Как найти амплитуду колебаний через скорость

Как обозначается амплитуда колебаний? Как найти амплитуду?

Начиная с седьмого класса в школах начинают преподавать такую тему, как “Механические колебания”. Начиная с ОГЭ и заканчивая ЕГЭ, эта тема прослеживается во многих экзаменах и вступительных испытаниях. Важной частью ее является изучение понятия амплитуды колебаний. Поэтому для начала ознакомимся с тем, что такое амплитуда колебаний и как обозначается амплитуда колебаний в физике, ведь со временем многое забывается, а именно данной переменной почему-то во многих школах уделяют меньше всего внимания.

Что такое амплитуда колебаний?

Вам будет интересно: Изомеры Пентена: строение, применение, угроза здоровью.

Амплитуда колебаний – это максимально возможное отклонение или смещение величины в большую или меньшую сторону от положения равновесия или от среднего значения. К примеру, для пружинного маятника положение равновесия – это покоящийся на пружине груз, а когда он начинает двигаться, то обретает определенную амплитуду, которая определяется растяжением или сжатием пружины.

Для математического же маятника немного проще – максимальное отклонения груза от положения покоя – это и есть амплитуда колебаний.

В то время как амплитуда колебаний радиоволн считается именно по отклонению от среднего значения.

Теперь перейдем к тому, какой буквой обозначается амплитуда колебаний.

Обозначение

В седьмом классе детей приучают обозначать амплитуду колебаний простой буквой “А”. Например: А=4 см, то есть амплитуда равна четырем сантиметрам.

Но уже в восьмом классе ученики изучают такое понятие, как механическая работа, и именно она в физике обозначается буквой “А”. Ученики начинают путаться в этих значениях, и к 10-11-у классу не имеют четкого представления о том, как обозначается амплитуда колебаний в физике.

В случае с пружинными и математическими маятниками лучше всего записывать амплитуду через максимальные значения. То есть Хмакс. означает максимальное отклонения от положения равновесия. Например Хмакс.=10 см, то есть пружина, как вариант, растянется максимум на 10 см. Это и будет амплитудой колебаний.

В 11-м классе выпускники изучают электромагнитные колебания. И там встречаются колебания заряда, напряжения и силы тока. Для того чтобы записать амплитуду напряжения, принято обозначать ее как максимальное значение. Для заряда и прочих величин соответственно.

Как найти амплитуду колебаний?

Обычно в задачах на нахождение амплитуды представлен график, подобный тому, что нарисован на картинке выше. В таком случае амплитудой будет являться максимальное значение по вертикальной оси Y. Амплитуда показано красной чертой.

Например, на данном рисунке изображен график колебаний математического маятника.

Зная, что амплитуда колебаний математического маятника – это максимальное удаление от положение равновесия, можем определить, что максимальное значение Х=0,3 см.

Найти амплитуду с помощью вычислений можно следующими способами:

1. Если груз совершает гармонические колебания и в задаче известны путь, который проходит тело, и количество колебаний, то амплитуда находится как отношение пути к количеству колебаний, умноженному на 4.

2. Если в задаче дан математический маятник, то при известных максимальной скорости и длине нити можно найти амплитуду, которая будет равна произведению максимальной скорости на квадратный корень из отношения длины к ускорению свободного падения. Эта формула похожа на формулу периода математического маятника.

Только вместо 2п используется максимальная скорость.

В уравнениях же амплитудой является все то, что записано до косинуса, синуса или переменной омеги.

Заключение

В этой статье было сказано о том, как обозначается амплитуда колебаний и как она находится. Данная тема является лишь малой долей большого раздела колебательных процессов, но это не снижает ее важности. Ведь не понимая, что такое амплитуда, невозможно работать с графиками правильно и решать уравнения.

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

I. Механика

Тестирование онлайн

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия – достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) – это первая производная x(t). А зависимость a(t) – это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.

