Как найти апофему правильной треугольной призмы

Апофема пирамиды. Формулы для апофемы правильной треугольной пирамиды

Пирамида – это пространственный полиэдр, или многогранник, который встречается в геометрических задачах. Основными свойствами этой фигуры являются ее объем и площадь поверхности, которые вычисляются из знания любых двух ее линейных характеристик. Одной из таких характеристик является апофема пирамиды. О ней пойдет речь в статье.

Фигура пирамида

Прежде чем приводить определение апофемы пирамиды, познакомимся с самой фигурой. Пирамида представляет собой многогранник, который образован одним n-угольным основанием и n треугольниками, составляющими боковую поверхность фигуры.

Всякая пирамида имеет вершину – точку соединения всех треугольников. Перпендикуляр, проведенный из этой вершины к основанию, называется высотой. Если высота пересекает в геометрическом центре основание, то фигура называется прямой. Пирамида прямая, имеющая равностороннее основание, называется правильной. На рисунке показана пирамида с шестиугольным основанием, на которую смотрят со стороны грани и ребра.

Апофема правильной пирамиды

Ее также называют апотемой. Под ней понимают перпендикуляр, проведенный из вершины пирамиды к стороне основания фигуры. По своему определению этот перпендикуляр соответствует высоте треугольника, который образует боковую грань пирамиды.

Поскольку мы рассматриваем пирамиду правильную с n-угольным основанием, то все n апофем для нее будут одинаковыми, поскольку таковыми являются равнобедренные треугольники боковой поверхности фигуры. Заметим, что одинаковые апофемы являются свойством правильной пирамиды. Для фигуры общего типа (наклонной с неправильным n-угольником) все n апофем будут разными.

Еще одним свойством апофемы пирамиды правильной является то, что она одновременно является высотой, медианой и биссектрисой соответствующего треугольника. Это означает, что она делит его на два одинаковых прямоугольных треугольника.

Треугольная пирамида и формулы для определения ее апофемы

В любой правильной пирамиде важными линейными характеристиками являются длина стороны ее основания, ребро боковое b, высота h и апофема hb. Эти величины друг с другом связаны соответствующими формулами, которые можно получить, если начертить пирамиду и рассмотреть необходимые прямоугольные треугольники.

Правильная треугольная пирамида состоит из 4 треугольных граней, причем одна из них (основание) должна быть обязательно равносторонней. Остальные являются равнобедренными в общем случае. Апофему треугольной пирамиды можно определить через другие величины по следующим формулам:

Первое из этих выражений справедливо для пирамиды с любым правильным основанием. Второе выражение характерно исключительно для треугольной пирамиды. Оно показывает, что апофема всегда больше высоты фигуры.

Не следует путать апофему пирамиды с таковой для многогранника. В последнем случае апофемой называется перпендикулярный отрезок, проведенный к стороне многогранника из его центра. Например, апофема равностороннего треугольника равна √3/6*a.

Задача на вычисление апофемы

Пусть дана правильная пирамида с треугольником в основании. Необходимо вычислить ее апофему, если известно, что площадь этого треугольника равна 34 см 2 , а сама пирамида состоит из 4 одинаковых граней.

В соответствии с условием задачи мы имеем дело с тетраэдром, состоящим из равносторонних треугольников. Формула для площади одной грани имеет вид:

Откуда получаем длину стороны a:

Для определения апофемы hb воспользуемся формулой, содержащей боковое ребро b. В рассматриваемом случае его длина равна длине основания, имеем:

Подставляя значение a через S, получим конечную формулу:

Мы получили простую формулу, в которой апофема пирамиды зависит только от площади ее основания. Если подставить значение S из условия задачи, то получим ответ: hb ≈ 7,674 см.

Апофема правильной пирамиды, формула

Апофема правильной пирамиды находится по формуле

f — апофема правильной пирамиды (SF)
n — число сторон правильного многоугольника – основания правильной пирамиды
a — сторона правильного многоугольника (AB или BC или CD или DE или EA) – основания правильной пирамиды
h — высота правильной пирамиды (OS)

Апофема правильной пирамиды выводится из следующих формул

Синим цветом на рисунке изображена вписанная в основание правильной пирамиды окружность. Треугольник SFO прямоугольный. Его стороны: OS — высота правильной пирамиды ( h), OF — радиус вписанной окружности в правильный многоугольник (основание правильной пирамиды ( r)), SF — апофема правильной пирамиды ( f). По теореме Пифагора

подставив сюда только радиус вписанной окружности получается формула (1).

Апофема правильной треугольной пирамиды: формула и пример задачи

При изучении характеристик пространственных фигур в курсе стереометрии большое внимание уделяется таким свойствам, как площадь и объем. В то же время знать линейные параметры фигур важно, чтобы иметь возможность рассчитать указанные свойства. В данной статье ответим на вопрос, как найти апофему пирамиды правильной треугольной.

Какая фигура будет рассмотрена?

Треугольная пирамида с правильным основанием представляет собой фигуру в пространстве, которая ограничена одним равносторонним треугольником (основание) и тремя равнобедренными треугольниками (боковые стороны). Чтобы иметь возможность более четко представить эту пирамиду, покажем ее на рисунке.

