Как найти амплитуды силы тока

  • Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

  • Условие квазистационарности

  • Резистор в цепи переменного тока

  • Конденсатор в цепи переменного тока

  • Катушка в цепи переменного тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением R, конденсатор ёмкости C и катушку индуктивности L. Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Напряжение на клеммах источника меняется по закону:

U = U_0 sin omega t. (1)

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения U(t) в момент времени t называется мгновенным значением напряжения.

к оглавлению ▴

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты nu = 50 Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: T = 1/ nu = 0,02 с.

Взаимодействие между зарядами передаётся со скоростью света: c = 3 cdot 10^8 м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

cT = 6 cdot 106 м = 6000 км.

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой omega. Период колебаний равен T = 2 pi/ omega, и за это время взаимодействие между зарядами передаётся на расстояние cT. Пусть l — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если l много меньше cT:

l ll cT. (2)

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока I во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

к оглавлению ▴

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения U = U_0 sin omega t подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) R, называемый также активным сопротивлением (рис. 1)

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

I = frac{displaystyle U}{displaystyle R vphantom{1^a}} = frac{displaystyle U_0}{displaystyle R vphantom{1^a}} sin omega t.

Таким образом, сила тока в резисторе также меняется по закону синуса:

I = I_0 sin omega t.

Амплитуда тока I_0 равна отношению амплитуды напряжения U_0 к сопротивлению R:

I_0 = frac{displaystyle U_0}{displaystyle R vphantom{1^a}}.

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2).

Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

к оглавлению ▴

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости C, подключённый к источнику синусоидального напряжения (рис. 3). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через q заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины q совпадает со знаком напряжения U. Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство dot{q} = I.

Напряжение на конденсаторе равно напряжению источника:

frac{displaystyle q}{displaystyle C vphantom{1^a}} = U = U_0 sin omega t.

Отсюда

q = CU_0 sin omega t.

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

I = dot{q} = CU_0 omega cos omega t. (3)

Графики тока и напряжения представлены на рис. 4. Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на pi/2 больше фазы напряжения (ток опережает по фазе напряжение на pi/2).

Рис. 4. Ток через конденсатор опережает по фазе напряжение на pi/2

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

cos varphi = sin left ( varphi + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}  right ).

Используя её, получим из (3):

I = CU_0 omegasin left ( omega t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}  right ).

И теперь мы чётко видим, что фаза тока больше фазы напряжения на pi/2.

Для амплитуды силы тока имеем:

I_0 = CU_0 omega = frac{displaystyle U_0}{displaystyle 1/left ( omega C right ) vphantom{1^a}}.

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

I_0 = frac{displaystyle U_0}{displaystyle X_C vphantom{1^a}},

где

X_C = frac{displaystyle 1}{displaystyle omega C vphantom{1^a}}.

Величина X_C называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости C), тем за меньшее время по цепи проходит заряд CU_0; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При omega rightarrow infty ёмкостное сопротивление стремится к нулю: X_C rightarrow 0. Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при omega rightarrow 0 имеем X_C rightarrow infty. Это неудивительно: случай omega = 0 отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд CU_0 проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

к оглавлению ▴

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности L (рис. 5). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле vec{E_B}, которое, оказывается, в точности уравновешивает кулоновское поле vec{E} движущихся зарядов:

vec{E} + vec{E_B} = vec{0}. (4)

Работа кулоновского поля vec{E} по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение U. Аналогичная работа вихревого поля — это ЭДС индукции mathcal E_i.

Поэтому из (4) получаем:

U + mathcal E_i = 0. (5)

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность I^2R равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея mathcal E_i = -L dot{I}, переписываем соотношение (5):

U - L dot{I} = 0,

откуда

dot{I} = frac{displaystyle U}{displaystyle L vphantom{1^a}} = frac{displaystyle U_0}{displaystyle L vphantom{1^a}} sin omega t. (6)

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6). Сообразить это нетрудно (продифференцируйте и проверьте!):

I = -frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}} cos omega t. (7)

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6.