[spoiler title=”источники:”]

http://skysmart.ru/articles/physics/garmonicheskie-kolebaniya

http://fizmat.by/kursy/kolebanija_volny/garmonicheskoe

[/spoiler]

Амплитуда скорости груза, теория и онлайн калькуляторы

Амплитуда скорости груза

Скорость груза пружинного маятника

Рассмотрим пружинный маятник, который представляет собой груз массой $m$, подвешенный на пружине, которую считают абсолютно упругой (ее коэффициент упругости равен $k$). Пусть груз движется вертикально, движения происходят под воздействием силы упругости пружины и силы тяжести, если система выведена из состояния равновесия и предоставлена самой себе. Массу пружины считаем малой в сравнении с массой груза. Начало отсчета поместим на оси X (ось направлена вниз) в точке равновесия груза.

Пружинный маятник является примером гармонического осциллятора. Колебания гармонического осциллятора служат важным примером периодического движения и являются моделью во многих задачах физики. Колебания такого груза можно считать гармоническими и описывать при помощи уравнения:

[xleft(tright)=A{cos left({omega }_0t+alpha right)left(1right), }]

где $xleft(tright)$ – смещение груза от положения равновесия в момент времени ($t$); ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$- амплитуда колебаний; ${(omega }_0t+alpha )$ – фаза колебаний; $alpha $ – начальная фаза колебаний.

Скорость колебаний груза при этом найдем как:

[frac{dx}{dt}=-A{omega }_0{sin left({omega }_0t+alpha right)left(2right). }]

Амплитудой скорости колебаний груза при этом является величина равная:

[{left(frac{dx}{dt}right)}_{max}=A{omega }_0left(3right).]

Для пружинного маятника амплитуда колебаний скорости груза равна:

[{left(frac{dx}{dt}right)}_{max}=Asqrt{frac{k}{m}}left(4right).]

Амплитуда скорости колебаний математического и физического маятников

Будем считать математический маятник шариком (грузом), подвешенным на длинной невесомой и нерастяжимой нити. Математический маятник является примером гармонического осциллятора, совершающим колебания, которые описывает уравнение:

[ddot{varphi }+{omega }^2_0varphi =0 left(5right).]

Решением уравнения (5) является выражение:

[varphi ={varphi }_0{cos left({omega }_0t+alpha right)left(6right), }]

где $varphi $ – угол отклонения нити от положения равновесия, $alpha $ – начальная фаза колебаний; ${varphi }_0$ – амплитуда колебаний; ${omega }_0=sqrt{frac{g}{l}}$ – циклическая частота колебаний.

Амплитудой скорости колебаний груза на нити в данном случае является величина равная:

[{left(frac{dvarphi }{dt}right)}_{max}={varphi }_0{omega }_0left(7right).]

Для математического маятника амплитуда скорости колебаний груза равна:

[{left(frac{dvarphi }{dt}right)}_{max}={varphi }_0sqrt{frac{g}{l}}left(8right).]

Примеры задач на амплитуду скорости груза

Пример 1

Задание. Колебательная система представляет собой груз, массы $m, $подвешенный на упругой пружине (рис.1). Смещение груза вдоль оси X изменяется по закону: $x(t)=2{cos (10 t)(м) }.$ Чему равно максимальное значение кинетической энергии груза ($E_{k max}$)?

Амплитуда скорости груза, пример 1

Решение. Кинетическую энергию груза можно найти и определения:

[E_{k }=frac{m{(frac{dx}{dt})}^2}{2} left(1.1right).]

Из уравнения колебаний груза найдем уравнение изменения его скорости:

[frac{dx}{dt}=frac{d}{dt}left(2{cos left(10 tright) }right)=-20{sin left(10 tright)left(frac{м}{с}right)(1.2). }]

Используя выражение (1.2) получим уравнение изменения кинетической энергии в виде:

[E_{k }=frac{m}{2}{(20{sin (10t) })}^2=frac{400m}{2}{sin}^2left(10tright)left(1.3right).]

