Как найти амплитуду колебаний шарика

Задачи на Механические колебания с решениями

Формулы, используемые на уроках «Задачи на Механические колебания».

Название величины

Обозначение

Единица измерения

Формула

Амплитуда колебаний

A

м

Период колебаний

T

с

T = 1 / v ;

T = t / N

Частота колебаний

v

Гц

v = 1 / T ;

v = N / t

Число колебаний за какое-то время

N

N = t /T ;

N = vt

Время

t

с

t = NT ;

t = N / v

Циклическая частота колебаний

 ω

Гц

Период колебаний пружинного маятника

T

c

Период колебаний математического маятника

T

c

Уравнение гармонических колебаний

x(t) = Asin(ωt+φ0)


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Шарик на нити совершил 60 колебаний за 2 мин. Определите период и частоту колебаний шарика.


Задача № 2.
 На рисунке изображен график зависимости координаты от времени колеблющегося тела.

По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний; 4) запишите уравнение координаты.


Задача № 3.
 Амплитуда незатухающих колебаний точки струны 2 мм, частота колебаний 1 кГц. Какой путь пройдет точка струны за 0,4 с? Какое перемещение совершит эта точка за один период колебаний?


Задача № 4.
 Пользуясь графиком изменения координаты колеблющегося тела от времени, определить амплитуду, период и частоту колебаний. Записать уравнение зависимости x(t) и найти координату тела через 0,1 и 0,2 с после начала отсчета времени.


Задача № 5.
 Какова длина математического маятника, совершающего гармонические колебания с частотой 0,5 Гц на поверхности Луны? Ускорение свободного падения на поверхности Луны 1,6 м/с2.


Задача № 6.
 Груз массой 400 г совершает колебания на пружине с жесткостью 250 Н/м. Амплитуда колебаний 15 см. Найти полную механическую энергию колебаний и наибольшую скорость движения груза.


Задача № 7.
 Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 650 м со скоростью 13 м/с?


Задача № 8.
 Гармоническое колебание описывается уравнением 
 Чему равны циклическая частота колебаний, линейная частота колебаний, начальная фаза колебаний?


Задача № 9.
 Математический маятник длиной 0,99 м совершает 50 полных колебаний за 1 мин 40 с. Чему равно ускорение свободного падения в данном месте на поверхности Земли? (Можно принять π2 = 9,87.)


Задача № 10.
  ОГЭ
 Как и во сколько раз изменится период колебаний пружинного маятника, если шарик на пружине заменить другим шариком, радиус которого вдвое меньше, а плотность — в два раза больше?


Задача № 11.
   ЕГЭ
 Два математических маятника за одно и то же время совершают — первый N1 = 30, а второй — N2 = 40 колебаний. Какова длина каждого из них, если разность их длин Δl = 7 см?


Краткая теория для решения Задачи на Механические колебания.

ЗАДАЧИ на Механические колебания


Это конспект по теме «ЗАДАЧИ на Механические колебания». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на 
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

ω = √(k/m) = 20 Гц.
Из ЗСЭ: Еполн = kx^2/2 + mv^2/2 = kx^2/2 + kv^2/2ω^2 = kA^2/2. Отсюда А = 0,4 м = 40 см.
x = A cos (ωt + φ0)
при t = 0 x = – 20 см, следовательно: -20 = 40 cos φ0 , cos φ0 = -1/2, φ0 = 2π/3
Окончательно: x = 40 cos (20t + 2π/3), где амплитуда А выражена в сантиметрах

И все-таки она вертится! При всем моем уважении к г-ну wusan: правильное выражение для кинетической энергии mv^2/2 = kv^2/2w^2

спасибо.очень благодарен

(30 Дек ’13 13:22)
Олег

А чем неверное, если не секрет? Амплитуда определяется запасом энергии, сообщенным колебательной системе. С начальной фазой тоже вроде не наврал.

(30 Дек ’13 23:34)
zolton

Скорость будет меняться по закону v = x’ = -Aw sin (wt + Ф0)
При t = 0 v = -0,420sin 2пи/3 = -7 м/сек. И здесь ошибки не вижу.

