Как найти аппликату точки пересечения

Содержание:

Плоскость в пространстве

Общее уравнение плоскости

Определение: Уравнение вида Плоскость и прямая в пространстве с примерами решения

Определение: Порядок поверхности определяется по высшему показателю степени переменных х, у и z или по сумме показателей степени в произведении этих величин.

Определение: Уравнение вида Ax+By+Cz+D=O называется общим уравнением плоскости.

Рассмотрим частные случаи приведенного уравнения:

1. D = 0; Ах + By + Сz = 0. Из этого уравнения видно, что точка О(0; 0; 0) удов- летворяет этому уравнению, следовательно, это уравнение описывает плоскость, проходящую через начало координат (Рис. 36). Плоскость и прямая в пространстве с примерами решения

Рис. 36. Плоскость, проходящая через начало координат.

2. С = 0; Ах + Ву + D = 0. Этому уравнению удовлетворяет любое значение переменной z, поэтому данное уравнение описывает плоскость, которая параллельна оси аппликат (Oz) (Рис. 37). Плоскость и прямая в пространстве с примерами решения

Рис. 37. Плоскость, проходящая параллельно оси аппликат.

  • Плоскость и прямая в пространстве с примерами решения – плоскость параллельна оси ординат (Оу);
  • Плоскость и прямая в пространстве с примерами решения – плоскость параллельна оси абсцисс (Ох).

Замечание: При отсутствии в уравнении плоскости одной из переменных величин говорит о том, что плоскость параллельна соответствующей координатной оси.

3. С=0; D=0; Ах+ By=0 – плоскость проходит через начало отсчета параллельно оси аппликат (Рис. 38). Плоскость и прямая в пространстве с примерами решения

Рис. 38. Плоскость, проходящая через начало координат параллельно оси аппликат.

  • Плоскость и прямая в пространстве с примерами решения – плоскость проходит через начало координат параллельно оси ординат;
  • Плоскость и прямая в пространстве с примерами решения – плоскость проходит через начало координат параллельно оси абсцисс.

4. Плоскость и прямая в пространстве с примерами решения – плоскость проходит через точку Плоскость и прямая в пространстве с примерами решения параллельно плоскости Плоскость и прямая в пространстве с примерами решения (Pис. 39). Плоскость и прямая в пространстве с примерами решения

Рис. 39. Плоскость, проходящая параллельно координатной плоскости Плоскость и прямая в пространстве с примерами решения

5. В = С = D = 0; Ах = 0=>х = 0 – уравнение описывает плоскость Плоскость и прямая в пространстве с примерами решения (Рис. 40).

Плоскость и прямая в пространстве с примерами решения

Рис. 40. Координатная плоскость Плоскость и прямая в пространстве с примерами решения.

Другие уравнения плоскости

1. Уравнение плоскости в отрезках. Пусть в уравнении Плоскость и прямая в пространстве с примерами решениякоэффициент Плоскость и прямая в пространстве с примерами решения тогда выполним следующие преобразования

Плоскость и прямая в пространстве с примерами решения

Введем следующие обозначения Плоскость и прямая в пространстве с примерами решения тогда уравнение примет вид Плоскость и прямая в пространстве с примерами решения которое называется уравнением плоскости в отрезках. Найдем точки пересечения плоскости с координатными осями:Плоскость и прямая в пространстве с примерами решения

Откладывая на координатных осях точки М, N и Р, соединяя их прямыми лучим изображение данной плоскости (для определенности принято, что параметры а, b, с положительные) (Рис. 41): Плоскость и прямая в пространстве с примерами решения

Рис. 41. Отрезки, отсекаемые плоскостью на координатных осях.

Из рисунка видно, что числа а, b, с показывают отрезки, отсекаемые плоскостью на координатных осях, считая от начала координат.

2. Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданному вектору. Пусть задана точка Плоскость и прямая в пространстве с примерами решения через которую проходит плоскость перпендикулярно к заданному вектору Плоскость и прямая в пространстве с примерами решения ОЗ. Вектор Плоскость и прямая в пространстве с примерами решения называется нормальным вектором плоскости, если он перпендикулярен любой паре неколлинеарных векторов, лежащих на плоскости.

Возьмем на плоскости произвольную точку Плоскость и прямая в пространстве с примерами решения и образуем вектор Плоскость и прямая в пространстве с примерами решениясоединяющий точку Плоскость и прямая в пространстве с примерами решения с точкой М (Рис. 42). Тогда Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Рис. 42. Плоскость, проходящая через заданную точку перпендикулярно к нормальному вектору.

В силу того, вектор Плоскость и прямая в пространстве с примерами решения лежит в плоскости, то он перпендикулярен нормальному вектору Плоскость и прямая в пространстве с примерами решения Используя условие перпендикулярности векторов Плоскость и прямая в пространстве с примерами решения в проекциях перемножаемых векторов, получим уравнение плоскости, проходящая через заданную точку перпендикулярно к нормальному вектору: Плоскость и прямая в пространстве с примерами решения

Пример:

Составить уравнение плоскости, проходящей через т. Плоскость и прямая в пространстве с примерами решения параллельно плоскости Плоскость и прямая в пространстве с примерами решения

Решение:

Так как искомая плоскость параллельна плоскости (Q), то нормальный вектор этой плоскости Плоскость и прямая в пространстве с примерами решения (см. коэффициенты при переменных величинах х, у и z в уравнении плоскости Плоскость и прямая в пространстве с примерами решения) перпендикулярен к искомой плоскости и может быть взят в качестве нормального вектора этой плоскости. Используя уравнение плоскости, проходящей через заданную точку перпендикулярно к данному вектору, получаем: Плоскость и прямая в пространстве с примерами решения

Пример:

Составить уравнение плоскости, проходящей через точки А(—1; 1 ;2) и В(0; —1; —1) параллельно вектору Плоскость и прямая в пространстве с примерами решения = (0; 0; -2):

Плоскость и прямая в пространстве с примерами решения

Решение:

Построим на искомой плоскости вектор Плоскость и прямая в пространстве с примерами решения и вычислим нормальный вектор Плоскость и прямая в пространстве с примерами решения как векторное произведение векторов Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Уравнение плоскости, проходящей через заданную точку Плоскость и прямая в пространстве с примерами решения перпендикулярно к заданному векторуПлоскость и прямая в пространстве с примерами решения имеет вид:Плоскость и прямая в пространстве с примерами решения

Отметим, что при выборе точки, через которую проходит искомая плоскость из точек Плоскость и прямая в пространстве с примерами решения брать как точку, через которую проходит искомая плоскость.

3. Уравнение плоскости, проходящей через три заданные точки. Пусть плоскость проходит через 3 известные точки Плоскость и прямая в пространстве с примерами решения Возьмем произвольную точку плоскости М(х; у; z) и образуем векторы Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Рис. 43. Плоскость, проходящая через три заданные точки.

Вектора Плоскость и прямая в пространстве с примерами решения компланарные, используя условие компланарности векторов Плоскость и прямая в пространстве с примерами решения получим уравнение плоскости, проходящей через 3 известные точки: Плоскость и прямая в пространстве с примерами решения

Замечание: Полученный определитель третьего порядка раскрывается по элементам первой строки.