Вам будет интересно: Зазноба – это . Значение слова

Важной точкой любой пирамиды является ее вершина, которая не принадлежит основанию. Если опустить перпендикуляр из нее на основание, то его длина будет высотой фигуры. В дальнейшем будем обозначать высоту буквой h. Высота правильной пирамиды падает точно в геометрический центр треугольника (точка пересечения его медиан, а также биссектрис и высот). Вторым линейным параметром, который следует знать, является длина стороны основания треугольной пирамиды, то есть длина стороны равностороннего треугольника. Обозначим ее буквой a.

Треугольная пирамида имеет собственное название – тетраэдр. Тетраэдр не является чисто теоретической геометрической фигурой. Она также встречается в некоторых природных структурах. Так, в алмазе атом углерода соединен с четырьмя такими же атомами, которые образуют тетраэдр. Другой пример – это молекула метана, в которой углерод, соединенный с четырьмя атомами водорода, образует правильную треугольную пирамиду.

Формула апофемы пирамиды правильной треугольной

Перейдем непосредственно к вопросу статьи. Для треугольной пирамиды правильной апофемой называется любая из высот боковых треугольников, опущенная из вершины фигуры. Обозначим ее hb. Поскольку рассматриваемая фигура состоит из трех боковых треугольников, которые равны друг другу, то она имеет три одинаковых апофемы hb.

Определение длины апофемы не составляет большого труда. Предположим, что высота h и длина стороны a известны. Проводим высоту фигуры и рассматриваем треугольник прямоугольный, который находится внутри пирамиды и образован следующими сторонами:

  • апофемой hb (гипотенуза);
  • высотой h (один катет);
  • 1/3 медианы m равностороннего треугольника (второй катет).

Длина медианы m треугольника в основании равна:

Пользуясь теоремой Пифагора, получаем формулу для длины апофемы hb:

Эта формула показывает, что длина апофемы hb для любых параметров треугольной пирамиды всегда больше ее высоты h.

Решение задачи на определение значения hb

Решим интересную задачу. Рассчитаем длину апофемы для тетраэдра, у которого все ребра равны друг другу.

Обозначим длину ребра буквой a. Она же является стороной треугольника в основании. Чтобы определить hb, необходимо найти h. Сделать это не сложно, если рассмотреть прямоугольный треугольник, образованный высотой h, ребром a и двумя третями медианы m. Получаем:

h = √(a2 – 4/9*m2) = √(a2 – 4/9*3/4*a2) = a*√(2/3)

Теперь применяем формулу для апофемы, получаем:

hb = √(a2/12 + h2) = √(a2/12 + 2/3*a2) = √3/2*a

Мы получили очевидный результат. Апофема правильной пирамиды треугольной равна длине медианы любого из равносторонних треугольников.

[spoiler title=”источники:”]

http://www.fxyz.ru/%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%BF%D0%BE_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8/%D0%BE%D0%B1%D1%8A%D0%B5%D0%BC%D0%BD%D1%8B%D0%B5_%D1%82%D0%B5%D0%BB%D0%B0/%D0%BF%D0%B8%D1%80%D0%B0%D0%BC%D0%B8%D0%B4%D0%B0/%D0%B0%D0%BF%D0%BE%D1%84%D0%B5%D0%BC%D0%B0_%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D0%BF%D0%B8%D1%80%D0%B0%D0%BC%D0%B8%D0%B4%D1%8B/

http://1ku.ru/obrazovanie/47863-apofema-pravilnoj-treugolnoj-piramidy-formula-i-primer-zadachi/

[/spoiler]

Апофема правильной треугольной пирамиды: формула и пример задачи

При изучении характеристик пространственных фигур в курсе стереометрии большое внимание уделяется таким свойствам, как площадь и объем. В то же время знать линейные параметры фигур важно, чтобы иметь возможность рассчитать указанные свойства. В данной статье ответим на вопрос, как найти апофему пирамиды правильной треугольной.

Какая фигура будет рассмотрена?

Треугольная пирамида с правильным основанием представляет собой фигуру в пространстве, которая ограничена одним равносторонним треугольником (основание) и тремя равнобедренными треугольниками (боковые стороны). Чтобы иметь возможность более четко представить эту пирамиду, покажем ее на рисунке.

Зазноба - это ... Значение словаВам будет интересно:Зазноба – это … Значение слова

Правильная треугольная пирамида

Важной точкой любой пирамиды является ее вершина, которая не принадлежит основанию. Если опустить перпендикуляр из нее на основание, то его длина будет высотой фигуры. В дальнейшем будем обозначать высоту буквой h. Высота правильной пирамиды падает точно в геометрический центр треугольника (точка пересечения его медиан, а также биссектрис и высот). Вторым линейным параметром, который следует знать, является длина стороны основания треугольной пирамиды, то есть длина стороны равностороннего треугольника. Обозначим ее буквой a.

Треугольная пирамида имеет собственное название – тетраэдр. Тетраэдр не является чисто теоретической геометрической фигурой. Она также встречается в некоторых природных структурах. Так, в алмазе атом углерода соединен с четырьмя такими же атомами, которые образуют тетраэдр. Другой пример – это молекула метана, в которой углерод, соединенный с четырьмя атомами водорода, образует правильную треугольную пирамиду.

Молекула метана

Формула апофемы пирамиды правильной треугольной

Перейдем непосредственно к вопросу статьи. Для треугольной пирамиды правильной апофемой называется любая из высот боковых треугольников, опущенная из вершины фигуры. Обозначим ее hb. Поскольку рассматриваемая фигура состоит из трех боковых треугольников, которые равны друг другу, то она имеет три одинаковых апофемы hb.