(30 Дек ’13 23:38)
zolton

ОК,
Принимая положение равновесия за нулевой уровень потенциальной энергии, получаем, что полная энергия системы шарик – пружина в начальный момент времени E = kS^2/2 + mv^2/2. Поскольку предполагается, что система консервативная, полная механическая энергия системы сохраняется. При максимальном отклонении шарика от положения равновесия его скорость (и, следовательно, кинетическая энергия) равна нулю, полная энергия Е = kA^2/2, где А – амплитуда. Приравнивая, и учитывая, что w^2 = k/m, находим амплитуду.
Не пугайте меня.

(30 Дек ’13 23:58)
zolton

Пардон, масса дана, поэтому А находится сразу из уравнения:
kS^2/2 + mv^2/2 = kA^2/2.

Начиная с седьмого класса в школах начинают преподавать такую тему, как “Механические колебания”. Начиная с ОГЭ и заканчивая ЕГЭ, эта тема прослеживается во многих экзаменах и вступительных испытаниях. Важной частью ее является изучение понятия амплитуды колебаний. Поэтому для начала ознакомимся с тем, что такое амплитуда колебаний и как обозначается амплитуда колебаний в физике, ведь со временем многое забывается, а именно данной переменной почему-то во многих школах уделяют меньше всего внимания.

Что такое амплитуда колебаний?

Изомеры Пентена: строение, применение, угроза здоровью.Вам будет интересно:Изомеры Пентена: строение, применение, угроза здоровью.

Амплитуда колебаний – это максимально возможное отклонение или смещение величины в большую или меньшую сторону от положения равновесия или от среднего значения. К примеру, для пружинного маятника положение равновесия – это покоящийся на пружине груз, а когда он начинает двигаться, то обретает определенную амплитуду, которая определяется растяжением или сжатием пружины.

Для математического же маятника немного проще – максимальное отклонения груза от положения покоя – это и есть амплитуда колебаний.

В то время как амплитуда колебаний радиоволн считается именно по отклонению от среднего значения.

Теперь перейдем к тому, какой буквой обозначается амплитуда колебаний.

Обозначение

В седьмом классе детей приучают обозначать амплитуду колебаний простой буквой “А”. Например: А=4 см, то есть амплитуда равна четырем сантиметрам.

Но уже в восьмом классе ученики изучают такое понятие, как механическая работа, и именно она в физике обозначается буквой “А”. Ученики начинают путаться в этих значениях, и к 10-11-у классу не имеют четкого представления о том, как обозначается амплитуда колебаний в физике.

В случае с пружинными и математическими маятниками лучше всего записывать амплитуду через максимальные значения. То есть Хмакс. означает максимальное отклонения от положения равновесия. Например Хмакс.=10 см, то есть пружина, как вариант, растянется максимум на 10 см. Это и будет амплитудой колебаний.

В 11-м классе выпускники изучают электромагнитные колебания. И там встречаются колебания заряда, напряжения и силы тока. Для того чтобы записать амплитуду напряжения, принято обозначать ее как максимальное значение. Для заряда и прочих величин соответственно.

Как найти амплитуду колебаний?

График колебаний

Обычно в задачах на нахождение амплитуды представлен график, подобный тому, что нарисован на картинке выше. В таком случае амплитудой будет являться максимальное значение по вертикальной оси Y. Амплитуда показано красной чертой.

Например, на данном рисунке изображен график колебаний математического маятника.

график с цифрами

Зная, что амплитуда колебаний математического маятника – это максимальное удаление от положение равновесия, можем определить, что максимальное значение Х=0,3 см.

Найти амплитуду с помощью вычислений можно следующими способами:

1. Если груз совершает гармонические колебания и в задаче известны путь, который проходит тело, и количество колебаний, то амплитуда находится как отношение пути к количеству колебаний, умноженному на 4.

2. Если в задаче дан математический маятник, то при известных максимальной скорости и длине нити можно найти амплитуду, которая будет равна произведению максимальной скорости на квадратный корень из отношения длины к ускорению свободного падения. Эта формула похожа на формулу периода математического маятника.

формула периода

Только вместо 2п используется максимальная скорость.

