Усечённой пирамидой называется часть пирамиды между её основанием и плоскостью, параллельной ему.
Усечённая пирамида, полученная из правильной пирамиды сечением, параллельным её основанию, называется правильной усечённой пирамидой.
Рис. (1). Правильная усечённая треугольная пирамида (ABCKNV)
(ABC) и (KNV) — основания пирамиды, OO1 — высота. |
Рис. (2). Правильная усечённая четырёхугольная пирамида (ABCDZVNK) (ABCD) и (ZVNK) — основания, OO1 — высота |
Объём усечённой пирамиды:
.
Площадь боковой поверхности правильной усечённой пирамиды:
;
(h) — апофема правильной усечённой пирамиды, на данных рисунках это отрезок (LF).
Рис. (3). Апофема правильной треугольной усечённой пирамиды |
Рис. (4). Апофема правильной четырёхугольной усечённой пирамиды |
Источники:
Рис .1. Правильная усечённая треугольная пирамида ABCKNV. © ЯКласс.
Рис.2. Правильная усечённая четырёхугольная пирамида ABCDZVNK. © ЯКласс.
Рис. 3. Апофема правильной треугольной усечённой пирамиды. © ЯКласс.
Рис. 4. Апофема правильной четырёхугольной усечённой пирамиды. © ЯКласс.
Стороны оснований правильной усеченной пирамиды дают возможность вычислить все, что связано с основаниями, используя формулы для правильных многоугольников. Среди таких параметров можно перечислить внутренний угол многоугольника, его периметр, площадь, радиус окружности, вписанной в основание, и радиус окружности, которая может быть описана около него.
γ=180°(n-2)/n
P=n(a+b+d)
S_a=(na^2)/(4 tan〖(180°)/n〗 )
S_b=(nb^2)/(4 tan〖(180°)/n〗 )
r_a=a/(2 tan〖(180°)/n〗 )
r_b=b/(2 tan〖(180°)/n〗 )
R_a=a/(2 sin〖(180°)/n〗 )
R_b=a/(2 sin〖(180°)/n〗 )
Зная апофему усеченной пирамиды, можно вычислить боковое ребро через прямоугольную трапецию, которая их связывает по боковой грани пирамиды. Основаниями такой трапеции являются половины сторон оснований пирамиды, поэтому по прямоугольному треугольнику боковое ребро будет равно радикалу из теоремы Пифагора. (рис. 50.2)
d=√(f^2+(b/2-a/2)^2 )=√(f^2+(b-a)^2/4)
Чтобы вычислить высоту усеченной пирамиды, необходимо найти такую же прямоугольную трапецию во внутреннем пространстве усеченной пирамиды, тогда в такой трапеции и прямоугольном треугольнике высота будет равна аналогичному радикалу через радиусы вписанных в основания окружностей и апофему (рис. 50.4)
h=√(f^2-(r_b-r_a )^2 )
Чтобы рассчитать углы при основаниях усеченной пирамиды и апофеме, можно воспользоваться в этой же трапеции/прямоугольном треугольнике тригонометрическими отношениями и принципом суммы углов трапеции.
cosβ=(r_b-r_a)/f
α=180°-β
Углы при основаниях и апофеме усеченной пирамиды можно вычислить в трапеции, которую боковое ребро образует с высотой пирамиды подобным образом, через радиусы вписанных в основания окружностей. (рис. 50.3)
cosδ=(R_b-R_a)/d
ε=180°-δ
Площадь боковой поверхности усеченной пирамиды равна произведению количества сторон в основании на апофему и полусумму сторон оснований. Чтобы найти площадь полной поверхности через стороны усеченной пирамиды, нужно прибавить к площади боковой поверхности еще два основания.
S_(б.п.)=nf (a+b)/2
S_(п.п.)=S_(б.п.)+S_(осн.1,2)=n(f (a+b)/2+a^2/(4 tan〖(180°)/n〗 )+b^2/(4 tan〖(180°)/n〗 ))
Для того чтобы вычислить объем усеченной пирамиды, необходимо сначала найти высоту через теорему Пифагора, как было указано выше, а затем найти треть произведения высоты на сумму площадей оснований с квадратным корнем из их произведения.
V=1/3 h(S_осн1+S_осн2+√(S_осн1 S_осн2 ))
Данный сайт находится в режиме тестирования, обо всех выявленных проблемах Вы можете сообщить на почту
Формулы усеченной пирамиды
Для расчёта всех основных параметров усеченной пирамиды воспользуйтесь калькулятором.