Определение длины апофемы не составляет большого труда. Предположим, что высота h и длина стороны a известны. Проводим высоту фигуры и рассматриваем треугольник прямоугольный, который находится внутри пирамиды и образован следующими сторонами:

  • апофемой hb (гипотенуза);
  • высотой h (один катет);
  • 1/3 медианы m равностороннего треугольника (второй катет).

Длина медианы m треугольника в основании равна:

m = √3/2*a

Пользуясь теоремой Пифагора, получаем формулу для длины апофемы hb:

hb = √((1/3*m)2 + h2) =>

hb = √(a2/12 + h2)

Эта формула показывает, что длина апофемы hb для любых параметров треугольной пирамиды всегда больше ее высоты h.

Решение задачи на определение значения hb

Тетраэдр из цветной бумаги

Решим интересную задачу. Рассчитаем длину апофемы для тетраэдра, у которого все ребра равны друг другу.

Обозначим длину ребра буквой a. Она же является стороной треугольника в основании. Чтобы определить hb, необходимо найти h. Сделать это не сложно, если рассмотреть прямоугольный треугольник, образованный высотой h, ребром a и двумя третями медианы m. Получаем:

h = √(a2 – 4/9*m2) = √(a2 – 4/9*3/4*a2) = a*√(2/3)

Теперь применяем формулу для апофемы, получаем:

hb = √(a2/12 + h2) = √(a2/12 + 2/3*a2) = √3/2*a

Мы получили очевидный результат. Апофема правильной пирамиды треугольной равна длине медианы любого из равносторонних треугольников.

Автор:

Назар Александров

15-12-2018 00:52

Жду ваши вопросы и мнения в комментариях

Среди огромного множества объемных фигур можно выделить три большие группы:

ПРИЗМЫ:

n-угольная призма – многогранник, две грани которого равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней − параллелограммы.

Примеры:

Треугольная призма

Четырехугольная призма

Шестиугольная призма

Элементы призмы:

Два n − угольника являются основаниями призмы (ABCD), параллелограммы − боковыми гранями (AB B₁A₁).

Стороны граней называются ребрами призмы (например, AD), а концы ребер − вершинами призмы (например, D).

Высота призмы – отрезок перпендикуляра, заключенный между основаниями призмы (СO). Для наклонной призмы высота может находится за пределами призмы или лежать внутри нее.

Диагональ призмы – отрезок, соединяющий две вершины оснований, не лежащие в одной грани (например, B₁D)

Виды призм:

Прямая призма

призма, боковые ребра которой перпендикулярны плоскостям оснований.

Наклонная призма

призма, боковые ребра которой являются наклонными к плоскостям оснований.

$ABCA_1B_1C_1$– прямая треугольная призма

$ABCA_1B_1C_1$– наклонная треугольная призма

Правильная призма – прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

  • Верхнее и нижнее основания призмы – это равные многоугольники.
  • Боковые грани призмы имеют вид параллелограмма.
  • Боковые ребра призмы параллельные и равны.
  • Объем призмы равен произведению площади основания призмы, на высоту.

$V_{text{призмы}} = S_{text{осн}}cdot h$

Для прямой призмы высотой будет является любое из боковых ребер.

$ABCDA_1B_1C_1D_1$ — произвольная призма.

$V_{ABCDA_1B_1C_1D_1} = S_{ABCD}cdot B_1O$

$ABCDA_1B_1C_1D_1$ — прямая призма.

$V_{ABCDA_1B_1C_1D_1} = S_{ABCD}cdot AA_1$

  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и двойной

площади основания.

$S_{text{полн.поверх}} = S_{text{бок.}} + 2S_{text{осн.}}$

Площадь боковой поверхности прямой призмы:

$S_{text{бок.}} = P cdot h$

где P — периметр перпендикулярного сечения, h — высота. То есть:

$S_{text{полн.поверх}} = P cdot h + 2S_{text{осн.}}$

$ABCDA_1B_1C_1D_1$ – прямая призма.

$S_{ABCDA_1B_1C_1D_1} = P_{ABCD}cdot AA_1 + 2S_{ABCD}$

Особенные призмы:

Параллелепипед – призма, все грани которой − параллелограммы.

Прямой параллелепипед – параллелепипед, боковые ребра которого перпендикулярны плоскостям оснований.

Прямоугольный параллелепипед – прямой параллелепипед, основанием которого является прямоугольник.

Все грани – прямоугольники.

Куб (гексаэдр) – прямоугольный параллелепипед с равными ребрами.

Все грани − квадраты.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

d² = a² + b² + c²,

где a, b, c − длины ребер, выходящих из одной вершины, d − диагональ параллелепипеда.

Квадрат диагонали куба равен квадрату его ребра, умноженному на 3:

d² = 3a²,

где a − длина ребра куба.

Площадь поверхности куба можно найти по формуле:

S = 6a²

Объем прямоугольного параллелепипеда находят по формуле

V = abc

Объем куба можно найти по формуле:

V = a³

ПИРАМИДЫ:

n-угольная пирамида – многогранник, одна грань которого – n-угольник, а остальные грани − треугольники с общей вершиной.

Примеры:

Треугольная пирамида

Четырехугольная пирамида

Шестиугольная пирамида

Элементы пирамиды:

n-угольник называется основанием пирамиды (ABCD), а треугольники − боковыми гранями (например, SBC).

Высота пирамиды – отрезок перпендикуляра, проведенного из вершины пирамиды к плоскости основания (SO). Для абсолютно произвольной пирамиды положение точки O заранее неизвестно.

