Как найти амплитуду период частоту циклическую частоту

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Механические колебания.

  • Гармонические колебания.

  • Уравнение гармонических колебаний.

  • Пружинный маятник.

  • Математический маятник.

  • Свободные и вынужденные колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания – это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания – это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия – это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела – это величина его наибольшего отклонения от положения равновесия.

Период колебаний T – это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний nu – это величина, обратная периоду: nu =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

к оглавлению ▴

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой x. Положению равновесия отвечает значение x=0. Основная задача механики в данном случае состоит в нахождении функции x(t) , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них – синус и косинус – являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на pi /2, можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания – это колебания, при которых координата зависит от времени по гармоническому закону:

x=Acos(omega t+alpha ) (1)

Выясним смысл входящих в эту формулу величин.

Положительная величина A является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому A – амплитуда колебаний.

Аргумент косинуса omega t+alpha называется фазой колебаний. Величина alpha , равная значению фазы при t=0 , называется начальной фазой. Начальная фаза отвечает начальной координате тела: x_{0}=Acos alpha .

Величина называется omega циклической частотой. Найдём её связь с периодом колебаний T и частотой nu. Одному полному колебанию отвечает приращение фазы, равное 2 pi радиан: omega T=2 pi, откуда

omega = frac{displaystyle 2pi }{displaystyle T} (2)

omega =2 pi nu (3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

x=Acos(frac{displaystyle 2pi t }{displaystyle T}+ alpha), x=Acos(2 pi nu t + alpha).

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину x_{0} и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае x_{0}=A, поэтому можно положить alpha=0. Мы получаем закон косинуса:

x=Acos omega t.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае x_{0}=0, так что можно положить alpha =-pi /2. Получаем закон синуса:

x=Asin omega t.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

к оглавлению ▴

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:

v_{x}=dot{x}=-Aomega sin(omega t+alpha ). (4)

Теперь дифференцируем полученное равенство (4):

a_{x}=ddot{x}=-Aomega^{2} cos(omega t+alpha ). (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем -omega^{2}:

a_{x}=-omega^{2}x. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

ddot{x}+omega^{2}x=0. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными A, alpha;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой omega и только их. Две константы A, alpha определяются из начальных условий – по начальным значениям координаты и скорости.

к оглавлению ▴

Пружинный маятник.

Пружинный маятник – это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу m, жёсткость пружины равна k.

Координате x=0отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости vec F со стороны пружины. Второй закон Ньютона для груза в проекции на ось X имеет вид:

ma_{x}=F_{x}. (8)

Если x>0 (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и F_{x}<0. Наоборот, если x<0, то F_{x}>0. Знаки x и F_{x} всё время противоположны, поэтому закон Гука можно записать так:

F_{x}=-kx

Тогда соотношение (8) принимает вид:

ma_{x}=-kx

или

a_{x}=-frac{displaystyle k}{displaystyle m}x.

Мы получили уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle k}{displaystyle m}.

Циклическая частота колебаний пружинного маятника, таким образом, равна:

omega =sqrt{frac{displaystyle k}{displaystyle m}}. (9)

Отсюда и из соотношения T=2 pi / omega находим период горизонтальных колебаний пружинного маятника:

T=2 pi sqrt{frac{displaystyle m}{displaystyle k}}. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

к оглавлению ▴

Математический маятник.

Математический маятник – это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна l. Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

m vec a=m vec g + vec T,

и спроектируем его на ось X:

ma_{x}=T_{x}.

Если маятник занимает положение как на рисунке (т. е. x>0), то:

T_{x}=-Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Если же маятник находится по другую сторону от положения равновесия (т. е. x<0), то:

T_{x}=Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Итак, при любом положении маятника имеем:

ma_{x}=-Tfrac{displaystyle x}{displaystyle l}. (11)

Когда маятник покоится в положении равновесия, выполнено равенство T=mg. При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство T approx mg. Воспользуемся им в формуле (11):

ma_{x}=-mgfrac{displaystyle x}{displaystyle l},

или

a_{x}=-frac{displaystyle g}{displaystyle l}x.

Это – уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle g}{displaystyle l}.

Следовательно, циклическая частота колебаний математического маятника равна:

omega =sqrt{frac{displaystyle g}{displaystyle l}}. (12)

Отсюда период колебаний математического маятника:

T=2pi sqrt{frac{displaystyle l}{displaystyle g}}. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

к оглавлению ▴

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания

Вынужденные колебания – это колебания, совершаемые системой под воздействием внешней силы F(t), периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна omega_{0}, а вынуждающая сила зависит от времени по гармоническому закону:

F(t)=F_{0}cos omega t.