Из выражения (1.3) следует, что максимальное значение кинетической энергии (ее амплитуда), учитывая, что ${sin}^2left(10tright)le 1$ равно:

[E_{k max}=200cdot mleft(Джright).]

Ответ. $E_{k max}=200cdot m$ Дж

   

Пример 2

Задание. Скорость колебаний груза на нити (математический маятник) изменяется в соответствии с гармоническим законом: $frac{dvarphi }{dt}(t)=5{sin left(2pi tright) }$. Чему равны амплитуда скорости амплитуда угла отклонения ${varphi }_0$? Запишите уравнение $varphi (t)$ для этих колебаний.textit{}

Решение. Амплитуду скорости изменения угла отклонения мы видим непосредственно в уравнении:

[frac{dvarphi }{dt}(t)=5{sin left(2pi tright)left(2.1right). }]

Она равна:

[{left(frac{dvarphi }{dt}right)}_{max}=5 .]

Амплитуду угла отклонения найдем, используя соотношение:

[{left(frac{dvarphi }{dt}right)}_{max}={varphi }_0{omega }_0left(2.2right),]

где ${omega }_0=2pi $ исходя из уравнения (2.1). Получаем:

[{varphi }_0=frac{{left(frac{dvarphi }{dt}right)}_{max}}{{omega }_0}=frac{5}{2pi } left(2.3right).]

Уравнение $varphi (t)$, учитывая (2.3) будет иметь вид:

[varphi left(tright)=-frac{5}{2pi }{cos left(2pi tright) }.]

Ответ. 1) ${left(frac{dvarphi }{dt}right)}_{max}=5. 2) {varphi }_0=frac{5}{2pi }$. 3) $varphi left(tright)=-frac{5}{2pi }{cos left(2pi tright) }$

   

Читать дальше: виды равновесия.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Уравнение амплитуды скорости и амплитуды ускорения

• Т — период колебаний — минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

• ω0 — циклическая (круговая) частота — число полных колебаний за 2π секунд:

Частота и период гармонических колебаний не зависят от амплитуды. Изменяя амплитуду колебаний груза на пружине, мы не изменяем частоту колебаний этой системы.

Колебания характеризуются не только смещением, но и скоростью vx, и ускорением ax. Если смещение описывается уравнением x = A cos(ω0t + φ), то, по определению, .

В этих уравнениях vm0A — амплитуда скорости; am0 2 A — амплитуда ускорения.

Из уравнений (2.1.5) и (2.1.6) видно, что скорость и ускорение также являются гармоническими колебаниями.

2.1.3. Графики смещения скорости и ускорения

Параметры колебаний запишем в виде системы уравнений:

Из этой системы уравнений можно сделать следующие выводы:

• скорость колебаний тела максимальна и по абсолютной величине равна амплитуде скорости в момент прохождения через положение

Гармонические колебания.

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.

Например, в случае механических гармонических колебаний:.

В этих формулах ω – частота колебания, xm – амплитуда колебания, φ0 и φ0 – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ0’ = φ0 +π/2 полностью совпадают.

Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0 смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ0’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=хm, следовательно, удобнее пользоваться функцией cos и φ0=0.

Выражение, стоящее под знаком cos или sin, наз. фазой колебания: .

Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.

Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).

Скорость и ускорение при гармонических колебаниях.

Согласно определению скорости, скорость – это производная от координаты по времени

Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на π/2.

Величина — максимальная скорость колебательного движения (амплитуда колебаний скорости).

Следовательно, для скорости при гармоническом колебании имеем: , а для случая нулевой начальной фазы (см. график).

Согласно определению ускорения, ускорение – это производная от скорости по времени:

— вторая производная от координаты по времени. Тогда: .

Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на π/2 и колебания смещения на π (говорят, что колебания происходят в противофазе).

Величина

— максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: , а для случая нулевой начальной фазы: (см. график).

Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).

Сравним выражения для смещения и ускорения при гармонических колебаниях:

и .

Можно записать:

т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.