Апофема – высота боковой грани правильной пирамиды, проведенная из её вершины (SH).

Особенные пирамиды:

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, а высота опускается в центр вписанной и описанной окружности многоугольника, лежащего в основании пирамиды. В правильной пирамиде обязательно равны между собой ребра основания, и равны между собой боковые ребра. Но не обязательно боковое ребро равно ребру в основании.

Тетраэдр – треугольная пирамида. Тетраэдр называется правильным, если все его ребра равны.

Усеченная пирамида – многогранник, вершинами которого служат вершины основания пирамиды и вершины её сечения плоскостью, параллельной основанию пирамиды. Основания усеченной пирамиды − подобные многоугольники.

Свойства пирамиды:

  • Если все боковые ребра пирамиды равны или наклонены к плоскости основания под одним и тем же углом, то высота опускается в центр описанной окружности.
  • Если боковые грани пирамиды наклонены к плоскости основания под одним и тем же углом (двугранные углы при основании равны), то высота опускается в центр вписанной окружности.

Если$angle{DPO} = angle{DKO} = angle{DMO};$то $qquad$

О – центр вписанной окружности

Если $DA=DB=DC$,то

О – центр описанной окружности

  • Объем пирамиды равен произведению площади ее основания на высоту, деленному на три:

$V_{text{пир.}} = frac{1}{3}S_{text{осню.}}cdot h$

$ begin{cases} ABCD – text{произвольная пирамида} \ DO perp ABC end{cases} Rightarrow V_{ABCD} = frac{1}{3}S_{ABC} cdot DO $

  • Площадь полной поверхности пирамиды складывается из площади основания и суммы площадей всех боковых граней (при этом для произвольной пирамиды эти грани могут быть разные, поэтому площади у них тоже будут разные).

Площадь боковой поверхности правильной пирамиды можно найти по одной формуле

$S_{text{полн.пир}}= displaystylefrac{1}{2}P_{text{осн.}} cdot h_{text{бок.}}$

где $P_{text{осн.}}$ — периметр основания, $h_{text{бок.}}$ — апофема пирамиды.

Если ABCD — произвольная пирамида, то

$S_{ABCD} = S_{ABC} + S_{DAC} + S_{DBC} + S_{DAB}$

Если ABCD — правильная пирамида, то

$S_{ABCD} = S_{ABC} + frac{1}{2}P_{ABC}cdot DH$

ТЕЛА ВРАЩЕНИЯ:

Цилиндр – фигура, полученная в результате вращения прямоугольника вокруг одной из его сторон.

Элементы цилиндра:

  • — ось вращения и высота

l (AB, CD) – образующая

ABCD − осевое сечение цилиндра, полученного вращением прямоугольника $OO_1CD$ вокруг его стороны $OO_1CD$

Свойства цилиндра:

  • Любое сечение цилиндра, параллельное его оси – прямоугольник.

Любое сечение цилиндра, параллельное его основанию – круг, равный основанию цилиндра.

Сечение цилиндра, наклонное к его оси и основанию – эллипс.

  • Объем цилиндра равен произведению площади его основания на высоту:

$V_{text{цил.}} = S_{text{осн.}}cdot h$

где $S_{text{осн.}} = pi R^2$ – площадь основания цилиндра; h – высота.

  • Полная поверхность цилиндра равна сумме его боковой поверхности и двух оснований.

$S_{text{пов.цил.}} = 2S_{text{осн.}} + S_{text{бок.}}$

Боковая поверхность равна:

$S_{text{бок.}} = 2pi Rl$

где R − радиус основания, h − высота, l − образующая цилиндра.

Конус – фигура, полученная в результате вращения прямоугольного треугольника вокруг одного из катетов.

Элементы конуса:

− ось вращения и высота

l (AC, CB) – образующая

ABC − осевое сечение конуса, полученного вращением треугольника ABC вокруг его стороны

Свойства конуса:

  • Любое сечение конуса, проходящее через его вершину – треугольник.

Любое сечение конуса, параллельное его основанию – круг, подобный основанию конуса.

Сечение конуса, наклонное к его основанию и не проходящее через вершину – эллипс.

  • Объем конуса равен произведению площади его основания на высоту, деленному на три:

$V_{text{кон.}} = displaystylefrac{1}{3}S_{text{осн.}}cdot h$

где $S_{text{осн.}} = pi R^2$– площадь основания конуса; h – высота.

  • Полная поверхность конуса равна сумме его боковой поверхности и основания.

$S_{text{пов.кон}} = S_{text{осн.}} + S_{text{бок.}}$

Боковая поверхность равна:

$S_{text{бок.}} = pi Rl$

где R − радиус основания, l − образующая конуса.

Сфера – фигура, полученная в результате вращения полуокружности вокруг ее диаметра.

Шар – фигура, полученная вращением полукруга вокруг его диаметра.

Свойства шара и сферы:

  • Любое сечение шара – круг (например, круг радиуса r)

Сечение шара плоскостью, проходящей через его центр, называется большим кругом (круг радиуса R).

  • Касательной плоскостью к сфере (шару) называется плоскость, имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Касательная плоскость перпендикулярна радиусу сферы в точке касания (по аналогии с перпендикулярностью касательной и радиуса окружности).
  • Объем шара радиуса R находят по формуле:

$V_{text{шара}} = displaystylefrac{4}{3} pi R^3$

  • Площадь сферы радиуса R:

$S_{text{сферы}} = 4pi R^2$

Как найти апофему

Апофемой в пирамиде называют отрезок, проведенный из ее вершины к основанию одной из боковых граней, если отрезок перпендикулярен этому основанию. Боковая грань такой объемной фигуры всегда имеет треугольную форму. Поэтому при необходимости вычисления длины апофемы допустимо использование свойств как многогранника (пирамиды), так и многоугольника (треугольника).