Пример:

Составить уравнение плоскости, проходящей через три заданные точки Плоскость и прямая в пространстве с примерами решения

Решение:

Составим определитель третьего порядка Плоскость и прямая в пространстве с примерами решения Раскроем определитель по элементам первой строки Плоскость и прямая в пространстве с примерами решения Вычислим определители второго порядка: -7(x-l) + 5y + 4(z + 2) = 0. Умножив уравнение на (-1) и раскрыв скобки, получим окончательный ответ:Плоскость и прямая в пространстве с примерами решения

Основные задачи о плоскости в пространстве

1. Угол между пересекающимися плоскостями. Пусть даны две пересекающиеся плоскости Плоскость и прямая в пространстве с примерами решения которые имеют нормальные векторы

Плоскость и прямая в пространстве с примерами решения

Пусть линия пересечения плоскостей определяется прямой (l). Из одной точки этой прямой проведем два перпендикулярных к прямой вектора Плоскость и прямая в пространстве с примерами решенияМеньший угол между этими векторами определяет угол между плоскостями (Рис.44):

Плоскость и прямая в пространстве с примерами решения

Рис.44. Угол между плоскостями.

В силу того, что Плоскость и прямая в пространстве с примерами решения то угол между нормальными векторами равен углу между векторами Плоскость и прямая в пространстве с примерами решения Из векторной алгебры известно, что угол между векторами определяется формулой: Плоскость и прямая в пространстве с примерами решения

Следствие: Если плоскости перпендикулярны (Плоскость и прямая в пространстве с примерами решения), то условием перпендикулярности плоскостей является равенство: Плоскость и прямая в пространстве с примерами решения.

Следствие: Если плоскости параллельны, то нормальные вектора коллинеарны, следовательно, условие параллельности плоскостей: Плоскость и прямая в пространстве с примерами решения

2. Расстояние от данной точки до заданной плоскости. Расстояние от данной точки Плоскость и прямая в пространстве с примерами решения до заданной плоскости Плоскость и прямая в пространстве с примерами решения определяется по формуле: Плоскость и прямая в пространстве с примерами решения

Пример:

На каком расстоянии от плоскости Плоскость и прямая в пространстве с примерами решения находится точка Плоскость и прямая в пространстве с примерами решения

Решение:

Воспользуемся приведенной формулой: Плоскость и прямая в пространстве с примерами решения

Прямая в пространстве

Общее уравнение прямой

Прямая в пространстве может быть задана как пересечение двух плоскостей: Плоскость и прямая в пространстве с примерами решения

Определение: Геометрическое место точек пространства, удовлетворяющих системе уравнений (1), называется прямой в пространстве, а система уравнений (1) называется общим уравнением прямой.

Замечание: Для того чтобы система уравнений (1) определяла прямую в пространстве необходимо и достаточно, чтобы нормальные вектора плоскостей, определяющих прямую, Плоскость и прямая в пространстве с примерами решения были неколлинеарными, т.е. выполняется одно из неравенств: Плоскость и прямая в пространстве с примерами решения

Пусть прямая проходит через точку Плоскость и прямая в пространстве с примерами решения параллельно вектору Плоскость и прямая в пространстве с примерами решения который называется направляющим вектором прямой (см. Лекцию Ле 7), тогда ее уравнение называется каноническим и имеет вид:

Плоскость и прямая в пространстве с примерами решения

Замечание: Если в уравнении (2) одна из проекций направляющего вектора равна 0, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Пример:

Как расположена прямая Плоскость и прямая в пространстве с примерами решения относительно координатных осей.

Решение:

Согласно замечанию эта прямая будет перпендикулярна осям абсцисс и ординат (параллельна оси аппликат) и будет проходить через точку Плоскость и прямая в пространстве с примерами решения Приравняв каждую дробь уравнения (2) параметру t, получим параметрическое уравнение прямой:

Плоскость и прямая в пространстве с примерами решения

Пример:

Записать уравнение прямой Плоскость и прямая в пространстве с примерами решения в параметрическом виде.

Решение:

Приравняем каждую дробь к параметру t: Плоскость и прямая в пространстве с примерами решенияЕсли прямая проходит через две известные точки Плоскость и прямая в пространстве с примерами решения то ее уравнение имеет вид: Плоскость и прямая в пространстве с примерами решения и называется уравнением прямой, проходящей через две заданные точки.

Пример:

Составить канонические и параметрические уравнения прямых, проходящих через точки А (— 1; 1; 2 ), В (0; -1; -1) И С (1; 0; -1), D (l; 0; 1 ).

Решение:

Составим каноническое уравнение прямой линии, проходящей через точки Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Перейдём к параметрическому уравнению Плоскость и прямая в пространстве с примерами решения или Плоскость и прямая в пространстве с примерами решения Составим каноническое уравнение прямой линии, проходящей через точки Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Перейдём к параметрическому уравнению прямой Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения

Основные задачи о прямой в пространстве

1. Переход от общего уравнения прямой к каноническому. Пусть прямая задана общим уравнениемПлоскость и прямая в пространстве с примерами решения Для того, чтобы перейти от этого уравнения прямой к каноническому, поступают следующим образом:

Пример:

Записать уравнение прямой Плоскость и прямая в пространстве с примерами решенияв каноническом и параметрическом виде.

Решение:

Положив х = 0, получим СЛАУПлоскость и прямая в пространстве с примерами решения Складывая уравнения, найдем у = -4. Подставив это значение переменной у во второе уравнение системы, получим z = —5. Таким образом, прямая проходит через точку Плоскость и прямая в пространстве с примерами решения Найдем направляющий вектор прямой как векторное произведение нормальных векторов заданных плоскостей:

Плоскость и прямая в пространстве с примерами решения

Запишем каноническое Плоскость и прямая в пространстве с примерами решения и параметрическое уравнения прямой:

Плоскость и прямая в пространстве с примерами решения

Угол между пересекающимися прямыми

Угол между двумя пересекающимися прямыми определяется как угол между их направляющими векторами. Если прямые Плоскость и прямая в пространстве с примерами решения имеют направляющие вектора

Плоскость и прямая в пространстве с примерами решения

соответственно, то угол между прямыми определяется по формуле: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямые перпендикулярны (Плоскость и прямая в пространстве с примерами решения), то условием перпендикулярности прямых является равенство: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямые параллельны, то направляющие вектора коллинеарны, следовательно, условие параллельности прямых: Плоскость и прямая в пространстве с примерами решения

Координаты точки пересечения прямой и плоскости

Пусть прямая (L) задана общим уравнением Плоскость и прямая в пространстве с примерами решения а плоскость (Q) уравнением Ax+By+Cz+D=0. Так как точка пересечения прямой и плоскости принадлежит одновременно обоим этим объектам, то ее координаты находят из системы уравнений: Плоскость и прямая в пространстве с примерами решения Если прямая (L) задана каноническим уравнением Плоскость и прямая в пространстве с примерами решения а плоскость (Q)

Рассмотрим возможные случаи:

  1. если выполняются условия Плоскость и прямая в пространстве с примерами решения, то прямая не пересекает плоскость (прямая параллельна плоскости);
  2. при условиях Плоскость и прямая в пространстве с примерами решения прямая лежит на плоскости;
  3. если Плоскость и прямая в пространстве с примерами решения, прямая пересекает плоскость в одной точке.

Пример:

Найти координаты точки пересечения прямой (L), заданной уравнением Плоскость и прямая в пространстве с примерами решения и плоскости (Q): 2x-y+3z-4=0.