Часто бывает удобно записывать уравнения для колебаний в виде: ,

где T – период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: . Аналогично для скорости и ускорения.

I. Механика

Тестирование онлайн

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия — достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) — это первая производная x(t). А зависимость a(t) — это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.

источники:

http://www.eduspb.com/node/1780

http://fizmat.by/kursy/kolebanija_volny/garmonicheskoe

смещение точки от положения равновесия при ее гармонических колебаниях

Зависимость
скорости точки, совершающей гармонические колебаний, от времени в единицах СИ
определяется уравнением
v(t) = 1,2 cos 50t
(м/с). Определите амплитуду смещения точки.

Решение.

Смещение
точки от положения равновесия при ее гармонических колебаниях вдоль оси
OX описывается следующей формулой.

A – амплитуда смещения,
ω – циклическая частота колебаний,
j0 – их начальная фаза. Проекция скорости точки тогда равна v(t).

В
этой формуле
vmax =
амплитуда скорости точки. Отсюда
A = vmax/ω.

Сравнивая
общее и заданные в условии задачи выражения для
v(t), видим, что vmap
= 1,2 м/с, ω = 50 рад/с. Тогда
A = 1,2/50 м = 2,4•10-2
м = 24 мм.

Ответ:
A
=
24 мм.

Источник: Подготовка к тестированию по физике. Шепелевич. В. Г.

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – Гармонические колебания в физике - формулы и определение с примерами, а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние Гармонические колебания в физике - формулы и определение с примерами и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

Гармонические колебания в физике - формулы и определение с примерами

С течением времени смещение груза уменьшается относительно Гармонические колебания в физике - формулы и определение с примерами, но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение (Гармонические колебания в физике - формулы и определение с примерами) равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде (Гармонические колебания в физике - формулы и определение с примерами):

Гармонические колебания в физике - формулы и определение с примерами

здесь: Гармонические колебания в физике - формулы и определение с примерами– циклическая частота, зависящая от параметров колеблющихся систем, Гармонические колебания в физике - формулы и определение с примерами – начальная фаза, (Гармонические колебания в физике - формулы и определение с примерами) фаза колебания с течением времени Гармонические колебания в физике - формулы и определение с примерами.
Из математики известно, что Гармонические колебания в физике - формулы и определение с примерами поэтому формулу (5.2.) можно записать в виде

Гармонические колебания в физике - формулы и определение с примерами

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений. 

Основные параметры гармонических колебаний

a) период колебания Гармонические колебания в физике - формулы и определение с примерами – время одного полного колебания:

Гармонические колебания в физике - формулы и определение с примерами)

б) частота колебания Гармонические колебания в физике - формулы и определение с примерами – количество колебаний, совершаемых за 1 секунду:

Гармонические колебания в физике - формулы и определение с примерами

Единица Гармонические колебания в физике - формулы и определение с примерами
c) циклическая частота Гармонические колебания в физике - формулы и определение с примерами – количество колебаний за Гармонические колебания в физике - формулы и определение с примерами секунд:

Гармонические колебания в физике - формулы и определение с примерами

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Гармонические колебания в физике - формулы и определение с примерами

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются. 
Это подтверждается следующими графиками и уравнениями:

Гармонические колебания в физике - формулы и определение с примерами

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Найти:

Гармонические колебания в физике - формулы и определение с примерами

Формула и решение:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

Гармонические колебания в физике - формулы и определение с примерами

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения Гармонические колебания в физике - формулы и определение с примерами сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где Гармонические колебания в физике - формулы и определение с примерами – масса шарика, закрепленного на пружине, Гармонические колебания в физике - формулы и определение с примерами — проекция ускорения шарика вдоль оси Гармонические колебания в физике - формулы и определение с примерами — жесткость пружины, Гармонические колебания в физике - формулы и определение с примерами -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами– постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения – известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение Гармонические колебания в физике - формулы и определение с примерами соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения пружинного маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой Гармонические колебания в физике - формулы и определение с примерами являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Гармонические колебания в физике - формулы и определение с примерами