Как найти апофему

Вам понадобится

  • – геометрические параметры пирамиды.

Инструкция

В треугольнике боковой грани апофема (f) является высотой, поэтому при известной длине бокового ребра (b) и угле (γ) между ним и ребром, на которое опущена апофема, можно использовать известную формулу вычисления высоты треугольника. Умножьте заданную длину ребра на синус известного угла: f = b*sin(γ). Эта формула применима к пирамидам любой (правильной или неправильной) формы.

Для вычисления каждой из трех апофем (f) правильной треугольной пирамиды достаточно знать всего один параметр – длину ребра (a). Это объясняется тем, что грани такой пирамиды имеют форму равносторонних треугольников одинаковых размеров. Для нахождения высот каждого из них вычислите половину произведения длины ребра на квадратный корень из трех: f = a*√3/2.

Если известна площадь (s) боковой грани пирамиды, в дополнение к ней достаточно знать длину (a) общего ребра этой грани с основанием объемной фигуры. В этом случае длину апофемы (f) находите удвоением соотношения между площадью и длиной ребра: f = 2*s/a.

Зная общую площадь поверхности пирамиды (S) и периметр ее основания (p) тоже можно вычислить апофему (f), но только для многогранника правильной формы. Удвойте площадь поверхности и разделите результат на периметр: f = 2*S/p. Форма основания в этом случае не имеет значения.

Количество вершин или сторон основания (n) нужно знать в том случае, если в условиях даны длина ребра (b) боковой грани и величина угла (α), который образуют два смежных боковых ребра правильной пирамиды. При таких исходных условиях вычисляйте апофему (f) умножением числа сторон основания на синус известного угла и возведенную в квадрат длину бокового ребра с последующим делением полученной величины пополам: f = n*sin(α)*b²/2.

В правильной пирамиде с четырехугольным основанием для нахождения длины апофемы (f) можно использовать высоту многогранника (H) и длину ребра основания (a). Извлеките квадратный корень из суммы возведенной в квадрат высоты и четверти от возведенной в квадрат длины ребра: f = √(H²+a²/4).

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

На этой странице вы узнаете

  • Чем упаковка стикеров похожа на призму?
  • Как можно попасть в призму в реальной жизни?
  • Как сложить игральные кости из листа бумаги?
  • Как найти объем воды в аквариуме? 

Слышали такое выражение «смотреть сквозь призму чего-либо»? Оно значит ситуацию, в которой мы воспринимаем что-либо под влиянием каких-то убеждений или представлений. Замысловато, конечно… Возможно, потому что и сама призма — непростое понятие. Давайте разберемся с ней с точки зрения математики.

Определение призмы

Многие из нас пользуются стикерами. Для записи своих дел, для закладок, для пометок при ведении конспектов. Даже если мы ими не пользуемся, то наверняка видели их в магазинах или у родственников и друзей. 

Один такой стикер можно принять за плоскость. Теперь вспомним, как выглядит упаковка с ними. Много-много стикеров накладываются друг на друга и получается небольшая объемная фигура, сверху и снизу которой лежат два абсолютно одинаковых листа. При этом сразу заметим, что нижний и верхний стикеры будут параллельны друг другу. 

На самом деле, упаковка со стикерами является не чем иным, как призмой! 

Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. 

Чем упаковка стикеров похожа на призму?

Упаковка стикеров является объемной фигурой, в основаниях которой лежат равные прямоугольники. А боковые  стороны упаковки являются параллелограммом. Таким образом, упаковка стикеров полностью соответствует определению призмы. 

Определение может показаться немного запутанным, но в нем нет ничего страшного. Разберемся, поближе взглянув на составные призмы. 

Строение призмы

Представим себе обычную коробку. Ее дно и крышка равны между собой и лежат в параллельных плоскостях. Это и есть равные многоугольники. Также их называют основаниями призмы. 

Посмотрим на стенки коробки. Они являются параллелограммами, просто с прямыми углами. Подробнее про параллелограммы можно прочитать в статье «Параллелограмм». Эти параллелограммы называются боковыми гранями призмы. 

Возьмем линейку и измерим расстояние между основаниями призмы. Для этого из любой точки одного основания проведем перпендикуляр к другому. 

Подробнее про расстояния между плоскостями можно узнать в статьях «Углы в пространстве» и «Расстояния между фигурами». 

Может возникнуть вопрос, что мы сейчас нашли? Мы нашли высоту призмы. 

Высота призмы — перпендикуляр, опущенный из любой точки одного основания на другое основание призмы. 

В задачах намного удобнее опускать перпендикуляр не из произвольной точки, а из вершины призмы. 

Рассмотрим элементы призмы

Ребро — это линия пересечения двух плоскостей. 

Представим, что вместо картонных стенок в нашей коробке ткань, которую нам нужно натянуть на каркас так, чтобы коробка не изменилась. В этом случае все прямые этого каркаса и будут ребрами.

Ребра бывают двух видов

  • ребра оснований,
  • боковые ребра. 

Отличить их также легко: ребра основания являются стороной многоугольника, который в нем лежит, в то время как боковые ребра не принадлежат основаниям. 