Решение:

Перепишем уравнение прямой (L) в параметрическом виде Плоскость и прямая в пространстве с примерами решения Подставим найденные величины в уравнение плоскости (Q)? получим

Плоскость и прямая в пространстве с примерами решения

Найденное значение параметра Плоскость и прямая в пространстве с примерами решения подставим в параметрическое уравнение прямой Плоскость и прямая в пространстве с примерами решения Таким образом, прямая пересекает заданную плоскость в точке Плоскость и прямая в пространстве с примерами решения

  • Заказать решение задач по высшей математике

Угол между прямой и плоскостью

Пусть дана плоскость (Q) с нормальным вектором Плоскость и прямая в пространстве с примерами решения и пересекающая ее прямая (L) с направляющим вектором Плоскость и прямая в пространстве с примерами решения (Рис.45). Плоскость и прямая в пространстве с примерами решения

Рис. 45. Угол между прямой и плоскостью.

Угол Плоскость и прямая в пространстве с примерами решения является углом между прямой (L) и плоскостью (Q). Угол между нормальным вектором плоскости и прямой обозначим через Плоскость и прямая в пространстве с примерами решения Из рисунка видно, что Плоскость и прямая в пространстве с примерами решения Следовательно,

Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямая перпендикулярна плоскости (Плоскость и прямая в пространстве с примерами решения), то условие перпендикулярности прямой и плоскости имеет вид: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямая параллельна плоскости (Плоскость и прямая в пространстве с примерами решения), то направляющий вектор прямой и нормальный вектор плоскости перпендикулярны (Плоскость и прямая в пространстве с примерами решения), следовательно, условие параллельности прямой и плоскости: Плоскость и прямая в пространстве с примерами решения.

Плоскость и прямая в пространстве

Всякое уравнение первой степени относительно координат Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.

Вектор Плоскость и прямая в пространстве с примерами решения ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты А, В, С одновременно не равны 0.

Особые случаи уравнения (3.1):

  1. D = 0, Ах + By + Cz = 0 – плоскость проходит через начало координат.
  2. С = 0, Ах + By + D = 0 – плоскость параллельна оси Oz.
  3. С = D = 0, Ах + By = 0 – плоскость проходит через ось Oz.
  4. С = В = 0, Ах + D = 0 – плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: Плоскость и прямая в пространстве с примерами решения

Прямая в пространстве может быть задана:

  1. как линия пересечения двух плоскостей, т.е. системой уравнений:Плоскость и прямая в пространстве с примерами решения
  2. двумя своими точками Плоскость и прямая в пространстве с примерами решения тогда прямая, через них проходящая, задается уравнениями:Плоскость и прямая в пространстве с примерами решения
  3. точкой Плоскость и прямая в пространстве с примерами решения ей принадлежащей, и вектором Плоскость и прямая в пространстве с примерами решения ей коллинеарным.

Тогда прямая определяется уравнениями: Плоскость и прямая в пространстве с примерами решения

Уравнения (3.4) называются каноническими уравнениями прямой.

Вектор Плоскость и прямая в пространстве с примерами решения называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: Плоскость и прямая в пространстве с примерами решения Решая систему (3.2) как систему линейных уравнений относительно неизвестных х и у, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой.Плоскость и прямая в пространстве с примерами решения

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: Плоскость и прямая в пространстве с примерами решения

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор Плоскость и прямая в пространстве с примерами решенияПлоскость и прямая в пространстве с примерами решения – нормальные векторы заданных плоскостей. Если один из знаменателей Плоскость и прямая в пространстве с примерами решения в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система Плоскость и прямая в пространстве с примерами решения равносильна системе Плоскость и прямая в пространстве с примерами решения такая прямая перпендикулярна к оси Ох. Система Плоскость и прямая в пространстве с примерами решенияравносильна системе Плоскость и прямая в пространстве с примерами решенияпрямая параллельна оси Oz.

Пример:

Составьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение:

По условию задачи вектор Плоскость и прямая в пространстве с примерами решения является нормальным вектором плоскости, тогда ее уравнение можно записать в виде Плоскость и прямая в пространстве с примерами решения Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: Плоскость и прямая в пространстве с примерами решения Итак, Плоскость и прямая в пространстве с примерами решения

Пример:

Составьте уравнение плоскости, проходящей через ось Oz и образующей с плоскостью Плоскость и прямая в пространстве с примерами решения

Решение:

Плоскость, проходящая через ось Oz, задается уравнениемПлоскость и прямая в пространстве с примерами решенияодновременно не обращаются в нуль. Пусть В не равно 0, Плоскость и прямая в пространстве с примерами решенияПо формуле косинуса угла В между двумя плоскостями Плоскость и прямая в пространстве с примерами решения

Решая квадратное уравнение Плоскость и прямая в пространстве с примерами решения находим его корни Плоскость и прямая в пространстве с примерами решения откуда получаем две плоскости Плоскость и прямая в пространстве с примерами решения

Пример:

Составьте канонические уравнения прямой: Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Решение:

Канонические уравнения прямой имеют вид:

Плоскость и прямая в пространстве с примерами решения где Плоскость и прямая в пространстве с примерами решения– координаты направляющего вектора прямой, Плоскость и прямая в пространстве с примерами решения– координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, х = 0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть х = 0, тогда у + z = 0, Зу-2z + 5 = 0 , откуда у = -l, z = l. Координаты точки Плоскость и прямая в пространстве с примерами решения принадлежащей данной прямой, мы нашли: М(0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей Плоскость и прямая в пространстве с примерами решенияТогда

Плоскость и прямая в пространстве с примерами решения Канонические уравнения прямой имеют вид: Плоскость и прямая в пространстве с примерами решения

Пример:

В пучке, определяемом плоскостями Плоскость и прямая в пространстве с примерами решениянайти две перпендикулярные плоскости, одна из которых проходит через точку М (1,0,1).

Решение:

Уравнение пучка, определяемого данными плоскостями, имеет вид Плоскость и прямая в пространстве с примерами решениягде Плоскость и прямая в пространстве с примерами решения не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом: Плоскость и прямая в пространстве с примерами решения

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим: Плоскость и прямая в пространстве с примерами решения

Тогда уравнение плоскости, содержащей М, найдем, подставив Плоскость и прямая в пространстве с примерами решения в уравнение пучка: Плоскость и прямая в пространстве с примерами решения

Т.к. и Плоскость и прямая в пространстве с примерами решения (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости Плоскость и прямая в пространстве с примерами решения Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей: Плоскость и прямая в пространстве с примерами решения

Значит, уравнение второй плоскости имеет вид: Плоскость и прямая в пространстве с примерами решенияили Плоскость и прямая в пространстве с примерами решения

  • Определитель матрицы
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Производная сложной функции
  • Пределы в математике
  • Функции многих переменных
  • Уравнения прямых и кривых на плоскости

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

72

Добавлен:

10.06.2015

Размер:

3.02 Mб

Скачать

A(x x0 ) B( y y0 ) C(z z0 ) 0

– уравнение называют – уравнением плоскости, проходящей

через заданную точку M0 (x0 , y0 , z0 ) .

Отметим, что вектор n A, B,C называют нормальным

вектором

плоскости и в качестве нормального

вектора

плоскости

может быть взят любой ненулевой

вектор,

перпендикулярный плоскости.

Легко доказывается и обратное:

Дано

уравнение Ax By Cz D 0

и нужно

убедиться,

что оно описывает плоскость в пространстве R3 .

Пусть (x0 , y0 , z0 ) – какое-либо решение данного уравнения.

Тогда

Ax0 By0 Cz0 D 0 . Отсюда

получаем

D Ax0

By0 Cz0 и, подставляя в исходное уравнение,

получаем: Ax By Cz Ax0 By0 Cz0 0 ,

Или A(x x0 ) B( y y0 ) C(z z0 ) 0 .