В уравнениях же амплитудой является все то, что записано до косинуса, синуса или переменной омеги.

Заключение

В этой статье было сказано о том, как обозначается амплитуда колебаний и как она находится. Данная тема является лишь малой долей большого раздела колебательных процессов, но это не снижает ее важности. Ведь не понимая, что такое амплитуда, невозможно работать с графиками правильно и решать уравнения.

Автор:

Панкрат Ермаков

05-02-2019 22:50

Жду ваши вопросы и мнения в комментариях

Амплитуда колебаний – это максимальное значение отклонения от нулевой точки. В физике данный процесс анализируется в разных разделах. 

Он изучается при механических, звуковых и электромагнитных колебаниях. В перечисленных случаях амплитуда измеряется по-разному и по своим законам.

Амплитуда колебаний

Амплитудой колебания называют максимальную отдаленную точку нахождения тела от положения равновесия. В физике она обозначается буквой А и измеряется в метрах. 

За амплитудой можно наблюдать на простом примере пружинного маятника.

Пружинный маятник

 

В идеальном случае, когда игнорируется сопротивление воздушного пространства и трение пружинного устройства, устройство будет колебаться бесконечно. Описание движения выполняется с помощью функций cos и sin:

x(t) = A * cos(ωt + φ0) или x(t) = A * sin(ωt + φ0),

где 

  • величина А – это амплитуда свободных движений груза на пружине;

  • (ωt + φ0) – это фаза свободных колебаний, где ω – это циклическая частота, а φ0 – это начальная фаза, когда t = 0. 

002

В физике указанную формулу называют уравнением гармонических колебаний. Данное уравнение полностью раскрывает процесс, где маятник движется с определенной амплитудой, периодом и частотой. 

Период колебаний

Результаты лабораторных опытов показывают, что циклический период движения груза на пружине напрямую зависит от массы маятника и жесткости пружины, но не зависит от амплитуды движения. 

В физике период обозначают буквой Т и описывают формулами:

Период колебаний

Исходя из формул, период колебаний – это механические движения, повторяющиеся через определенный промежуток времени. Простыми словами периодом называют одно полное движение груза.

Частота колебаний

Под частотой колебаний следует понимать количество повторений движения маятника или прохождения волны. В разных разделах физики частота обозначается буквами ν, f или F. 

Данная величина описывается выражением:

v = n/t – количество колебаний за промежуток времени,

где 

  • n – это единица колебаний;

  • t – отрезок времени.

В Международной системе измерений частоту измеряют в Гц (Герцах). Она относится к точным измеряемым составляющим колебательного процесса. 

Например, наукой установлена частота вращения Солнца вокруг центра Вселенной. Она равна -1035 Гц при одинаковой скорости.

Циклическая частота

В физике циклическая и круговая частота имеют одинаковое значение. Данная величина еще называется угловой частотой. 

Циклическая частота

Обозначают ее буквой омега. Она равна числу собственных колебательных движений тела за 2π секунд времени:

ω = 2π/T = 2πν.

Данная величина нашла свое применение в радиотехнике и, исходя из математического расчета, имеет скалярную характеристику. Ее измерения проводят в радианах на секунду. С ее помощью значительно упрощаются расчеты процессов в радиотехнике. 

Например, резонансное значение угловой частоты колебательного контура рассчитывают по формуле:

WLC = 1/LC.

Тогда как обычная циклическая резонансная частота выражается:

VLC = 1/2π*√ LC.

В электрике под угловой частотой следует понимать число полных трансформаций ЭДС или число оборотов радиуса – вектора. Здесь ее обозначают буквой f.

Как определить амплитуду, период и частоту колебаний по графику

Для определения на графике составляющих колебательного механического процесса или, например, колебания температуры, нужно разобраться в терминах этого процесса. 

К ним относят:

  • расстояние испытываемого объекта от исходной точки – называют смещением и обозначают х;

  • наибольшее отклонение – амплитуда смещения А;

  • фаза колебания – определяет состояние колебательной системы в любой момент времени;

  • начальная фаза колебательного процесса – когда t = 0, то φ = φ0.