Площадь верхнего основания правильной усеченной пирамиды
$$
S_{верх.основ} = {N * CD^2 over 4 * tan(180/N)}
$$
Площадь нижнего основания правильной усеченной пирамиды
$$
S_{нижн.основ} = {N * AB^2 over 4 * tan(180/N)}
$$
Объём усеченной пирамиды
$$
V = {1 over 3} * OE * (S_{верх.основ} + sqrt{S_{верх.основ} * S_{нижн.основ}} + S_{нижн.основ})
$$
Апофема усеченной пирамиды
Так как боковая сторона усеченной пирамиды – это трапеция, то высота этой трапеции и будет апофемой усеченной пирамиды
$$
SK = sqrt{AC^2 – ({(AB – CD)^2 + AC^2 – BD^2 over 2 * (AB – CD)})^2}
$$
Площадь боковой поверхности
Площадью боковой поверхности усеченной пирамиды является сумма всех боковых сторон, каждая боковая сторона является трапецией
$$
S_{Бок.стороны} = {1 over 2} * SK * (CD + AB)
$$
ВИДЕОУРОК
Усечённой пирамидой ABCDA1B1C1D1 называется часть пирамиды SABCD, заключённая между её основанием и секущей плоскостью, параллельной основанию.
Основаниями усечённой пирамиды называются параллельные грани ABCD и A1B1C1D1 (ABCD – нижнее основание, A1B1C1D1 – верхнее основание).
Высотой усечённой пирамиды называется отрезок прямой, перпендикулярный её основаниям и заключённый между их плоскостями.
Усечённая пирамида называется правильной, если её основания – правильные многоугольники и прямая, соединяющая центры оснований, перпендикулярна плоскости оснований.
Апофемою правильной усечённой пирамиды называют высоту её боковой грани.
Свойства усечённой пирамиды.
Основания – подобные многоугольники.
Боковые грани – трапеции.
Отношение высоты к высоте пирамиды, из которой она получена, равно отношению разности сторон одной грани к длине нижнего основания этой самой грани.
Поверхность усечённой пирамиды.
Площадь боковой поверхности усечённой пирамиды равна сумме площадей её боковых граней.
Полная поверхность усечённой пирамиды равна сумме площади боковой поверхности и площадей оснований.
Боковая поверхность правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему.
где Р и Р1 – периметры оснований, m – апофема усечённой пирамиды.
Правильная четырёхугольная усечённая пирамида.
Правильная треугольная усечённая пирамида.
Правильная шестиугольная усечённая пирамида.
ЗАДАЧА:
В правильной четырёхугольной усечённой пирамиде стороны оснований равны 5 и 11 дм, а диагональ пирамиды – 12 дм. Определите боковую поверхность пирамиды.
РЕШЕНИЕ:
В усечённой пирамиде АС1 имеем
А1В1 = В1С1 = С1D1 = D1А1 = 5 дм,
АВ = ВС = СD = DА = 11 дм и
А1С = 12 дм.
Найти боковую поверхность.
Из вершины А1 проведём А1N ⊥ AB и А1M ⊥ AC, тогда А1N – апофема пирамиды.
Боковая поверхность
Sбок = 1/2 (P + P1) × A1N.
где P = 4AB = 44
дм, а
P1 = 4A1B1 = 20
дм.
В квадратах АВСD и А1В1С1D1 по иіх сторонам определяем диагонали
АС = 11√͞͞͞͞͞2 (дм),
A1С1 = 5√͞͞͞͞͞5 (дм).
Рассмотрев равнобедренную трапецию АА1С1С, находим
и соответственно
Тогда из прямоугольного ∆ А1MC находим высоту пирамиды
Из равнобедренного прямоугольного ∆ AMN (∠ ANM = 90°), гипотенуза которого AM = 3√͞͞͞͞͞2 (дм), находим сторону
Апофему данной пирамиды найдём из прямоугольного
Подставляя найденные значения P, P1 и A1N в формулу боковой поверхности пирамиды, получим:
Sбок = 1/2 (44 + 20)×5 = 160 (дм2).
ОТВЕТ:
S = 160 дм2 = 1,6 м2.
ЗАДАЧА:
Высота правильной четырёхугольной усечённой пирамиды
равна 4
см. Стороны оснований равны 2
см и
8 см. Найдите площадь диагональных сечений.
РЕШЕНИЕ:
Начертим чертёж.
Диагональные сечения
AA1C1D и BB1D1D– равные равнобедренные трапеции с высотой ОО1 = h = 4 см и с основаниями
– диагоналями оснований АС и А1С1 та ВD и В1D1 соответственно. ABCD – квадрат, а поэтому
AC2 = AD2 + CD2 =
= 82 + 82 = 128,
AC = √͞͞͞͞͞128 = 8√͞͞͞͞͞2 (cм).
A1B1C1D1 – квадрат, а поэтому
A1C12 = A1D12 + C1D12 = 22 + 22 = 8,
A1C1 = √͞͞͞͞͞8 = 2√͞͞͞͞͞2 (cм).
ОТВЕТ: 20√͞͞͞͞͞2 (cм2)
ЗАДАЧА:
В правильной четырёхугольной усечённой пирамиде высота
равна 2
см, а стороны оснований – 3 см и 5
см. Найдите диагональ этой пирамиды.
РЕШЕНИЕ:
Начертим чертёж.