У боковых ребер есть одно очень важное свойство: они равны между собой и параллельны. 

Диагональ призмы — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. 

Например, мы можем взять клетку попугая и от угла до угла сделать ему жердочку, чтобы птичке было весело жить. Эта жердочка и будет диагональю призмы. 

Виды призм

Вернемся к рассуждениям о том, чем упаковка стикеров похожа на призму. Например, куб и параллелепипед будут отличаться. А если в основании призмы будет лежать треугольник или шестиугольник? Или двадцатиугольник? Разделим призмы на несколько видов.

Мы рассмотрим две классификации. 

В первом случае будем рассматривать призмы по фигурам, которые лежат в основании. В многоугольнике может быть множество сторон, а значит, и в основании призмы может быть треугольник, четырехугольник, шестиугольник, десятиугольник и так далее. 

В зависимости от фигуры в основании призмы могут называться по-разному. Вот три основных, которые чаще всего встречаются при решении заданий:

  • треугольная призма,
  • четырехугольная призма,
  • шестиугольная призма. 

Аналогичным образом можно дать название любой призме, например, десятиугольная призма или стоугольная призма. 

В определении призмы сказано, что в боковых гранях лежат параллелограммы. До этого мы чертили только прямоугольники, но в боковых гранях могут лежать не только они. 

С этим связана вторая классификация призм. По этому признаку призмы делятся всего на два вида:

  • прямые,
  • наклонные. 

Разберемся в них чуть подробнее. 

Прямая призма — призма, боковые ребра которой перпендикулярны основаниям. 

В этом случае боковые ребра и ребра оснований действительно образовывают прямоугольник. 

Наклонная призма — призма, боковые ребра которой находятся под углом к основаниям. 

Где мы можем найти прямые и наклонные призмы? Оказывается, в архитектуре. Обычный жилой дом типовой застройки будет прямой призмой. А вот примером наклонной призмы может служить комплекс зданий “Ворота Европы” в Мадриде. 

Чуть подробнее остановимся на прямых призмах. Они встречаются достаточно часто и обладают несколькими важными свойствами. 

Посмотрите на свою комнату. Если по плану квартиры она будет многоугольником, то вы как бы сидите в призме. Теперь ответим на вопрос: как найти высоту комнаты? 

Простой ответ: померить по стене. А если посмотреть на угол, то можно заметить, что ребро призмы совпадает с высотой. Таким образом, мы получаем первое свойство прямых призм. 

Свойство 1. Высота прямой призмы совпадает с её боковым ребром. 

Посмотрим на стены комнаты, на их форму. Они все являются прямоугольниками, верно? 

Свойство 2. Все боковые грани прямой призмы — прямоугольники. 

Как можно попасть в призму в реальной жизни?

Многие комнаты и помещения, особенно в типовой застройке, обладают формой призмы. Сидя в комнате, в классе, в столовой, даже в автобусе — мы как бы находимся  внутри большой призмы.

Если мы в основании прямой призмы разместим правильный многоугольник, у нас получится правильная призма.

Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 

Например,  в правильной треугольной призме будет лежать равносторонний треугольник, а в правильной шестиугольной призме — правильный шестиугольник. 

Определение параллелепипеда

Еще одной разновидностью прямоугольной призмы является параллелепипед. 

Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. 

Параллелепипеды встречаются повсюду: коробки, мебель, комнаты, здания, склады, магазины. Поэтому изучить их не составит труда. 

Свойство параллелепипеда, видимое невооруженным глазом: противоположные грани параллелепипеда равны. Как пример, вспомним ту же комнату: потолок и пол равны, так же как и стены, находящиеся напротив друг друга. 

Нельзя не упомянуть про одно очень важное свойство параллелепипеда

  • Все его диагонали пересекаются в одной точке и этой точкой делятся пополам. Это свойство справедливо для всех видов параллелепипеда. 

Какие бывают параллелепипеды? 

Параллелепипеды также бывают прямыми и наклонными. В этих случаях все определения такие же, как и для всех остальных призм. 

Прямой параллелепипед

Рассмотрим несколько интересных свойств прямого параллелепипеда. 

1 свойство. Боковые ребра прямого параллелепипеда перпендикулярны основаниям. 

2 свойство. Высота прямоугольного параллелепипеда равна длине его бокового ребра. 

3 свойство. Боковые грани, которые лежат напротив друг друга, равны между собой и являются прямоугольниками. 

Прямые параллелепипеды можно разделить еще на два вида:

  • Прямой параллелепипед: в основании лежит параллелограмм;
  • Прямоугольный параллелепипед: в основании лежит прямоугольник. 

Рассмотрим свойства прямоугольного параллелепипеда. 

1 свойство. Все грани прямоугольного параллелепипеда являются прямоугольниками. 

2 свойство. Все углы в прямоугольном параллелепипеде, образованные двумя гранями, равны 90°. 

3 свойство. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин его ширины, длины и высоты. 

Таким образом, мы получаем важную формулу для параллелепипеда. 

d2 = a2 + b2 + c2

Пример 1. Дан прямоугольный параллелепипед. Два ребра, выходящие из одной его вершины, равны (sqrt{35}) и (sqrt{46}). Диагональ параллелепипеда равна 15. Найдите третье ребро параллелепипеда. 

Решение. Пусть третье ребро параллелепипеда равняется х. Получаем уравнение:

(15^2 = (sqrt{35})^2 + (sqrt{46})^2 + x^2)
225 = 35 + 46 + x2
x2 = 144
x = 12

Ответ: 12. 