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
omega вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Рис. 7. Резонанс

Мы видим, что вблизи частоты omega=omega_{r} наступает резонанс – явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: omega_{r} approx omega_{0}, и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, omega_{r} = omega_{0}, а амплитуда колебаний возрастает до бесконечности при omega Rightarrow omega_{0}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Механические колебания.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Частота, период, циклическая частота, амплитуда, фаза колебаний.

ЧАСТОТА КОЛЕБАНИЙ, числоколебаний в 1 с. Обозначается.
Если T -периодот колебаний, то= 1/T; измеряется в герцах (Гц).Угловая
частотаколебаний= 2= 2/T
рад/с.

ПЕРИОД колебаний, наименьший промежуток
времени, через который совершающая
колебания системавозвращается в то же состояние, в котором
она находилась в начальный момент,
выбранный произвольно. Период -величина,
обратная частоте колебаний.Понятие”период” применимо, например, в
случае гармонических колебаний, однако
часто применяется и для слабо затухающих
колебаний.

Круговая или
циклическая частотаω

При изменении аргумента косинуса, либо
синуса на 2π эти функции возвращаются
к прежнему значению. Найдем промежуток
времени T, в течение которого фаза
гармонической функции изменяется на
2π .

ω(t + T) + α = ωt + α + 2π, или ωT = 2π.

.

Время T одного полного колебания
называется периодом колебания. Частотой
ν называют величину, обратную
периоду

.

Единица измерения частоты – герц (Гц),
1 Гц = 1 с-1.

Так как

,
то
.

Круговая, или циклическая частоты ω в
2π раз больше частоты колебаний ν.
Круговая частота – это скорость изменения
фазы со временем. Действительно:

.

АМПЛИТУДА (от латинского amplitudo –
величина),
наибольшее отклонение от равновесного
значения величины, колеблющейся по
определенному, в том числе гармоническому,
закону; смотри такжеГармонические
колебания.

ФАЗА КОЛЕБАНИЙ аргумент функцииcos (ωt + φ), описывающей гармонический
колебательный процесс (ω — круговая
частота, t — время, φ — начальная
фаза колебаний, т. е. фаза колебаний вначальный
момент времениt = 0)

Смещение, скорость, ускорение колеблющейся системы частиц.

Энергия гармонических колебаний.

Гармонические колебания

Важным частным случаем периодических
колебаний являются гармонические
колебания, т.е. такие изменения физической
величины, которые идут по закону

где
.
Из курса математики известно, что
функция вида (1) меняется в пределах от
А до -А , и что наименьший положительный
период у нее.
Поэтому гармоническое колебание вида
(1) происходит с амплитудой А и периодом.

Не следует путать циклическую частоту
и
частоту колебаний.
Между ними простая связь. Так как,
а,
то.

Величина
называется
фазой колебания. При t=0 фаза равна,
потомуназывают
начальной фазой.

Отметим, что при одном и том же t:

где

начальная фаза .Видно, что начальная
фаза для одного и того же колебания
есть величина, определенная с точнотью
до.
Поэтому из множества возможных значений
начальной фазы выбирается обычно
значение начальной фазы наименьшее по
модулю или наименьшее положительное.
Но делать это необязательно. Например,
дано колебание,
то его удобно записать в видеи
работать в дальнейшем с последним видом
записи этого колебания.

Можно показать, что колебания вида:

где
имогут
быть любого знака, с помощью простых
тригонометрических преобразований
всегда приводится к виду (1), причем,,
ане
равна,
вообще говоря. Таким образом, колебания
вида (2) являются гармоническими с
амплитудойи
циклической частотой.
Не приводя общего доказательства,
проиллюстрируем это на конкретном
примере.

Пусть требуется показать, что колебание

будет гармоническим и найти амплитуду
,
циклическую частоту,
периоди
начальную фазу.
Действительно,

Видим, что колебание величины S удалось
записать в виде (1). При этом
,.

Попробуйте самостоятельно убедится,
что

.

Естественно, что запись гармонических
колебаний в форме (2) ничем не хуже записи
в форме (1), и переходить в конкретной
задаче от записи в данной форме к записи
в другой форме обычно нет необходимости.
Нужно только уметь сразу находить
амплитуду, циклическую частоту и период,
имея перед собой любую форму записи
гармонического колебания.