а это есть уравнение плоскости, проходящей через точку

(x0 , y0 , z0 ) и имеющую нормальный вектор n A, B,C . Следовательно, и равносильное ему уравнение

Ax By Cz D 0 определяет плоскость.

Теорема доказана.

Рассмотрим важный частный случай построения уравнения плоскости, когда известны три точки M1(x1 , y1, z1) ,

M2 (x2 , y2 , z2 ) , M3 (x3 , y3, z3 ) принадлежащие плоскости и не лежащие на одной прямой.

Возьмем текущую точку M (x, y, z) плоскости и организуем три вектора

M1M2 x2 x1, y2 y1, z2 z1

M1M3 x3 x1, y3 y1, z3 z1

91

M1M x1 x, y1 y, z1 z

Эти векторы лежат в одной плоскости, уравнение которой и определяется. Следовательно, их смешанное произведение равно нулю, то есть

x x1

M1M M1M2 M1M3 x2 x1 x3 x1

y y1

z z1

y2 y1

z2 z1

0

y3 y1

z3 z1

есть уравнение плоскости, проходящей через три заданные точки M1 , M 2 , M3 .

При решении задач часто используется так называемое

уравнение плоскости в отрезках на осях.

Пусть

в

общем

уравнении

плоскости

Ax By Cz D 0, A B C D 0.

Перенесем свободный член

D в правую часть и разделим

обе части уравнения на , D тогда получим:

x

y

z

1

a

b

c

где a D

, b

D , с

D .

A

B

С

Уравнение называют уравнением плоскости в отрезках на осях, т.к. числа a,b,c имеют простой геометрический смысл:

a – абсцисса точки пересечения плоскости с осью Ox , b – ордината точки пересечения плоскости с осью Oy , с

аппликата точки пересечения плоскости с осью Oz . Действительно, точка пересечения плоскости с осью,

скажем, Ox

имеет ординату y 0

и аппликату z 0 . Но

координаты

этой точки

x,0,0

должны удовлетворять

уравнению плоскости, т.е.

Ax B 0 C 0 D 0

92

Отсюда получаем x D .

A

Рассмотрим особенность расположения плоскости, заданной общим уравнением, если некоторые коэффициенты этого уравнения обращаются в нуль.

A 0 , By Cz D 0 – плоскость параллельна оси Ox

B 0 ,

Ax Cz D 0 – плоскость параллельна оси Oy

C 0 ,

Ax By D 0 – плоскость параллельна оси Oz

D 0 ,

Ax By Cz 0

плоскость

проходит

через

начало координат.

A 0 , B 0 ,

Cz D 0 плоскость параллельна плоскости

OXY

B 0 , C 0 ,

Ax D 0

плоскость параллельна

плоскости OYZ

A 0 , C 0 ,

By D 0 плоскость параллельна плоскости

XOZ

D 0 , C 0 ,

Ax By 0

плоскость

проходит

через

координатную ось Oz

D 0 , B 0 ,

Ax Cz 0

плоскость

проходит

через

координатную ось Oy

D 0 , A 0

, By Cz 0

плоскость

проходит

через

координатную ось Ox

D 0 , A 0 ,

B 0

z 0 плоскость XOY

D 0 , C 0 ,

B 0

x 0 плоскость YOZ

D 0 , A 0 ,

C 0

y 0 плоскость XOZ

Замечание Если плоскость параллельна какой-нибудь координатной оси, то в ее уравнении отсутствует член, содержащий координату, одноименную с этой осью.

Пример Найти уравнение плоскости, параллельной оси Oz и проходящей через точки A 2,3,1 , B 1,2,4

93

Решение

По условию уравнение плоскости имеет вид

Ax By D 0

(*)

– плоскость параллельна оси Oz .

Подставим

координаты

заданных точек в

(*),

получим

2A 3B D 0

A t,B 3t,D 7t

как

решение

, или

A 2B D 0

системы двух уравнений с тремя неизвестными, подставляя в (*), получаем x 3y 7 0

Нормальное уравнение плоскости

Пусть дана плоскость, проведем через начало координат прямую, перпендикулярно к плоскости – эта прямая нормаль, точка P – точка в которой прямая пересекает плоскость.

На нормали введем положительное направление от точки О к

точке P , , ,

углы,

которые

составляют

направленная

нормаль с осями координат,

p – длина отрезка OP .

cos x cos y cos z p 0

нормальное уравнение плоскости

где

cos

A

cos

B

A2 B2 C2

A2 B2 C2

cos

С

p

D

A2 B2 C2

A2 B2 C2

Знак “плюс” или знак “минус” выбирается так, чтобы

p 0 .

Углы , ,

– это углы между вектором нормали n и

осями координат соответственно.

Замечание

В нормальном

уравнении

прямой

сумма

квадратов коэффициентов при текущих координатах должна быть равна 1, а свободный член должен быть отрицателен.

Умножим общее уравнение на множитель

Ax By Cz D 0

94

A cos , B cos , C cos D p ,

Возведем первые три уравнения в квадрат и сложим

2 A2 B2

C2

1,отсюда,

1

нормирующий множитель.

A2 B2 C2

Из уравнения D p , следует, что знак нормирующего

множителя противоположен знаку свободного члена нормируемого уравнения.

Для приведения общего уравнения плоскости к нормальному виду обе части его умножают на нормирующий множитель, знак выбирают противоположный знаку свободного члена в общем уравнении плоскости.

Если D 0 знак выбирается произвольно.

Расстояние от точки до плоскости

Определение Отклонением точки M * от данной

плоскости называется число d , если M * лежит по ту сторону от плоскости, куда идет положительное направление нормали, и

d ,

если

M *

лежит

с

другой

стороны

от

данной

плоскости. d .

d ,

когда

точка M *

и

начало

координат

лежат

по

разные

стороны от плоскости,

и

d , когда точка

M *

и

начало координат лежат по одну

сторону от плоскости, 0

для точек лежащих на плоскости.

Чтобы найти отклонение какой-либо точки M * от некоторой прямой, нужно в левую часть нормального уравнения этой прямой вместо текущих координат подставить координаты точки M* .

x* cos x* cos x* cos

x* cos y* cos z* cos p

95

Расстояние d от

точки

x0 ,y0 ,z0 до плоскости

Ax By Cz D 0 определяется по формуле

d

Ax0 By0 Cz0 D

A2

B2 C

2

Пример Дана

плоскость

3x 4y 1z 14 0 и точка

M 4,3,1 . Найти отклонение точки от плоскости.

Решение

1

,

1

3 4 4 3 12 114 2 точка

13

13

удалена от плоскости на расстояние 2.

Взаимное расположение двух плоскостей Угол между двумя плоскостями

Линейный угол, являющейся мерой двугранного угла между плоскостями, равен углу между перпендикулярами к этим плоскостям.

Для двух плоскостей, заданных уравнениями

A1x B1 y C1z D1 0, A2 x B2 y C2 z D2 0

направления перпендикуляров к ним совпадают с

направлениями векторов N1

A1 , B1 ,C1 , N2

A2 , B2 ,C2 .

Определение Углом между плоскостями называется

угол между их нормальными векторами

N

и

N

2

, то есть

1

2

N

N

2

1

1

Поэтому угол между векторами равен углу между их

нормальными векторами

cos

N1 N2

или

N1

N2

cos

A1 A2 B1 B2 C1 C2

A2 B

2

C 2

A2

B2

C 2

1

1

1

2

2

2

96

Угол между двумя плоскостями, точнее, один из двух смежных углов между двумя плоскостями, может быть вычислен как угол между нормальными векторами этих плоскостей.