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь Гармонические колебания в физике - формулы и определение с примерами фаза колебания, Гармонические колебания в физике - формулы и определение с примерами — начальная фаза. Единица измерения фазы в СИ – радиан (1 рад). Фазу также можно измерять в градусах: Гармонические колебания в физике - формулы и определение с примерами Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы Гармонические колебания в физике - формулы и определение с примерами В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами или Гармонические колебания в физике - формулы и определение с примерами

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника: 

Гармонические колебания в физике - формулы и определение с примерами

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник – это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Гармонические колебания в физике - формулы и определение с примерами

Сила тяжести Гармонические колебания в физике - формулы и определение с примерами действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Гармонические колебания в физике - формулы и определение с примерами Однако, если вывести маятник из состояния равновесия, сместив его на малый угол Гармонические колебания в физике - формулы и определение с примерами в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити Гармонические колебания в физике - формулы и определение с примерами и перпендикулярная нити Гармонические колебания в физике - формулы и определение с примерами Сила натяжения Гармонические колебания в физике - формулы и определение с примерами и составляющая силы тяжести Гармонические колебания в физике - формулы и определение с примерами уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей Гармонические колебания в физике - формулы и определение с примерами “пытающейся” вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой Гармонические колебания в физике - формулы и определение с примерами в проекциях на ось ОХ:

Гармонические колебания в физике - формулы и определение с примерами

Приняв во внимание, что:

Гармонические колебания в физике - формулы и определение с примерами

Для уравнения движения математического маятника получим:

Гармонические колебания в физике - формулы и определение с примерами

Где Гармонические колебания в физике - формулы и определение с примерами — длина математического маятника (нити), Гармонические колебания в физике - формулы и определение с примерами – ускорение свободного падения, Гармонические колебания в физике - формулы и определение с примерами — амплитуда колебания.

Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение Гармонические колебания в физике - формулы и определение с примерами также соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения математического маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Гармонические колебания в физике - формулы и определение с примерами

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Гармонические колебания в физике - формулы и определение с примерами

Так как скорость является первой производной смещения (координат) по времени, то:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на Гармонические колебания в физике - формулы и определение с примерами (а).

Гармонические колебания в физике - формулы и определение с примерами

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Так как ускорение является первой производной скорости по времени, то получим:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на Гармонические колебания в физике - формулы и определение с примерами а колебания смещения на

Гармонические колебания в физике - формулы и определение с примерами (см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях 

Гармонические колебания в физике - формулы и определение с примерами

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения Гармонические колебания в физике - формулы и определение с примерами имеет максимальное значение:

Гармонические колебания в физике - формулы и определение с примерами

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Гармонические колебания в физике - формулы и определение с примерами

Кинетическая энергия системы, наоборот, в точке возвращения минимальна Гармонические колебания в физике - формулы и определение с примерами а в точке равновесия максимальна: 

Гармонические колебания в физике - формулы и определение с примерами

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Гармонические колебания в физике - формулы и определение с примерами

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени Гармонические колебания в физике - формулы и определение с примерами остается постоянной (трение не учитывается):

a) для пружинного маятника:

Гармонические колебания в физике - формулы и определение с примерами

b) для математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):  

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Гармонические колебания в физике - формулы и определение с примерами

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают: Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Рис. 7. Превращения энергии при колебаниях математического маятника
 

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Из закона сохранения механической энергии следует (рис. 8), что

Гармонические колебания в физике - формулы и определение с примерами(1)

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами    (2)

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину маятника l и амплитуду колебаний А.

