формулы и определение с примерами уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей Гармонические колебания в физике - формулы и определение с примерами “пытающейся” вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой Гармонические колебания в физике - формулы и определение с примерами в проекциях на ось ОХ:

Гармонические колебания в физике - формулы и определение с примерами

Приняв во внимание, что:

Гармонические колебания в физике - формулы и определение с примерами

Для уравнения движения математического маятника получим:

Гармонические колебания в физике - формулы и определение с примерами

Где Гармонические колебания в физике - формулы и определение с примерами — длина математического маятника (нити), Гармонические колебания в физике - формулы и определение с примерами – ускорение свободного падения, Гармонические колебания в физике - формулы и определение с примерами — амплитуда колебания.

Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение Гармонические колебания в физике - формулы и определение с примерами также соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения математического маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Гармонические колебания в физике - формулы и определение с примерами

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Гармонические колебания в физике - формулы и определение с примерами

Так как скорость является первой производной смещения (координат) по времени, то:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на Гармонические колебания в физике - формулы и определение с примерами (а).

Гармонические колебания в физике - формулы и определение с примерами

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Так как ускорение является первой производной скорости по времени, то получим:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на Гармонические колебания в физике - формулы и определение с примерами а колебания смещения на

Гармонические колебания в физике - формулы и определение с примерами (см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях 

Гармонические колебания в физике - формулы и определение с примерами

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения Гармонические колебания в физике - формулы и определение с примерами имеет максимальное значение:

Гармонические колебания в физике - формулы и определение с примерами

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Гармонические колебания в физике - формулы и определение с примерами

Кинетическая энергия системы, наоборот, в точке возвращения минимальна Гармонические колебания в физике - формулы и определение с примерами а в точке равновесия максимальна: 

Гармонические колебания в физике - формулы и определение с примерами

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Гармонические колебания в физике - формулы и определение с примерами

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени Гармонические колебания в физике - формулы и определение с примерами остается постоянной (трение не учитывается):

a) для пружинного маятника:

Гармонические колебания в физике - формулы и определение с примерами

b) для математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):  

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Гармонические колебания в физике - формулы и определение с примерами

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают: Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Рис. 7. Превращения энергии при колебаниях математического маятника
 

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Из закона сохранения механической энергии следует (рис. 8), что

Гармонические колебания в физике - формулы и определение с примерами(1)

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами    (2)

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину маятника l и амплитуду колебаний А.

Гармонические колебания в физике - формулы и определение с примерами

Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из треугольника KCD на рисунке 8 находим

Гармонические колебания в физике - формулы и определение с примерами

Отсюда

Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение для Гармонические колебания в физике - формулы и определение с примерами в формулу I (2), получим

Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения для Гармонические колебания в физике - формулы и определение с примерами и Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение Гармонические колебания в физике - формулы и определение с примерами, модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами— модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Гармонические колебания в физике - формулы и определение с примерами

Отсюда можно вывести выражение для модуля скорости Гармонические колебания в физике - формулы и определение с примерами груза в точке с

координатой х:    

Гармонические колебания в физике - формулы и определение с примерами

Так как Гармонические колебания в физике - формулы и определение с примерами

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол Гармонические колебания в физике - формулы и определение с примерами (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю Гармонические колебания в физике - формулы и определение с примерами то из закона сохранения механической энергии следует (см. рис. 10), что Гармонические колебания в физике - формулы и определение с примерами т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину Гармонические колебания в физике - формулы и определение с примерами маятника и амплитуду Гармонические колебания в физике - формулы и определение с примерами колебаний. Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из Гармонические колебания в физике - формулы и определение с примерами (см. рис. 10) находим:
Гармонические колебания в физике - формулы и определение с примерами

или Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение (3) для Гармонические колебания в физике - формулы и определение с примерами в формулу (2), получим:
Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения (3) для Гармонические колебания в физике - формулы и определение с примерами и (4) для Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении
Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

Гармонические колебания в физике - формулы и определение с примерами

В крайних положениях, когда Гармонические колебания в физике - формулы и определение с примерами модуль скорости маятника Гармонические колебания в физике - формулы и определение с примерами и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда Гармонические колебания в физике - формулы и определение с примерами вся энергия пружинного маятника переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

Гармонические колебания в физике - формулы и определение с примерами

С учетом выражений для координаты Гармонические колебания в физике - формулы и определение с примерами и проекции скорости груза Гармонические колебания в физике - формулы и определение с примерами а также для Гармонические колебания в физике - формулы и определение с примерами находим его потенциальную энергию Гармонические колебания в физике - формулы и определение с примерами и кинетическую энергию Гармонические колебания в физике - формулы и определение с примерами в произвольный момент времени 

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, начальное смещение Гармонические колебания в физике - формулы и определение с примерами определяет начальную потенциальную, а начальная скорость Гармонические колебания в физике - формулы и определение с примерами определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Гармонические колебания в физике - формулы и определение с примерами

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние Гармонические колебания в физике - формулы и определение с примерами см и при прохождении положения равновесия достигает скорости, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите период Гармонические колебания в физике - формулы и определение с примерами колебании маятника.
Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение

По закону сохранения механической энергии

Гармонические колебания в физике - формулы и определение с примерами

Отсюда: 

Гармонические колебания в физике - формулы и определение с примерами
Ответ: Гармонические колебания в физике - формулы и определение с примерами

Пример №2

Груз массой Гармонические колебания в физике - формулы и определение с примерами г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Гармонические колебания в физике - формулы и определение с примерами Его смешают на расстояние Гармонические колебания в физике - формулы и определение с примерами см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите потенциальную Гармонические колебания в физике - формулы и определение с примерами и кинетическую Гармонические колебания в физике - формулы и определение с примерами энергию груза в начальный момент времени. Запишите кинематический закон движения груза.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение Потенциальная энергия груза:
Гармонические колебания в физике - формулы и определение с примерами
Кинетическая энергия груза:
Гармонические колебания в физике - формулы и определение с примерами

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда
Гармонические колебания в физике - формулы и определение с примерами
Циклическая частота:
Гармонические колебания в физике - формулы и определение с примерами
В начальный момент времени Гармонические колебания в физике - формулы и определение с примерами координата груза Гармонические колебания в физике - формулы и определение с примерами Отсюда начальная фаза:
Гармонические колебания в физике - формулы и определение с примерами
Тогда закон гармонических колебаний имеет вид (рис. 14):

Гармонические колебания в физике - формулы и определение с примерами

Ответ: Гармонические колебания в физике - формулы и определение с примерамиГармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

Амплитуда – максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении, т.е максимальное отклонение маятника от положения равновесия.

Математический маятник – классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

φ¨+ω20φ=0 (1),φ¨+ω02φ=0 (1),

гдеφφ– угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функцияφ(t):φ(t):

φ(t)=φ0cos(ω0t+α)(2),φ(t)=φ0cos⁡(ω0t+α)(2),

гдеαα– начальная фаза колебаний;φ0φ0– амплитуда колебаний;ω0ω0– циклическая частота.

Колебания гармонического осциллятора – это пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Опубликовано 21 ноября, 2019

Добавить комментарий