Условие параллельности двух плоскостей

Пусть даны две плоскости

A1 x B1 y C1 z D1 0A1 x B1 y C1 z D2 0

Данные плоскости параллельны, когда их нормальные векторы

N1 A1 , B1 , C1 , N2 A2, B2,C2 коллинеарны.

A2

B2

C2

A

B

C

1

1

1

Условие перпендикулярности двух плоскостей

Данные плоскости перпендикулярны, когда их нормальные

векторы N1 A1 , B1 , C1 , N2 A2 , B2 , C2 ,

перпендикулярны.

Условие перпендикулярности двух плоскостей

A A B B C C 0 .

1

2

1

2

1

2

97

Контрольные вопросы по теме «Плоскость»

1.Написать векторное уравнение плоскости и объяснить смысл величин, входящих в это уравнение.

2.Написать общее уравнение плоскости

3.Написать уравнение плоскости, проходящей через заданную точку. Объяснить смысл величин, входящих в это уравнение.

4.Как вычислить угол между плоскостями?

5.Условия параллельности и перпендикулярности двух плоскостей.

Задачи для самостоятельного изучения

1.

Построить плоскости:

а) 5x 2y 3z 10 0 ,

б) 2z 7 0 ,

в) 3x 2y z 0 ,

г) 3x 2y 6 0 .

2.

Построить плоскость

2x 3y 6z 12 0 и найти углы

нормали к плоскости с осями координат.

3.

Даны точки M1 0, 1,3

и

M 2 1,3,5 .

Написать

уравнение

плоскости,

проходящей

через

точку

M1 и

перпендикулярной к вектору M1M 2 .

4.

Написать

уравнение

геометрического

места

точек,

3

равноудаленных от точек A

3;

,3

и В ( 0;

3

0 ).

2

2

5.Написать уравнение плоскости, проходящей через ось Ох и точку М1 (0;- 2;3).

6.Найти угол между плоскостями:

а) x 2y 2z 8 0 и x z 6 0 , б) x 2z 6 0 и x 2y 4 0 ,

в) x 3z 8 0 и 2x 6z 7 0,

г) 2x 3y z 3 0 и x y z 5 0 .

7. Написать уравнение плоскости, проходящей через точку M1 1, 1,2 и перпендикулярной к плоскостям x 2y x 4 0 и x 2y 2z 4 0 .

98

8.Написать уравнение плоскости, проходящей через точки M1 1, 2,0 и M 2 1,1,2 и перпендикулярной к

плоскости x 2y 2z 4 0 .

9.

Найти

расстояние

от точки

M 5,1, 1

до

плоскости

x 2y 2z 4 0 .

10.

Найти

расстояние

точки

M 4,3,0

от

плоскости,

проходящей

через

точки

M1 1,3,0 , M 2 4, 1,2 и M 3 3,0,1 .

11.Найти расстояние между параллельными плоскостями

4x 3y 5z 12 0 и 4x 3y 5z 8 0 .

12.Написать уравнение плоскости, проходящей через

линию

пересечения

плоскостей 2x y 3z 6 0 и

x 2y z 3 0 и

через точку M 1,2,4 .

13.Найти точку пересечения плоскостей 2x y 3z 9 0 ,

x2y 2z 3 0 , 3x y 4z 6 0 .

14.Написать уравнение плоскости, проходящей через точки0, 5,0 , M 2 0,0,2 и перпендикулярной к

плоскости x 5y 2z 10 0 . Построить ее.

Ответы к задачам для самостоятельного изучения

1.cos 72 , cos 34 , cos 76 ;

2.x 4y 2z 2 0 ;

3.x y z 3 0 ;

4.3y 2z 0 ;

5.а) 450 , б) 78030 , в) 00 , г) 900 ;

6.2x 3y 4z 3 0 ;

7.2x 2y z 2 0 ;

8.3;

9.6 ;

10.22;

99

11.x 8y 9z 21 0 ;

12.1, 1,2 ;

13.2y 5z 10 0 .

100

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Плоскость.

1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь

r = xi + yj + zk — радиус-вектор текущей точки плоскости

M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.

При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g – p = 0 (нормальное уравнение плоскости).

2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора

N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель

где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.

3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:

А = 0; плоскость параллельна оси ОХ;

В = 0; плоскость параллельна оси О^

C = 0; плоскость параллельна оси ОZ;

D = 0; плоскость проходит через начало координат;

А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);

А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);

В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);

А = D = 0; плоскость проходит через ось ОХ;

В = D = 0; плоскость проходит через ось OY;

C = D = 0; плоскость проходит через ось OZ;

А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);

А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);

B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).

Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на – D, можно уравнение

плоскости привести к виду^ здесь

. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.

4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле

Условие параллельности плоскостей:

Условие перпендикулярности плоскостей:

5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНаходится по формуле

Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.

6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)

и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х – х0) + B(y – у0) + C(z – z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.

7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями

и

некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.

8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r – T1, r2 – rl, r3 – rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:

или в координатной форме:

Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z – 1 = 0, 2x + 3у – z + 2 = 0 и через точку М(3, 2, 1).

Решение. Воспользуемся уравнением пучка плоскостей

Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:

Получаем искомое уравнение в виде:

или, умножая на 13 и приводя подобные члены, в виде:

Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z – 4 = 0 и X – у – 2z + 7 = 0 и параллельной оси оу.

Решение. Воспользуемся уравнением пучка x + 3у + 5z – 4 + + l(x – у – 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 – 2l)z + (71 – 4) = 0.

Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 – l = 0, I = 3. Подставив значение I в уравнение пучка, получаем

Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z – 3 = 0.

Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:

Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:

Исключая коэффициенты А, В и C из системы уравнений

получаем искомое уравнение в виде:

или

Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.

Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением

находим

или

Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору

Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:

Прямая.

1. Прямая может быть задана уравнениями 2-х плоскостей

пересекающихся по этой прямой.

2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.

3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:

4. Так называемые канонические уравнения

определяют прямую, проходящую через точку M(x1, у1, z1)

и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:

где a, b и g — углы, образованные прямой с осями координат.

5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:

6. Угол между двумя прямыми, заданными их каноническими

уравнениями


опре-

деляется по формуле

перпендикулярности двух прямых:

условие параллельности двух прямых:

7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):

Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.

условие параллельности прямой и плоскости: условие перпендикулярности прямой и плоскости:

Определяется по формуле

9. Для определения точки пересечения прямой

С плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:

а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;

б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;

в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.

Пример 1.26. Привести к каноническому виду уравнения прямой 2х – у + 3z – 1 = 0 и 5х + 4у – z – 7 = 0.

Решение. Исключив вначале у, а затем z, получим:

Если разрешим каждое из уравнений относительно х, то будем иметь:

отсюда

Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i – j + 3k и N2= 5i + 4 j – k, то за него можно принять векторное произведение векторов N1 и N2.

Таким образом, l = -11; m = 17; n = 13.

За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:

Решая эту систему, находим у1 = 2; z1 = 1.

Итак, искомая прямая определяется уравнениями:

Мы получили прежний ответ.

Пример 1.27. Построить прямую

Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:

Пример 1.28. Из начала координат опустить перпендикуляр на прямую

Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).

Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:

Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).

Для определения t имеем уравнение:

Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):

Пример 1.29. В уравнениях прямойОпределить

параметр n так, чтобы эта прямая пересекалась с прямой

, и найти точку их пересечения.

Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:

Отсюда следует:

или

Следовательно, уравнения пересекающихся прямых таковы: искомой:

заданной:

Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоИмеем,

отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).