Диагональным сечением данной пирамиды
является равнобедренная трапеция АА1С1С.
Так как
А1С1 и АС –
диагонали квадратов, А1В1С1D1 и ABCD, то
А1С1 = А1В1 ∙ √͞͞͞͞͞2 = 3√͞͞͞͞͞2 (см) и
АС = АВ ∙ √͞͞͞͞͞2 = 5√͞͞͞͞͞2 (см).
Проведём
А1К ⊥
АС
и С1Н ⊥ АС. Тогда А1С1НК – прямоугольник
и А1С1 =
КН. Так что, прямоугольные треугольники АА1К и СС1Н равны по гипотенузе и катету.
Тогда,
АК = СН = 1/2 (АС – А1С1) =
= 1/2 (5√͞͞͞͞͞2 – 3√͞͞͞͞͞2) = √͞͞͞͞͞2 (см).
Тогда,
СК = АС – АК = 5√͞͞͞͞͞2 – √͞͞͞͞͞2 =
4√͞͞͞͞͞2 (см),
и по
теореме Пифагора в ∆ А1СК:
ОТВЕТ: 6 см
ЗАДАЧА:
В правильной четырёхугольной пирамиде плоскость, проведённая
параллельно основанию, делит высоту пирамиды пополам. Найдите сторону основания,
если площадь сечения равна 36 см2.
РЕШЕНИЕ:
Пусть SABCD – данная правильная пирамида,
основание – квадрат
ABCD, SO – высота, O –
точка пресечения диагоналей квадрата, φ – плоскость сечения, О1 –
точка пересечения φ и SO, φ ∥ (ABC), S = 36 cм2.
Поскольку φ ∥ (ABC),
то прямые пересечения 𝜑 и боковых граней параллельны соответственно рёбрам
основания:
A1B1 ∥ AB, B1C1 ∥ BC, C1D1 ∥ CD,
A1D1 ∥ AD, 𝜑 ⊥ SO,
можно рассмотреть гомотетию с центром S и коэффициентом
которая преобразует квадрат ABCD в квадрат
А1В1С1D1, стороны которого в два раза меньше, а
SABCD = 4SА1В1С1D1 = 4 ∙ 36 (см2).
SABCD = a2 = 4 ∙
36,
a = 2 ∙ 6
= 12 (см).
ОТВЕТ: 12 см
Задания к уроку 10
- Задание 1
- Задание 2
- Задание 3
Другие уроки:
- Урок 1. Прямые и плоскости в пространстве
- Урок 2. Прямая призма
- Урок 3. Наклонная призма
- Урок 4. Правильная призма
- Урок 5. Параллелепипед
- Урок 6. Прямругольный параллелепипед
- Урок 7. Куб
- Урок 8. Пирамида
- Урок 9. Правильная пирамида
- Урок 11. Цилиндр
- Урок 12. Вписанная и описанная призмы
- Урок 13. Конус
- Урок 14. Усечённый конус
- Урок 15. Вписанная и описанная пирамиды
- Урок 16. Сфера и шар
- Урок 17. Комбинация тел
Когда человек слышит слово “пирамида”, то сразу вспоминает величественные египетские сооружения. Тем не менее древние каменные гиганты являются лишь одним из представителей класса пирамид. В данной статье рассмотрим с геометрической точки зрения свойства правильной четырехугольной пирамиды .
Что такое пирамида в общем случае?
В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.
Вам будет интересно:Литовские статуты: даты и история изданий, регламент, хронология принятия статутов
Мы видим что первая фигура имеет треугольное основание, вторая – четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.
Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:
- в основании должен находиться правильный многоугольник;
- боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.
Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.
Правильная четырехугольная пирамида
Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.
Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).
Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.
Египетские пирамиды в Гизе являются правильными четырехугольными.
Далее приведем формулы, позволяющие определить все характеристики этой фигуры.
Четыре основных линейных параметра
Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.
Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:
b = √(a2 / 2 + h2)
Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):
ab = √(a2 / 4 + h2)
Очевидно, что боковое ребро b всегда больше апофемы ab.
Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.
Площадь и объем фигуры
Это еще два важных свойства правильной четырехугольной пирамиды . Основание фигуры имеет следующую площадь:
So = a2
Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:
Sb = 2 × a × ab
Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.
Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:
S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)
Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.
Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:
V = 1/3 × h × a2
То есть V равен третьей части произведения высоты фигуры на площадь ее основания.
Свойства правильной усеченной четырехугольной пирамиды
Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.
Удобнее всего изучать характеристики усеченной пирамиды, если ее основания параллельны друг другу. В этом случае нижнее и верхнее основания будут подобными многоугольниками. Поскольку в четырехугольной правильной пирамиде основание – это квадрат, то образованное при срезе сечение тоже будет представлять квадрат, но уже меньшего размера.
Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.
Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:
V = 1/3 × h × (So1 + So2 + √(So1 × So2))
Здесь h – расстояние между основаниями фигуры, So1, So2 – площади нижнего и верхнего оснований.