Иногда полезно знать характер изменения
первой и второй производных по времени
от величины S, которая совершает
гармонические колебания (колеблется
по гармоническому закону). Если
,
то дифференцирование S по времени t дает,.
Видно, что S’ и S” колеблются тоже по
гармоническому закону с той же циклической
частотой,
что и величина S, и амплитудамии,
соответственно. Приведем пример.

Пусть координата x тела, совершающего
гармонические колебания вдоль оси x,
изменяется по закону
,
где х в сантиметрах, время t в секундах.
Требуется записать закон изменения
скорости и ускорения тела и найти их
максимальные значения. Для ответа на
поставленный вопрос заметим, что первая
производная по времени от величины х
есть проекция скорости тела на ось х,
а вторая производная х есть проекция
ускорения на ось х:,.
Продифференцировав выражение для х по
времени, получим,.
Максимальные значения скорости и
ускорения :.

Соседние файлы в предмете Физика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

КОЛЕБАНИЯ И ВОЛНЫ

Колебания

Механические колебания — периодически повторяющиеся изменения положения тела (материальной точки) относительно положения равновесия.
Амплитуда (A)— максимальное отклонение тела от положения равновесия.
Период (T) — время за которое совершается одно полное колебание. Единица измерения секунда (с).
Частота (nu) — количество колебаний (N) в единицу времени (t). Измеряется частота в герцах (Гц) показывающих количество колебаний за секунду. К примеру величина 50 Гц говорит нам о том, что система за одну секунду совершила 50 колебаний.

    [nu=frac{N}{t}]

Так как период это время за которое совершается одно полное колебание, можно выразить частоту следующим образом:

    [nu=frac{1}{T}]

Гармонические колебания — колебания происходящие по законам синуса или косинуса (гармоническому закону).

    [x(t)=A sin{(omega t + varphi_0)}]

Фаза колебания (omega t + varphi_0) — аргумент периодической функции, описывающей колебательный или волновой процесс.
Начальная фаза колебания varphi_0 — значение фазы колебаний в начальный момент времени, т.е. при t = 0.
Циклическая частота omega — скалярная физическая величина, мера частоты вращательного или колебательного движения. Единица измерения радиан в секунду (рад/с).

    [omega=frac{2pi}{T}]

    [omega=2pi nu]

Исходя из этого можно записать

    [x(t)=A sin{(frac{2pi t}{T} + varphi_0)}]

    [x(t)=A sin{(2pi nu t + varphi_0)}]

Свободные колебания — колебания возникающие за счет внутренних сил системы, после того как она была выведена из состояния равновесия.
Собственные частота колебаний — частота свободных колебаний колебательной системы.
Затухающие колебания — колебания в которых происходит постепенное уменьшение амплитуды в результате действия сил сопротивления движению (силы трения, силы сопротивления воздуха..).
Вынужденные колебания — колебания, происходящие под действием внешних периодически изменяющейся сил.
Резонанс — резкое увеличение амплитуды колебания при совпадении собственной частоты колебательной системы, с частотой вынуждающей силы.

Математический маятник

Математический маятник — механическая колебательная система представляющая из себя материальную точку подвешенную на нерастяжимой невесомой нити в поле силы тяжести.
Формула Гюгенса для определения периода колебаний математического маятника. l — длинна маятника.

    [T=2pi sqrt{frac{l}{g}}]

Циклическая частота колебаний математического маятника.

    [omega=sqrt{frac{g}{l}}]

Пружинный маятник

Пружинный маятник — механическая колебательная система представляющая из себя пружину жесткостью k, с материальной точкой массой m на одном конце этой пружины.

    [T=2pi sqrt{frac{m}{k}}]

    [omega=sqrt{frac{k}{m}}]

Колебательный контур

Электромагнитные колебания — периодические изменения напряжённости и магнитной индукции.
Колебательный контур — электрическая цепь, состоящая из конденсатора ёмкостью C и катушки индуктивностью L. В этой цепи происходят свободные электромагнитные колебания.
Циклическая частота и период собственных колебаний контура определяются по формуле Томсона:

    [T=2pi sqrt{LC}]

    [omega=frac{1}{sqrt{LC}}]

Связь между амплитудными (максимальными) значениями тока в контуре и заряда на конденсаторе:

    [I_{max}=omega q_{max}]

Энергия контура:

    [W=frac{q^2}{2C}+frac{LI^2}{2}=frac{q^2_{max}}{2C}=frac{LI^2_{max}}{2}]

Связь между амплитудными (максимальными) значениями тока и напряжения в контуре (закон сохранения энергии в колебательном контуре):

    [frac{LI^2_{max}}{2}=frac{CU^2_{max}}{2}]