Пример 1.30. Прямая задана каноническими уравнениями

Составить общие уравнения этой прямой.

Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:

Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х – 3у – 13 = 0 параллельна оси Oz, а другая х + 3z – 11 = 0 параллельна оси Oy.

Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой

заключенный между плоскостями хoz и xoy.

Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:

отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).

отсюда X = 11, у = 14, или В(11; 14; 0).

Определяем координаты точки М, делящей отрезок АВ пополам:

Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).

Пример 1.32. Составить уравнение плоскости, проходящей через прямую

параллельной прямой

Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:

которое делим на а ф 0, и пусть b /а = I:

Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:

69

В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:

Отсюда l = 1.

Подставляя I = 1 в уравнение пучка плоскостей, получим: Тогда искомое уравнение плоскости будет:

Пример 1.33. Дана прямая Найти ее проекцию на плоскость

Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.

Составим уравнение пучка плоскостей, проходящих через данную прямую:

Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:

отсюда I = 1.

70

Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:

или

Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:

Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:

Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.

Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам

N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.

В качестве S берем векторное произведение векторов N1 и N2 , т. е.

Тогда искомое уравнение в каноническом виде будет:

Раздел 2

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

< Предыдущая   Следующая >

11 класс. Геометрия. Метод координат в пространстве. Прямоугольная система координат.

11 класс. Геометрия. Метод координат в пространстве. Прямоугольная система координат.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Поделись с друзьями

Комментарии преподавателя

1. Введение

Если через точку О в про­стран­стве мы про­ве­дем три пер­пен­ди­ку­ляр­ные пря­мые, на­зо­вем их, вы­бе­рем на­прав­ле­ние, обо­зна­чим еди­нич­ные от­рез­ки, то мы по­лу­чим пря­мо­уголь­ную си­сте­му ко­ор­ди­нат в про­стран­стве. Оси ко­ор­ди­нат на­зы­ва­ют­ся так: Ох – ось абс­цисс, Оy – ось ор­ди­нат и Оz – ось ап­пли­кат. Вся си­сте­ма ко­ор­ди­нат обо­зна­ча­ет­ся – Oxyz. Таким об­ра­зом, по­яв­ля­ют­ся три ко­ор­ди­нат­ные плос­ко­сти: Оxy, Оxz, Оyz.

При­ве­дем при­мер по­стро­е­ния точки В(4;3;5) в пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат (см. Рис. 1).

Рис. 1. По­стро­е­ние точки B в про­стран­стве

Пер­вая ко­ор­ди­на­та точки B – 4, по­это­му от­кла­ды­ва­ем на Ox 4, про­во­дим пря­мую па­рал­лель­но оси Oy до пе­ре­се­че­ния с пря­мой, про­хо­дя­щей через у=3. Таким об­ра­зом, мы по­лу­ча­ем точку K. Эта точка лежит в плос­ко­сти Oxy и имеет ко­ор­ди­на­ты K(4;3;0). Те­перь нужно про­ве­сти пря­мую па­рал­лель­но оси Oz. И пря­мую, ко­то­рая про­хо­дит через точку с ап­пли­ка­той 5 и па­рал­лель­на диа­го­на­ли па­рал­ле­ло­грам­ма в плос­ко­сти Oxy. На их пе­ре­се­че­нии мы по­лу­чим ис­ко­мую точку B.

Рас­смот­рим рас­по­ло­же­ние точек, у ко­то­рых одна или две ко­ор­ди­на­ты равны 0 (см. Рис. 2).

На­при­мер, точка A(3;-1;0). Нужно про­дол­жить ось Oy влево до зна­че­ния -1, найти точку 3 на оси Ox, и на пе­ре­се­че­нии линий, про­хо­дя­щих через эти зна­че­ния, по­лу­ча­ем точку А. Эта точка имеет ап­пли­ка­ту 0, а зна­чит, она лежит в плос­ко­сти Oxy.

Точка C(0;2;0) имеет абс­цис­су и ап­пли­ка­ту 0 – не от­ме­ча­ем. Ор­ди­на­та равна 2, зна­чит точка C лежит толь­ко на оси Oy, ко­то­рая яв­ля­ет­ся пе­ре­се­че­ни­ем плос­ко­стей Oxy и Oyz.

Чтобы от­ло­жить точку D(-4;0;3) про­дол­жа­ем ось Ox назад за на­ча­ло ко­ор­ди­нат до точки -4. Те­перь вос­ста­нав­ли­ва­ем из этой точки пер­пен­ди­ку­ляр – пря­мую, па­рал­лель­ную оси Oz до пе­ре­се­че­ния с пря­мой, па­рал­лель­ной оси Ox и про­хо­дя­щей через зна­че­ние 3 на оси Oz. По­лу­ча­ем току D(-4;0;3). Так как ор­ди­на­та точки равна 0, зна­чит точка D лежит в плос­ко­сти Oxz.

Сле­ду­ю­щая точка E(0;5;-3). Ор­ди­на­та точки 5, ап­пли­ка­та -3, про­во­дим пря­мые про­хо­дя­щие через эти зна­че­ния на со­от­вет­ству­ю­щих осях, и на их пе­ре­се­че­нии по­лу­ча­ем точку E(0;5;-3). Эта точка имеет первую ко­ор­ди­на­ту 0, зна­чит она лежит в плос­ко­сти Oyz.

2. Координаты вектора

На­чер­тим пря­мо­уголь­ную си­сте­му ко­ор­ди­нат в про­стран­стве Oxyz. За­да­дим в про­стран­стве пря­мо­уголь­ную си­сте­му ко­ор­ди­нат Oxyz. На каж­дой из по­ло­жи­тель­ных по­лу­осей от­ло­жим от на­ча­ла ко­ор­ди­нат еди­нич­ный век­тор, т. е. век­тор, длина ко­то­ро­го равна еди­ни­це. Обо­зна­чим еди­нич­ный век­тор оси абс­цисс, еди­нич­ный век­тор оси ор­ди­нат , и еди­нич­ный век­тор оси ап­пли­кат (см. рис. 1). Эти век­то­ры со­на­прав­ле­ны с на­прав­ле­ни­я­ми осей, имеют еди­нич­ную длину и ор­то­го­наль­ны – по­пар­но пер­пен­ди­ку­ляр­ны. Такие век­то­ра на­зы­ва­ют ко­ор­ди­нат­ны­ми век­то­ра­ми или ба­зи­сом.

Рис. 1. Раз­ло­же­ние век­то­ра по трем ко­ор­ди­нат­ным век­то­рам

Возь­мем век­тор , по­ме­стим его в на­ча­ло ко­ор­ди­нат, и раз­ло­жим этот век­тор по трем неком­пла­нар­ным – ле­жа­щим в раз­ных плос­ко­стях – век­то­рам. Для этого опу­стим про­ек­цию точки M на плос­кость Oxy, и най­дем ко­ор­ди­на­ты век­то­ров , и . По­лу­ча­ем: . Рас­смот­рим по от­дель­но­сти каж­дый из этих век­то­ров. Век­тор лежит на оси Ox, зна­чит, со­глас­но свой­ству умно­же­ния век­то­ра на число, его можно пред­ста­вить как ка­кое-то число x умно­жен­ное на ко­ор­ди­нат­ный век­тор . , а длина век­то­ра ровно в x раз боль­ше длины . Так же по­сту­пим и с век­то­ра­ми и , и по­лу­ча­ем раз­ло­же­ние век­то­ра по трем ко­ор­ди­нат­ным век­то­рам:

Ко­эф­фи­ци­ен­ты этого раз­ло­же­ния x, y и z на­зы­ва­ют­ся ко­ор­ди­на­та­ми век­то­ра в про­стран­стве.