Рис. 6. Ток через катушку отстаёт по фазе от напряжения на pi/2

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на pi/2.

Определить сдвиг фаз можно и с помощью формулы приведения:

sin left ( varphi  -frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = -cos varphi.

Получаем:

I = frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}} sin left ( omega t -frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ).

Непосредственно видим, что фаза силы тока меньше фазы напряжения на pi/2.

Амплитуда силы тока через катушку равна:

I_0 = frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}}.

Это можно записать в виде, аналогичном закону Ома:

I_0 = frac{displaystyle U_0}{displaystyle X_L vphantom{1^a}},

где

X_L = omega L.

Величина X_L называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что X_L будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При omega rightarrow  infty имеем X_L rightarrow  infty, т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при omega = 0 имеем X_L = 0. Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Переменный ток. 1» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Переменный электрический ток


Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC.
Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC – Direct Current – постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.

Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения


Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота  f – величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz). Частота f = 1/T


Циклическая частота  ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза  ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t);   u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt);   u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ);   u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|;   Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.


Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой
амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.

Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.

Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1


Замечания и предложения принимаются и приветствуются!

Как найти амплитуду силы тока

Обычный амперметр показывает среднеквадратическое значение силы тока. Определить же ее амплитудное значение поможет осциллограф. Для этого к нему придется добавить специальный мощный низкоомный резистор — шунт.

Как найти амплитуду силы тока

Инструкция

Убедитесь в том, что цепь, в которой необходимо определить амплитудное значение силы тока, не имеет гальванической связи с электросетью. Если такая связь имеется, описанный далее способ измерения использовать нельзя.

Обесточьте цепь, включите в ее разрыв шунт с таким сопротивлением, чтобы его влияние на силу тока было минимальным (если цепь состоит из нескольких последовательно соединенных частей, место ее разрыва выберите как можно ближе к точке с нулевым потенциалом).

Параллельно шунту подключите электронно-лучевой осциллограф, переключенный в режим работы с открытым входом. Не соединяйте корпус осциллографа ни с чем, а чтобы не получить электрический удар из-за разности потенциалов между общими проводами осциллографа и испытуемого устройства, работайте в резиновых перчатках.

Пока цепь выключена, рукояткой перемещения луча по вертикали точно совместите горизонтальную линию на экране осциллографа с нулевой линией накладки с сеткой.

Включите ток в цепи, после чего регулировкой усиления осциллографа добейтесь, чтобы амплитудное значение напряжения помещалось на экране по высоте. Сосчитайте и запишите количество делений на экране (относительно нулевой линии), соответствующее этому значению.

Обесточьте цепь. Отключите шунт от проверяемой цепи, но не от осциллографа, а в проверяемой цепи восстановите соединение. Включите шунт в разрыв другой цепи, состоящей из нагрузки, потребляющей примерно такой же ток, амперметра постоянного тока и источника регулируемого постоянного напряжения.

Регулируя источник, добейтесь, чтобы линия на экране отклонилась от нулевой линии сетки на то же количество делений. Прочитайте показания амперметра — они будут соответствовать амплитуде тока в ходе предыдущего измерения.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Перейти к содержимому

В сеть переменного тока с действующим напряжением 220 В включены последовательно конденсатор емкостью 1×10-4 Ф, катушка индуктивностью 0,4 Гн и активное сопротивление 8 Ом. Определить амплитуду силы тока в цепи, если частота переменного тока 200 Гц, а также частоту переменного тока, при которой в данном контуре наступит резонанс напряжений.

Дано: Ud=220 В; С=100 мкФ=1×10-4 Ф; L=0,4 Гн;
Ra=8 Ом; v=200 Гц.
Найти: I0-?; vp-?