Гармонические колебания в физике - формулы и определение с примерами

Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из треугольника KCD на рисунке 8 находим

Гармонические колебания в физике - формулы и определение с примерами

Отсюда

Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение для Гармонические колебания в физике - формулы и определение с примерами в формулу I (2), получим

Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения для Гармонические колебания в физике - формулы и определение с примерами и Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение Гармонические колебания в физике - формулы и определение с примерами, модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами— модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Гармонические колебания в физике - формулы и определение с примерами

Отсюда можно вывести выражение для модуля скорости Гармонические колебания в физике - формулы и определение с примерами груза в точке с

координатой х:    

Гармонические колебания в физике - формулы и определение с примерами

Так как Гармонические колебания в физике - формулы и определение с примерами

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол Гармонические колебания в физике - формулы и определение с примерами (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю Гармонические колебания в физике - формулы и определение с примерами то из закона сохранения механической энергии следует (см. рис. 10), что Гармонические колебания в физике - формулы и определение с примерами т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину Гармонические колебания в физике - формулы и определение с примерами маятника и амплитуду Гармонические колебания в физике - формулы и определение с примерами колебаний. Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из Гармонические колебания в физике - формулы и определение с примерами (см. рис. 10) находим:
Гармонические колебания в физике - формулы и определение с примерами

или Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение (3) для Гармонические колебания в физике - формулы и определение с примерами в формулу (2), получим:
Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения (3) для Гармонические колебания в физике - формулы и определение с примерами и (4) для Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении
Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

Гармонические колебания в физике - формулы и определение с примерами

В крайних положениях, когда Гармонические колебания в физике - формулы и определение с примерами модуль скорости маятника Гармонические колебания в физике - формулы и определение с примерами и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда Гармонические колебания в физике - формулы и определение с примерами вся энергия пружинного маятника переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

Гармонические колебания в физике - формулы и определение с примерами

С учетом выражений для координаты Гармонические колебания в физике - формулы и определение с примерами и проекции скорости груза Гармонические колебания в физике - формулы и определение с примерами а также для Гармонические колебания в физике - формулы и определение с примерами находим его потенциальную энергию Гармонические колебания в физике - формулы и определение с примерами и кинетическую энергию Гармонические колебания в физике - формулы и определение с примерами в произвольный момент времени 

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, начальное смещение Гармонические колебания в физике - формулы и определение с примерами определяет начальную потенциальную, а начальная скорость Гармонические колебания в физике - формулы и определение с примерами определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Гармонические колебания в физике - формулы и определение с примерами

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние Гармонические колебания в физике - формулы и определение с примерами см и при прохождении положения равновесия достигает скорости, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите период Гармонические колебания в физике - формулы и определение с примерами колебании маятника.
Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение

По закону сохранения механической энергии

Гармонические колебания в физике - формулы и определение с примерами

Отсюда: 

Гармонические колебания в физике - формулы и определение с примерами
Ответ: Гармонические колебания в физике - формулы и определение с примерами

Пример №2

Груз массой Гармонические колебания в физике - формулы и определение с примерами г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Гармонические колебания в физике - формулы и определение с примерами Его смешают на расстояние Гармонические колебания в физике - формулы и определение с примерами см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите потенциальную Гармонические колебания в физике - формулы и определение с примерами и кинетическую Гармонические колебания в физике - формулы и определение с примерами энергию груза в начальный момент времени. Запишите кинематический закон движения груза.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение Потенциальная энергия груза:
Гармонические колебания в физике - формулы и определение с примерами
Кинетическая энергия груза:
Гармонические колебания в физике - формулы и определение с примерами

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда
Гармонические колебания в физике - формулы и определение с примерами
Циклическая частота:
Гармонические колебания в физике - формулы и определение с примерами
В начальный момент времени Гармонические колебания в физике - формулы и определение с примерами координата груза Гармонические колебания в физике - формулы и определение с примерами Отсюда начальная фаза:
Гармонические колебания в физике - формулы и определение с примерами
Тогда закон гармонических колебаний имеет вид (рис. 14):

Гармонические колебания в физике - формулы и определение с примерами

Ответ: Гармонические колебания в физике - формулы и определение с примерамиГармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

Добавить комментарий