У прямоугольного параллелепипеда существует еще несколько видов. Прямоугольные параллелепипеды делятся на:

  • Произвольный прямоугольный параллелепипед. В основании может лежать прямоугольник. 
  • Правильный прямоугольный параллелепипед. В основании лежит правильный четырехугольник, то есть квадрат. 
    При этом боковые ребра не равны ребрам основания. Следовательно, в основаниях будут лежать квадраты, а в боковых гранях прямоугольники. 
  • Куб. В основании лежит квадрат, а боковые ребра равны ребрам основания. 
    В кубе все ребра равны, а все его грани будут квадратом. 

Таким образом, мы рассмотрели все виды параллелепипеда. 

Формулы для призмы

Однако ни одна задача не может быть решена без формул. Поэтому необходимо рассмотреть несколько основных формул, которые могут встретиться не только в задачах, но и в жизни. 

Немного вспомним моделирование, а именно развертку кубика. Мы знаем, что из листа бумаги без труда можно сложить кубик, если правильно его вычертить. 

Как сложить игральные кости из листа бумаги?

Задумали вы вечером сыграть с семьей или друзьями в настольную игру. Но вот незадача: игральные кости опять куда-то запропастились. Не беда.Достаточно вычертить на листе бумаги несколько квадратов, вырезать получившуюся фигуру, согнуть по ребрам и склеить между собой с помощью клея. В итоге получатся кубики для игры.

На рисунке оранжевым показаны основания, а желтым боковые грани нашего будущего кубика. А теперь представим, что нам нужно найти площадь боковой поверхности. Как это сделать?

Нужно найти площади желтых квадратиков и сложить их. 

Площадь боковой поверхности призмы — сумма площадей всех боковых ее граней. 

Единой формулы тут нет, поскольку призмы могут очень сильно отличаться друг от друга. В произвольных призмах придется считать площадь каждой боковой грани, а уже после их складывать. 

Но есть один фокус! Правда, он работает только для прямой призмы. Если по условию дана прямая призма, то можно воспользоваться формулой 

Sбок. = P * h

В этой формуле Р — периметр основания, h — высота призмы, которая совпадает с высотой боковой грани. 

Пример 1. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равняется 2, а высота 10. 

Решение

Шаг 1. Поскольку правильная призма по определению прямая, мы можем воспользоваться формулой S = Ph. 

Шаг 2. В основании правильной призмы лежит правильный шестиугольник, следовательно, периметр основания будет равен 6 * 2 = 12. 

Шаг 3. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 12 * 10 = 120. 

Ответ: 120. 

Пример 2. Дана прямая треугольная призма, в основании которой лежит прямоугольный треугольник с катетами 12 и 5. Высота призмы равна 13. Найдите площадь ее боковой поверхности. 

Решение. 

Шаг 1. Поскольку призма прямая, можно воспользоваться формулой S = Ph. 

Шаг 2. Найдем периметр основания. Для этого необходимо найти гипотенузу треугольника. Воспользуемся теоремой Пифагора: (sqrt{12^2 + 5^2} = sqrt{144 + 25} = sqrt{169} = 13). 

Шаг 3. Найдем периметр основания: P = 12 + 5 + 13 = 30. 

Шаг 4. Осталось найти только площадь боковой поверхности. Подставляем данные в формулу и получаем: S = 30 * 13 = 390. 

Ответ: 390. 

Мы научились находить площадь боковой поверхности. А как найти всю площадь призмы? Вспомним нашу развертку с кубиком. Чтобы найти всю площадь кубика, нужно найти площадь всех квадратов, из которых он состоит. То есть и площадь боковой поверхности, и площадь оснований. 

Площадь полной поверхности призмы — сумма площадей всех граней. 

Следовательно, нам нужно сложить площади всех боковых граней и дважды площадь основания. Получаем следующую формулу. 

S = Sбок + 2Sосн

Вспомним обычный хлеб, черный или белый. Его форма очень приближена к параллелепипеду. Тогда его корочка будет площадью полной поверхности параллелепипеда. А все что внутри, то есть мякиш, можно принять за объем. 

Пример 3. Дана прямая призма, в основании которой лежит ромб с диагоналями 12 и 16. Боковое ребро призмы равно 25. Найдите площадь поверхности призмы. 

Решение. 

Шаг 1. Найдем площадь основания. Площадь ромба можно найти по формуле (frac{1}{2} * D_1 * D_2). Следовательно, площадь ромба равна (frac{1}{2} * 12 * 16 = 96). 

Шаг 2. Заметим, что диагонали ромба образуют четыре равных прямоугольных треугольника. Следовательно, чтобы найти сторону ромба, достаточно рассмотреть прямоугольный треугольник с катетами 6 и 8. По теореме Пифагора сторона ромба будет равна (sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10).

Шаг 3. Периметр ромба будет равен 4 * 10 = 40. Тогда площадь боковой поверхности равна 40 * 25 = 1000. 

Шаг 4. Площадь полной поверхности будет равняться 1000 + 2 * 96 = 1000 + 192 = 1192.

Ответ: 1192

Пример 4. Площадь поверхности правильной четырехугольной призмы равняется 1980. Сторона основания равна 5. Найдите боковое ребро этой призмы. 

Решение. 

Шаг 1. Воспользуемся формулой S = Sбок + 2Sосн. Площадь основания будет равняться площади квадрата, то есть 5 * 5 = 25. 