Рас­смот­рим пра­ви­ла, ко­то­рые поз­во­ля­ют по ко­ор­ди­на­там дан­ных век­то­ров найти ко­ор­ди­на­ты их суммы и раз­но­сти, а также ко­ор­ди­на­ты про­из­ве­де­ния дан­но­го век­то­ра на дан­ное число.

;

1) Сло­же­ние:

2) Вы­чи­та­ние:

3) Умно­же­ние на число: ,

Век­тор, на­ча­ло ко­то­ро­го сов­па­да­ет с на­ча­лом ко­ор­ди­нат, на­зы­ва­ет­ся ра­ди­усвек­то­ром. (Рис. 2). Век­тор – ра­ди­ус-век­тор, где x, y и z – это ко­эф­фи­ци­ен­ты раз­ло­же­ния этого век­то­ра по ко­ор­ди­нат­ным век­то­рам , , . В дан­ном слу­чае x – это пер­вая ко­ор­ди­на­та точки A на оси Ox, y – ко­ор­ди­на­та точки B на оси Oy, z – ко­ор­ди­на­та точки C на оси Oz. По ри­сун­ку видно, что ко­ор­ди­на­ты ра­ди­ус-век­то­ра од­но­вре­мен­но яв­ля­ют­ся ко­ор­ди­на­та­ми точки М.

Возь­мем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Пред­ста­вим век­тор как раз­ность век­то­ров и по свой­ству век­то­ров. При­чем, и – ра­ди­ус-век­то­ры, и их ко­ор­ди­на­ты сов­па­да­ют с ко­ор­ди­на­та­ми кон­цов этих век­то­ров. Тогда мы можем пред­ста­вить ко­ор­ди­на­ты век­то­ра как раз­ность со­от­вет­ству­ю­щих ко­ор­ди­нат век­то­ров и : . Таким об­ра­зом, ко­ор­ди­на­ты век­то­ра мы можем вы­ра­зить через ко­ор­ди­на­ты конца и на­ча­ла век­то­ра.

Рас­смот­рим при­ме­ры, ил­лю­стри­ру­ю­щие свой­ства век­то­ров и их вы­ра­же­ние через ко­ор­ди­на­ты. Возь­мем век­то­ры , , . Нас спра­ши­ва­ют век­тор . В дан­ном слу­чае найти это зна­чит найти ко­ор­ди­на­ты век­то­ра , ко­то­рые пол­но­стью его опре­де­ля­ют. Под­став­ля­ем в вы­ра­же­ние вме­сто век­то­ров со­от­вет­ствен­но их ко­ор­ди­на­ты. По­лу­ча­ем:

Те­перь умно­жа­ем число 3 на каж­дую ко­ор­ди­на­ту в скоб­ках, и то же самое де­ла­ем с 2:

У нас по­лу­чи­лась сумма трех век­то­ров, скла­ды­ва­ем их по изу­чен­но­му выше свой­ству:

Ответ:

Дано: Тре­уголь­ная пи­ра­ми­да AOBC (см. рис. 4). Плос­ко­сти AOB, AOC и OCB – по­пар­но пер­пен­ди­ку­ляр­ны. OA=3, OB=7, OC=4; M – сер.AC; N – сер.OC; P – сер. CB.

Найти: ,,,,,,,.

Ре­ше­ние: Вве­дем пря­мо­уголь­ную си­сте­му ко­ор­ди­нат Oxyz с на­ча­лом от­сче­та в точке O. По усло­вию обо­зна­ча­ем точки A, B и C на осях и се­ре­ди­ны ребер пи­ра­ми­ды – M, P и N. По ри­сун­ку на­хо­дим ко­ор­ди­на­ты вер­шин пи­ра­ми­ды: A(3;0;0), B(0;7;0), C(0;0;4).

Так как ко­ор­ди­на­ты век­то­ра – это раз­ность ко­ор­ди­нат его конца и на­ча­ла, по­лу­ча­ем:. Таким же об­ра­зом на­хо­дим ко­ор­ди­на­ты век­то­ров и . ; .

Чтобы найти ко­ор­ди­на­ты век­то­ра , нужно сна­ча­ла найти ко­ор­ди­на­ты точек M и N. По ри­сун­ку видно, что точка N имеет ко­ор­ди­на­ты, так как она лежит на оси ап­пли­кат. Рас­смот­рим . MN – сред­няя линия, . Зна­чит ко­ор­ди­на­та точки M по оси Oz 2. Те­перь про­ве­дем из точки M пер­пен­ди­ку­ляр к оси Ox, ко­ор­ди­на­та 1,5. Точка M лежит в плос­ко­сти Oxz, зна­чит по оси Oy ко­ор­ди­на­та 0. По­лу­ча­ем M(1,5;0;2). Те­перь зная ко­ор­ди­на­ты точек M и N, счи­та­ем их раз­ность: .

Те­перь най­дем ко­ор­ди­на­ты точки P. Опу­стим пер­пен­ди­ку­ляр на плос­кость Oxy, по­лу­ча­ем зна­че­ние 3,5 по оси ор­ди­нат. И про­ве­дя пер­пен­ди­ку­ляр к оси Oz, по­лу­ча­ем зна­че­ние 2 по оси ап­пли­кат. Точка P имеет ко­ор­ди­на­ты (0;3,5;2). Зная ко­ор­ди­на­ты нуж­ных точек, най­дем ко­ор­ди­на­ты остав­ших­ся век­то­ров.

;

.

Век­то­ра и – ра­ди­ус-век­то­ры, зна­чит, их ко­ор­ди­на­ты равны ко­ор­ди­на­там кон­цов этих век­то­ров: , .

Раздел 2. Векторная алгебра

Абсолютная величина вектора см. Модуль вектора.

Абсцисса – первая координата вектора или точки в декартовой системе координат.

Антикоммутативное свойство (Антикоммутативность) векторного произведения двух векторов: при перестановке сомножителей векторное произведение меняет знак на противоположный, т.е. a´b = – b´a.

Аппликата – третья координата вектора или точки в декартовой системе координат.

Базис n-мерного векторного пространства (Базисные векторы) – совокупность n линейно независимых векторов этого пространства, линейными комбинациями которых можно представить любой вектор пространства.

См. Ортонормированный базис.

Базис трехмерного пространства (Базис в пространстве) – упорядоченная тройка некомпланарных векторов.

Базис на плоскости – упорядоченная пара неколлинеарных векторов.

Базисные векторы см. Базис n-мерного пространства.

Базисные векторы декартовой прямоугольной системы координат – единичные ортогональные векторы i, j на плоскости и единичные попарно ортогональные векторы i, j, k в пространстве.

Вектор (Векторная величина, геометрический вектор) – направленный отрезок прямой. Пояснение. Вектор является величиной, полностью определенной своим направлением и длиной. Обозначение: a, .

См. Единичный, нулевой, свободный, связанный вектор; коллинеарные, компланарные, линейно зависимые, линейно независимые векторы.

Векторная алгебра – раздел математики, изучающий алгебраические операции над векторами.

Векторная величина см. Вектор.

Векторное произведениедвух векторов a и b – вектор c, определяемый следующими тремя условиями:

а) модуль вектора c, численно равен площади параллелограмма, построенного на векторах a и b как на сторонах, т.е. |c| = |a|×|b|×sin j, где j = Ð(a,b);

б) вектор c ортогонален векторам a и b;

в) вектор c направлен так, что векторы a, b, c образуют правую тройку.