402

Из графика видно, что значение синуса и косинуса может меняться от -1 до +1. Значит, смещение х может быть равно –А и +А. Движение от –А до +А называют полным колебанием.

Построенный график четко показывает период и частоту колебаний. Стоить отметить, что фаза не воздействует на форму кривой, а только влияет на ее положение в заданный промежуток времени.

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – Гармонические колебания в физике - формулы и определение с примерами, а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние Гармонические колебания в физике - формулы и определение с примерами и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

Гармонические колебания в физике - формулы и определение с примерами

С течением времени смещение груза уменьшается относительно Гармонические колебания в физике - формулы и определение с примерами, но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение (Гармонические колебания в физике - формулы и определение с примерами) равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде (Гармонические колебания в физике - формулы и определение с примерами):

Гармонические колебания в физике - формулы и определение с примерами

здесь: Гармонические колебания в физике - формулы и определение с примерами– циклическая частота, зависящая от параметров колеблющихся систем, Гармонические колебания в физике - формулы и определение с примерами – начальная фаза, (Гармонические колебания в физике - формулы и определение с примерами) фаза колебания с течением времени Гармонические колебания в физике - формулы и определение с примерами.
Из математики известно, что Гармонические колебания в физике - формулы и определение с примерами поэтому формулу (5.2.) можно записать в виде

Гармонические колебания в физике - формулы и определение с примерами

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений. 

Основные параметры гармонических колебаний

a) период колебания Гармонические колебания в физике - формулы и определение с примерами – время одного полного колебания:

Гармонические колебания в физике - формулы и определение с примерами)

б) частота колебания Гармонические колебания в физике - формулы и определение с примерами – количество колебаний, совершаемых за 1 секунду:

Гармонические колебания в физике - формулы и определение с примерами

Единица Гармонические колебания в физике - формулы и определение с примерами
c) циклическая частота Гармонические колебания в физике - формулы и определение с примерами – количество колебаний за Гармонические колебания в физике - формулы и определение с примерами секунд:

Гармонические колебания в физике - формулы и определение с примерами

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Гармонические колебания в физике - формулы и определение с примерами

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются. 
Это подтверждается следующими графиками и уравнениями:

Гармонические колебания в физике - формулы и определение с примерами

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Найти:

Гармонические колебания в физике - формулы и определение с примерами

Формула и решение:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

Гармонические колебания в физике - формулы и определение с примерами

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения Гармонические колебания в физике - формулы и определение с примерами сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где Гармонические колебания в физике - формулы и определение с примерами – масса шарика, закрепленного на пружине, Гармонические колебания в физике - формулы и определение с примерами — проекция ускорения шарика вдоль оси Гармонические колебания в физике - формулы и определение с примерами — жесткость пружины, Гармонические колебания в физике - формулы и определение с примерами -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами– постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения – известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение Гармонические колебания в физике - формулы и определение с примерами соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения пружинного маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой Гармонические колебания в физике - формулы и определение с примерами являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Гармонические колебания в физике - формулы и определение с примерами

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь Гармонические колебания в физике - формулы и определение с примерами фаза колебания, Гармонические колебания в физике - формулы и определение с примерами — начальная фаза. Единица измерения фазы в СИ – радиан (1 рад). Фазу также можно измерять в градусах: Гармонические колебания в физике - формулы и определение с примерами Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы Гармонические колебания в физике - формулы и определение с примерами В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

Гармонические колебания в физике - формулы и определение с примерами или Гармонические колебания в физике - формулы и определение с примерами

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника: 

Гармонические колебания в физике - формулы и определение с примерами

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник – это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Гармонические колебания в физике - формулы и определение с примерами

Сила тяжести Гармонические колебания в физике - формулы и определение с примерами действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Гармонические колебания в физике - формулы и определение с примерами Однако, если вывести маятник из состояния равновесия, сместив его на малый угол Гармонические колебания в физике - формулы и определение с примерами в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити Гармонические колебания в физике - формулы и определение с примерами и перпендикулярная нити Гармонические колебания в физике - формулы и определение с примерами Сила натяжения Гармонические колебания в физике - формулы и определение с примерами и составляющая силы тяжести Гармонические колебания в физике - формулы и определение с примерами уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей Гармонические колебания в физике - формулы и определение с примерами “пытающейся” вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой Гармонические колебания в физике - формулы и определение с примерами в проекциях на ось ОХ:

Гармонические колебания в физике - формулы и определение с примерами

Приняв во внимание, что:

Гармонические колебания в физике - формулы и определение с примерами

Для уравнения движения математического маятника получим:

Гармонические колебания в физике - формулы и определение с примерами

Где Гармонические колебания в физике - формулы и определение с примерами — длина математического маятника (нити), Гармонические колебания в физике - формулы и определение с примерами – ускорение свободного падения, Гармонические колебания в физике - формулы и определение с примерами — амплитуда колебания.

Для данной колебательной системы отношение Гармонические колебания в физике - формулы и определение с примерами — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение Гармонические колебания в физике - формулы и определение с примерами также соответствует квадрату циклической частоты Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, уравнение движения математического маятника можно записать и так:

Гармонические колебания в физике - формулы и определение с примерами

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Гармонические колебания в физике - формулы и определение с примерами

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Гармонические колебания в физике - формулы и определение с примерами

Так как скорость является первой производной смещения (координат) по времени, то:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на Гармонические колебания в физике - формулы и определение с примерами (а).

Гармонические колебания в физике - формулы и определение с примерами

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Так как ускорение является первой производной скорости по времени, то получим:

Гармонические колебания в физике - формулы и определение с примерами

или

Гармонические колебания в физике - формулы и определение с примерами

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на Гармонические колебания в физике - формулы и определение с примерами а колебания смещения на

Гармонические колебания в физике - формулы и определение с примерами (см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях 

Гармонические колебания в физике - формулы и определение с примерами

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения Гармонические колебания в физике - формулы и определение с примерами имеет максимальное значение:

Гармонические колебания в физике - формулы и определение с примерами

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Гармонические колебания в физике - формулы и определение с примерами

Кинетическая энергия системы, наоборот, в точке возвращения минимальна Гармонические колебания в физике - формулы и определение с примерами а в точке равновесия максимальна: 

Гармонические колебания в физике - формулы и определение с примерами

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Гармонические колебания в физике - формулы и определение с примерами

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени Гармонические колебания в физике - формулы и определение с примерами остается постоянной (трение не учитывается):

a) для пружинного маятника:

Гармонические колебания в физике - формулы и определение с примерами

b) для математического маятника:

Гармонические колебания в физике - формулы и определение с примерами

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):  

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Гармонические колебания в физике - формулы и определение с примерами

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают: Гармонические колебания в физике - формулы и определение с примерами

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Рис. 7. Превращения энергии при колебаниях математического маятника
 

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Из закона сохранения механической энергии следует (рис. 8), что

Гармонические колебания в физике - формулы и определение с примерами(1)

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами    (2)

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину маятника l и амплитуду колебаний А.

Гармонические колебания в физике - формулы и определение с примерами

Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из треугольника KCD на рисунке 8 находим

Гармонические колебания в физике - формулы и определение с примерами

Отсюда

Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение для Гармонические колебания в физике - формулы и определение с примерами в формулу I (2), получим

Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения для Гармонические колебания в физике - формулы и определение с примерами и Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение Гармонические колебания в физике - формулы и определение с примерами, модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами— модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Гармонические колебания в физике - формулы и определение с примерами

Отсюда можно вывести выражение для модуля скорости Гармонические колебания в физике - формулы и определение с примерами груза в точке с

координатой х:    

Гармонические колебания в физике - формулы и определение с примерами

Так как Гармонические колебания в физике - формулы и определение с примерами

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол Гармонические колебания в физике - формулы и определение с примерами (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю Гармонические колебания в физике - формулы и определение с примерами то из закона сохранения механической энергии следует (см. рис. 10), что Гармонические колебания в физике - формулы и определение с примерами т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Гармонические колебания в физике - формулы и определение с примерами

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда найдем модуль максимальной скорости маятника:

Гармонические колебания в физике - формулы и определение с примерами

Высоту Гармонические колебания в физике - формулы и определение с примерами можно выразить через длину Гармонические колебания в физике - формулы и определение с примерами маятника и амплитуду Гармонические колебания в физике - формулы и определение с примерами колебаний. Если колебания малые, то Гармонические колебания в физике - формулы и определение с примерами Из Гармонические колебания в физике - формулы и определение с примерами (см. рис. 10) находим:
Гармонические колебания в физике - формулы и определение с примерами

или Гармонические колебания в физике - формулы и определение с примерами

Подставив выражение (3) для Гармонические колебания в физике - формулы и определение с примерами в формулу (2), получим:
Гармонические колебания в физике - формулы и определение с примерами

Подставляя выражения (3) для Гармонические колебания в физике - формулы и определение с примерами и (4) для Гармонические колебания в физике - формулы и определение с примерами в соотношение (1), находим:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении
Гармонические колебания в физике - формулы и определение с примерами

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

Гармонические колебания в физике - формулы и определение с примерами

В крайних положениях, когда Гармонические колебания в физике - формулы и определение с примерами модуль скорости маятника Гармонические колебания в физике - формулы и определение с примерами и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда Гармонические колебания в физике - формулы и определение с примерами вся энергия пружинного маятника переходит в кинетическую энергию груза:

Гармонические колебания в физике - формулы и определение с примерами

где Гармонические колебания в физике - формулы и определение с примерами — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

Гармонические колебания в физике - формулы и определение с примерами

С учетом выражений для координаты Гармонические колебания в физике - формулы и определение с примерами и проекции скорости груза Гармонические колебания в физике - формулы и определение с примерами а также для Гармонические колебания в физике - формулы и определение с примерами находим его потенциальную энергию Гармонические колебания в физике - формулы и определение с примерами и кинетическую энергию Гармонические колебания в физике - формулы и определение с примерами в произвольный момент времени 

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Гармонические колебания в физике - формулы и определение с примерами

Таким образом, начальное смещение Гармонические колебания в физике - формулы и определение с примерами определяет начальную потенциальную, а начальная скорость Гармонические колебания в физике - формулы и определение с примерами определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Гармонические колебания в физике - формулы и определение с примерами

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние Гармонические колебания в физике - формулы и определение с примерами см и при прохождении положения равновесия достигает скорости, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите период Гармонические колебания в физике - формулы и определение с примерами колебании маятника.
Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение

По закону сохранения механической энергии

Гармонические колебания в физике - формулы и определение с примерами

Отсюда: 

Гармонические колебания в физике - формулы и определение с примерами
Ответ: Гармонические колебания в физике - формулы и определение с примерами

Пример №2

Груз массой Гармонические колебания в физике - формулы и определение с примерами г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Гармонические колебания в физике - формулы и определение с примерами Его смешают на расстояние Гармонические колебания в физике - формулы и определение с примерами см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Гармонические колебания в физике - формулы и определение с примерами Определите потенциальную Гармонические колебания в физике - формулы и определение с примерами и кинетическую Гармонические колебания в физике - формулы и определение с примерами энергию груза в начальный момент времени. Запишите кинематический закон движения груза.

Дано:

Гармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами
Решение Потенциальная энергия груза:
Гармонические колебания в физике - формулы и определение с примерами
Кинетическая энергия груза:
Гармонические колебания в физике - формулы и определение с примерами

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Гармонические колебания в физике - формулы и определение с примерами

Отсюда
Гармонические колебания в физике - формулы и определение с примерами
Циклическая частота:
Гармонические колебания в физике - формулы и определение с примерами
В начальный момент времени Гармонические колебания в физике - формулы и определение с примерами координата груза Гармонические колебания в физике - формулы и определение с примерами Отсюда начальная фаза:
Гармонические колебания в физике - формулы и определение с примерами
Тогда закон гармонических колебаний имеет вид (рис. 14):

Гармонические колебания в физике - формулы и определение с примерами

Ответ: Гармонические колебания в физике - формулы и определение с примерамиГармонические колебания в физике - формулы и определение с примерами

Гармонические колебания в физике - формулы и определение с примерами

  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

Добавить комментарий