Шаг 2. Подставим известные величины в формулу: 

1980 = Sбок + 2 * 25
Sбок = 1930

Шаг 3. Площадь боковой поверхности равна произведению периметра основания на высоту призмы. Периметр равен 5 * 4 = 20. Тогда получаем уравнение:

20h = 1930
h = 96,5

Шаг 4. Поскольку по условию дана правильная призма, то высота совпадает с боковым ребром. Следовательно, боковое ребро равняется 96,5.

Ответ: 96,5. 

Теперь рассмотрим, как найти объем призмы. Допустим, мы налили в прямоугольный аквариум немного воды. Как определить, сколько воды мы налили?

Для этого достаточно воспользоваться формулой объема призмы. 

V = Sосн. * h

Эта формула общая, однако для каждой призмы она может принять свой вид в зависимости от того, какую формулу нужно использовать для поиска площади основания или высоты. 

Например, чтобы найти объем воды в аквариуме, необходимо длину умножить на ширину и на высоту, а значит формула принимает вид V = abh. 

Как найти объем воды в аквариуме? 

Для этого достаточно перемножить ширину, длину аквариума и высоту воды. Тем самым мы найдем объем призмы, форму которой принимает вода в аквариуме. 

Пример 5. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 12 и 15. Боковое ребро призмы равно 4. Найдите объем этой призмы. 

Решение. 

Шаг 1. Для начала найдем площадь основания. В этом случае мы можем воспользоваться формулой (frac{1}{2}ab). Площадь равна (frac{1}{2} * 12 * 15 = 90).

Шаг 2. Воспользуемся формулой объема призмы и подставим известные величины: 

V = 90 * 4 = 360.

Ответ: 360. 

Пример 6. Дан сосуд, в основании которого лежит правильный треугольник. В этот сосуд налили 3000 см3 воды. Высота жидкости оказалась равной 10 см. После этого в сосуд опустили шарик и высота изменилась с 10 см на 14 см. Найдите объем шарика. 

Решение. Немного вспомним физику, а именно тот факт, что объем вытесненной жидкости равен объему тела. Значит, чтобы найти объем шарика, необходимо найти насколько изменился объем воды. 

Шаг 1. Найдем площадь основания сосуда. Для этого немного преобразуем формулу объема: 
(S = frac{V}{h})
Тогда:
(S = frac{3000}{10} = 300)

Шаг 2. А теперь найдем объем после того, как в воду погрузили шарик. Он будет равен 300 * 14 = 4200. 

Шаг 3. Объем вытесненной жидкости равен 4200 — 3000 = 1200.

Ответ: 1200. 

Мы рассмотрели основные формулы, которые применяются для решения задач. Стоит заметить, что они универсальны, и в каждой задаче их рационально преобразовывать под ситуацию. 

Фактчек 

  • Призма — это многогранник, в котором две грани являются равными многоугольниками и лежат в параллельных плоскостях, а все остальные — параллелограммами. Равные многоугольники называются основаниями призмы, а остальные стороны — боковыми гранями. В призме есть ребра — линии пересечения двух ее граней. Ребра как бы образуют каркас призмы. 
  • Призмы можно разделить на несколько видов по тому, какая фигура лежит в основании: треугольник, четырехугольник, шестиугольник или любой другой многоугольник. Призмы бывают прямые и наклонные. В прямых призмах боковые ребра перпендикулярны основанию, а в наклонных — нет. Правильная призма — прямая призма, в основании которой лежит правильный многоугольник. 
  • Параллелепипед — это четырехугольная призма, все грани которой являются параллелограммами. Параллелепипеды бывают наклонными и прямыми. Прямые параллелепипеды включают в себя прямоугольные параллелепипеды, которые, в свою очередь, делятся на произвольные, правильные и кубы. 
  • В призме можно найти площадь боковой поверхности, площадь полной поверхности и объем. Для каждого из этих случаев необходимо пользоваться формулами. 

Проверь себя

Задание 1.
Что такое диагональ призмы?

  1. Отрезок, соединяющий две соседние вершины в призме.
  2. Отрезок, соединяющий противоположные углы в боковой грани призмы.
  3. Отрезок, соединяющий противоположные углы в основании призмы.
  4. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.  

Задание 2.
Что такое прямая призма?

  1. Призма, боковые ребра которой перпендикулярны основаниям.
  2. Призма, боковые ребра которой расположены под острым углом относительно основания.
  3. Призма, боковые ребра которой расположены под тупым углом относительно основания.
  4. Призма, в основании которой лежит прямоугольник.

Задание 3.
Как найти высоту прямой призмы?

  1. Высоту нужно найти с помощью оснований.
  2. Высота совпадает с боковым ребром.
  3. Необходимо найти расстояние между двумя вершинами, не принадлежащими одной грани.
  4. В прямой призме невозможно найти высоту. 

Задание 4.
Какая фигура лежит в основании прямоугольного параллелепипеда?

  1. Параллелограмм с острыми углами.
  2. Ромб с острыми углами.
  3. Трапеция.
  4. Прямоугольник. 

Задание 5. 
Как найти площадь полной поверхности призмы?

  1. Нужно найти сумму площадей всех боковых граней.
  2. Нужно сложить площадь боковой поверхности и площадь основания.
  3. Нужно сложить площадь боковой поверхности и удвоенную площадь основания.
  4. Нужно сложить площади оснований. 

Ответы: 1. — 4 2. — 1 3. — 2 4. — 4 5. — 3

Добавить комментарий