Переменный ток

Переменный ток — электрический ток периодически меняющий свое направление.
Действующее значение силы переменного тока I_d равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

    [I_d=frac{I_{max}}{sqrt{2}}]

Действующее значение напряжения U_d в цепи переменного тока равно напряжению постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

    [U_d=frac{U_{max}}{sqrt{2}}]

Средняя по времени тепловая мощность переменного тока:

    [P=frac{U_{max}I_{max}}{2}=I_d^2 R=frac{U_d^2}{R}]

Емкостное сопротивление X_C — сопротивление конденсатора в цепи переменного тока. Емкостное сопротивление зависит от частоты переменного тока, чем частота выше, тем сопротивление ниже. Для постоянного тока конденсатор по сути представляет разрыв цепи, по этому для постоянного тока емкостное сопротивление стремиться к бесконечности.

    [X_C=frac{1}{omega C}]

Где omega циклическая частота переменного тока.
Закон Ома для участков цепи, содержащих емкость:

    [I=frac{U}{X_C}]

Индуктивное сопротивление X_L — сопротивление катушки индуктивности в цепи переменного тока. Так как изменение тока в цепи приводит к появлению токов самоиндукции противодействующих этому изменению, то увеличение частоты переменного тока приводит к увеличению индукционного сопротивления.

    [X_L=omega L]

Закон Ома для участков цепи, содержащих индуктивность:

    [I=frac{U}{X_L}]

Трансформатор

Трансформатор — электромагнитное устройство, которое используется для передачи и преобразования электрической энергии из одной катушки индуктивности на сердечнике в другую. Частота переменного тока при этом не меняется.
Идеальный трансформатор — трансформатор в котором энергетические потери пренебрежимо малы.
Отношение напряжений на вторичной U_2 и первичной U_1 обмотках идеального трансформатора равно отношению количеств их витков. (N_2 на вторичной и N_1 первичной). Само это соотношение называют коэффициентом трансформации k.

    [frac{U_1}{U_2}=frac{N_1}{N_2}=k]

Если коэффициент трансформации больше единицы, то трансформатор называется понижающим, если меньше, то повышающим.
Закон сохранения энергии для идеального трансформатора:

    [U_1I_1=U_2I_2]

КПД неидеального трансформатора:

    [eta=frac{U_2I_2}{U_1I_1}]

Волны

Волны — колебания распространяющийся в упругих средах. Если направление распространения волн и направление колеблющихся частиц среды совпадают то такие волны называются продольными. А если эти направления перпендикулярны друг другу, то такие волны называют поперечными.
Так как волновые процессы являются часным случаем колебательного движения, они так же будут характеризоваться своими частотой и периодом. Но помимо этого у волн есть еще свои дополнительные характеристики, отличающие их от обычного колебательного движения.
Длина волны (lambda) — расстояние, на которое успевает распространиться волна за один период;
Скорость распространения волны (upsilon) — отношение длинны волны к периоду ее колебания.

    [upsilon =frac{lambda}{T}]

    [upsilon =lambda nu]

Звуковые волны — разновидность механических волн в слышимом для человека диапазоне ( от 16 Гц до 20 кГц).

В
рамках прошлой темы говорилось о новом виде механического движения –
колебательном движении.

Механическое колебательное движение —это движение, при котором состояния
тела с течением времени повторяются, причем тело проходит через положение
устойчивого равновесия поочередно в противоположных направлениях.

Если колебания происходят в системе только под действием
внутренних сил, то такие колебания называют свободными.

Колебательной системой называют такую физическую систему, в которой при отклонении
от положения равновесия возникают и существуют колебания.

Маятник – это твердое тело, совершающее под действием приложенных сил колебания
около неподвижной точки или вокруг оси.

В
рамках данной темы будет рассмотрен простейший вид колебательного движения —
гармонические колебания.

Гармонические
колебания
— это колебания, при которых смещение колеблющейся
точки от положения равновесия изменяется с течением времени по закону синуса
или косинуса.

Смещение
от положения равновесия при гармонических колебаниях описывается уравнениями
вида:

Эти
уравнения называют кинематическим законом гармонического движения.

Покажем,
что гармонические колебания действительно подчиняются закону синуса или
косинуса. Для этого рассмотрим следующую установку.

Возьмем
нитяной маятник, а в качестве груза к нему выберем небольшой массивный сосуд с
маленьким отверстием снизу и насыплем в него песок.А под полученную систему
положим длинную бумажную ленту.