Решение:

Амплитуда силы тока определяется по закону Ома

I_0=U_0/sqrt{{R_a}^2+(w*L-1/{w*C})^2}

Поскольку

U_0=U_d/sqrt{2} и w=2*pi*v

Получаем формулу

I_0={U_d*sqrt{2}}/sqrt{{R_a}^2+(2*pi*v*L-{1/{2*pi*v*C}})^2}

Амплитуда силы тока

I_0={220*sqrt{2}}/sqrt{8^2+(2*3.14*200*0.4-{1/{2*3.14*200*1*10^{-4}}})^2}{approx}0.6 A

При резонансе напряжений амплитуды напряжения на конденсаторе и катушке индуктивности равны U_{0C}=U_{0L}.

Так как U_{0C}={I_0}/{2*pi*v_p*C), U_{0L}=2*pi*v_p*L*I_0,

то частоту резонанса напряжений определим по формуле

v_p=1/{2*pi*sqrt{LC}}=1/{2*3.14*sqrt{0.4*1*10^{-4}}}{approx}25 Гц

Ответ: амплитуда силы тока для данной электрической цепи равна 0.6 ампер, частота переменного тока при которой наступит резонанс напряжений равна 25 герцам.

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u=φ1φ2=qC

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

qC=Umaxcosωt

Следовательно, заряд конденсатора меняется по гармоническому закону:

q=CUmaxcosωt

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i=q=CUmaxsinωt=CUmaxcos(ωt+π2)

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π2 (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

Imax=UmaxCω

Примем, что:

1Cω=XC

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Определение

I=UXC

Величина XC, равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура qmax=106 Кл. Амплитудное значение силы тока в контуре Imax=103 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q2max2C=LI2max2

Отсюда:

LC=q2maxI2max

LC=qmaxImax

T=2πLC=2πqmaxImax=2·3,141061036,3·103 (с)

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля Ei, порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Eк, создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства Ei=Eк следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции ei) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

ei=u

Напомним, что сила переменного тока изменяется по гармоническому закону:

i=Imaxsinωt

Тогда ЭДС самоиндукции равна:

ei=Li=LωImaxcosωt

Так как u=ei, то напряжение на концах катушки оказывается равным:

u= LωImaxcosωt=LωImaxsin(ωt+π2)=Umax(ωt+π2)

Амплитуда напряжения равна:

Umax=LωImax

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π2, или колебания силы тока отстают от колебаний напряжения на π2, что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

Imax=UmaxLω

Введем обозначение:

Lω=XL

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Определение

I=UXL

Величина XL, равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлениемXL=500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока Imax в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

XL=Lω=2πνL

Отсюда:

Так как амплитуда напряжения связана с его действующим значением соотношением Umax=U2, то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

ω0=1LC

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

ω=ω0=1LC

Определение

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I2maxR2=UmaxImax2

Упростив это уравнение, получим:

ImaxR=Umax

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

Imax=UmaxR

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν0).

Но:

ν0=12πLC

Тогда:

ν=12πLC

Отсюда:

Задание EF22579

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.


Алгоритм решения

1.Установить, что вызывает увеличение амплитуды силы тока.

2.Объяснить, какие изменения вызвало уменьшение индуктивности.

3.Объяснить, при каком условии в течение всего эксперимента амплитуда силы тока может только расти.

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν0=12πLC

По мере увеличения внешней частоты от нуля до ν0 амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν0. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν0min=12πLminC

ν0max=12πLmaxC

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν0 всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22785

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

Ответ:

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке


Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

Ответ: ад

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

 Период колебаний (определяем по графику): T = 4 мкс.

 Емкость конденсатора в первом опыте: C1 = 4C.

 Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2πLC

Применим формулу для обоих опытов и получим:

T1=2πL4C=4πLC

T2=2πLC

Поделим первый период на второй:

T1T2=4πLC2πLC=2

Отсюда:

T2=T12=4·1062=2·106 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10k

Добавить комментарий