Если
ленту перемещать с постоянной скоростью в направлении, перпендикулярном
плоскости колебаний, то на ней останется волнообразная дорожка из песка, каждая
точка которой соответствует положению колеблющегося груза в тот момент, когда
он проходил над ней. Из опыта видно, что след, который оставляет песок на листе
бумаги, есть некая кривая.

Она
называется синусоидой. Из курса математики старших классов вы узнаете о том,
что аналогичные графики имеют функции типа

Значит,
графически зависимость смещения колеблющейся точки от времени изображается
синусоидой или косинусоидой.

Через
точки, соответствующие положению равновесия маятника, проведена ось времени t,
а перпендикулярно ей — ось смещения икс. График дает возможность приблизительно
определить координату груза в любой момент времени.

Теперь
разберемся с величинами, входящими в уравнение колебательного движения.

Смещение
— величина, характеризующая положение колеблющейся точки в некоторый момент
времени относительно положения равновесия и измеряемая расстоянием от положения
равновесия до положения точки в данный момент времени.

Амплитуда
колебаний — максимальное смещение тела от положения равновесия.

Циклическая,
или круговая частота, показывающая, сколько колебаний совершает
тело за 2p секунд.

j0
— это начальная фаза колебаний.

Фаза
колебаний
— это аргумент периодической функции, который при
заданной амплитуде колебаний определяет состояние колебательной системы в любой
момент времени.

Промежуток
времени, в течение которого тело совершает одно полное колебание, называется периодом
колебаний.

Период
колебаний обычно обозначается буквой Т и в системе СИ измеряется в
секундах.

Число
колебаний в единицу времени называется частотой колебаний.  Обозначается
частота буквой ν. За единицу частоты принято одно колебание в
секунду. Эта единица названа в честь немецкого ученого Генриха Герца.

Период
колебания и частота колебаний связаны следующей зависимостью:

Т.е.
частота — это величина обратная периоду и равная числу полных колебаний, совершаемых
за 1 секунду.

Циклическая
частота также связана с периодом колебаний или частотой. Эту связь
математически можно записать в следующем виде:

Таким
образом, любое колебательное движение характеризуется амплитудой, частотой
(или периодом) и фазой колебаний
.

При
совершении телом гармонических колебаний не только его координата, но и такие
величины, как сила, ускорение, скорость, тоже изменяются по закону синуса или
косинуса.

Это
следует из известных вам законов и формул, в которых указанные величины попарно
связаны прямо пропорциональной зависимостью, например законом Гука или вторым
законом Ньютона. Из этих формул видно, что сила и ускорение достигают
наибольших значений, когда колеблющееся тело находится в крайних положениях,
где смещение наиболее велико, и равны нулю, когда тело проходит через положение
равновесия.

Что
же касается скорости, то она, наоборот, в крайних положениях равна нулю, а при
прохождении телом положения равновесия достигает наибольшего значения.

Колебания,
практически близкие к гармоническим, совершает тяжелый шарик, подвешенный на
легкой и малорастяжимой нити, длина которой значительно больше диаметра шарика.
Такую колебательную систему называют математическим маятником.

Математический
маятник — это материальная точка, подвешенная на невесомой нерастяжимой
нити, прикрепленной к подвесу и находящейся в поле силы тяжести.

Также
гармонические колебания может совершать груз подвешенный на пружине,
совершающий колебания в вертикальной плоскости. Такую колебательную систему
называют пружинным маятником — это система, состоящая из материальной
точки массой m и пружины.

Основные
выводы:

– Гармонические колебания
— это колебания, при которых смещение колеблющейся точки от положения
равновесия изменяется с течением времени по закону синуса или косинуса.

– Любое колебательное движение характеризуется
амплитудой, частотой (или периодом) и фазой колебаний.

– Амплитуда колебаний
— максимальное смещение тела от положения равновесия.

– Промежуток времени, в течение которого тело
совершает одно полное колебание, называется периодом колебаний.

– Число колебаний в единицу времени называется частотой
колебаний
.

– Фаза колебаний — это аргумент
периодической функции, который при заданной амплитуде колебаний определяет
состояние колебательной системы в любой момент времени.

– Математический и пружинный маятники
— это простейшие идеализированные колебательные системы, подчиняющиеся закону синуса
или косинуса.

– Математический маятник
— это материальная точка, подвешенная на невесомой нерастяжимой нити,
прикрепленной к подвесу и находящейся в поле силы тяжести.

– Пружинный маятник
— это система, состоящая из материальной точки массой m
и пружины, которая совершает колебания в вертикальной плоскости.

Добавить комментарий