Обозначения: a´b = c, [a, b] = c, [ab] = c.

Векторно-скалярное произведение векторов см. Смешанное произведение векторов.

Вектор-столбец – запись вектора, при которой его координаты располагаются вертикально.

Вектор-строка– запись вектора, при которой его координаты располагаются горизонтально.

Геометрический вектор см. Вектор.

Граничные точки отрезка см. Концевые точки отрезка.

Декартова прямоугольная система координат в пространстве– система координат, заданная тремя взаимно ортогональными единичными векторами, называемыми ортами.

Декартова прямоугольная система координат на плоскости– система координат, заданная двумя взаимно ортогональными единичными векторами, называемыми ортами.

Декартовы координаты вектора– проекции вектора на оси координат декартовой системы координат.

Длина вектора см. Модуль вектора.

Единичный вектор – вектор, модуль которого равен единице.

Обозначение: a o , e. См. Орт.

Квадрант – одна из четырех областей, на которые плоскость делится двумя взаимно перпендикулярными прямыми.

Коллинеарность векторов– свойство векторов быть коллинеарными.

Коллинеарные векторы – векторы, расположенные на одной прямой или на параллельных прямых. Обозначение: a||b.

Компланарность– свойство векторов быть компланарными.

Компланарные векторы– векторы, расположенные в одной плоскости или в параллельных плоскостях.

Компонента см. Координата.

Концевые точки отрезка(Граничные точки отрезка) – точки, между которыми заключен отрезок прямой.

Координата (компонента, составляющая) вектора в декартовой системе координат – проекция вектора на соответствующую ось координат.

Координатная плоскость – плоскость, проходящая через две координатные оси из трех.

Координатные оси (Оси координат) – числовые прямые, имеющие общую нулевую точку (начало координат).

Координаты точки – 1) числа, определяющие положение точки на плоскости или в пространстве; 2) координаты радиус-вектора этой точки.

Левая тройка векторов – тройка векторов, не являющаяся правой.

Линейная комбинация n векторов – сумма произведений этих векторов на произвольные скаляры (числа), называемые коэффициентами:

Линейно зависимые векторы – векторы, линейная комбинация которых равна нулю, если не все коэффициенты равны нулю.

Линейно независимые векторы – векторы, линейная комбинация которых равна нулю только при условии, когда все коэффициенты равны нулю.

Линейные операции над векторами – это операции сложения векторов и умножения вектора на число.

Многогранник (Многогранная поверхность) – поверхность, образованная из многоугольников (граней поверхности) так, что каждая сторона любого из этих многоугольников (ребро поверхности) является стороной еще одного многоугольника.

Многоугольник – замкнутая ломаная линия на плоскости.

Модуль вектора (Длина вектора, Абсолютная величина вектора) – число, равное расстоянию между его началом и концом. Обозначение: |a|, | |.

Направляющий косинус вектора– косинус соответствующего направляющего угла.

Направляющий угол вектора– угол, образуемый вектором и соответствующей осью координат декартовой системы.

Начало координат– точка пересечения координатных осей, являющаяся началом отсчета. Обозначение: O.

Нулевой вектор– вектор, модуль которого равен нулю.

Пояснение. Начало и конец нулевого вектора совпадают. Обозначение: o.

Объем тела – мера пространственных тел, не меняющая своего значения при движении тела и равная единице на единичном кубе.

Октант – одна из восьми областей, на которые трехмерное пространство делится тремя взаимно перпендикулярными плоскостями.

Ордината– вторая координата вектора или точки в декартовой системе координат.

Ориентация векторов– взаимное расположение трех векторов в пространстве; три вектора могут быть с правой или левой ориентацией. Такие векторы образуют правую или левую тройку векторов соответственно.

См. Правая тройка векторов.

Орт – единичный вектор, направление которого совпадает с направлением вектора a. Обозначение: a o .

Ортогональность– свойство векторов быть ортогональными.

Ортогональные векторы– 1) векторы, угол между которыми является прямым; 2) векторы, скалярное произведение которых равно нулю.

Ортонормированный базис – базис векторного пространства, образованный единичными попарно ортогональными векторами.

Острый угол между векторами– угол, значение которого меньше 90 о .

Оси координат см. Координатные оси.

Ось– прямая, на которой указаны начало отсчета, единица и положительное направление.

Ось абсцисс (Ось x) – первая ось в декартовой системе координат на плоскости или в пространстве.

Ось аппликат (Ось z) – третья ось в декартовой системе координат в пространстве.

Ось ординат (Ось y) – вторая ось в декартовой системе координат на плоскости или в пространстве.

Отрезок прямой(Отрезок) – часть прямой, заключенная между двумя ее точками и включающая обе эти точки.

Параллелепипед– призма, основаниями которой являются параллелограммы.

Параллелограмм – плоский четырехугольник, противоположные стороны которого попарно параллельны.

Параллельный перенос (сдвиг) – перемещение фигуры, при котором каждая точка перемещается на один и тот же вектор.

Параллельный сдвиг см. Параллельный перенос.

Пирамида– многогранник, одной их граней которого является многоугольник (обычно это основание), а остальные грани – треугольники с общей вершиной.

Площадь плоской фигуры – неотрицательная функция геометрической фигуры на плоскости, сохраняющая свое значение при движениях и удовлетворяющая условию, что единичный квадрат имеет площадь, равную единице.

Полный угол – угол, равный 360 о .

Правая (Правоориентированная) тройка векторов – три некомпланарных вектора, удовлетворяющих условиям:

1) они упорядочены, и третий вектор направлен по направлению осевого движения правого винта при повороте по наименьшему углу от первого вектора ко второму;

2) они упорядочены и наблюдателю, находящемуся внутри телесного угла, образованного этими векторами, кратчайшие повороты от первого вектора ко второму и от второго к третьему кажутся происходящими против часовой стрелки;

3) они упорядочены и из конца третьего вектора кратчайший поворот от первого вектора ко второму виден совершающимся против часовой стрелки.

Пояснение. Приведены три равносильных условия (определения) правой тройки векторов.

Правило параллелограмма– графическое правило образования суммы двух векторов.

Правило треугольника– графическое правило образования суммы двух векторов.

Призма – многогранник, две грани (основания) которого – равные многоугольники, лежащие в параллельных плоскостях, а остальные грани (боковые грани) – параллелограммы.

Проекция вектора на вектор– число, равное модулю вектора, проекция которого находится, умноженному на косинус угла между векторами.

Произведение вектора a на скаляр (число) l – вектор, обозначаемый la, такой что:

а) его модуль равен произведению модулей исходного вектора и скаляра, т.е.

|la| = |l|×|a|;

б) новый вектор и исходный вектор коллинеарны, т.е. a || la;

в) векторы a и la сонаправлены, если l > 0, и противоположно направлены, если l o , в радианной мере p/2.

Прямоугольные декартовы координаты – координаты, базис которых состоит из попарно ортогональных единичных векторов.

Равные векторы – векторы, являющиеся коллинеарными, одинаково направленными и имеющие равные модули.

Радиус-вектор точки P – вектор , начало которого находится в начале координат O, а конец – в рассматриваемой точке P.

Развернутый угол – угол, стороны которого составляют одну прямую; в градусной мере равен 180 o , в радианной мере p.

Свободный вектор– множество всех векторов, равных данному вектору, т.е. множество всех векторов с одинаковым модулем и направлением, но с различными начальными точками.

Связанный вектор– вектор с фиксированной начальной точкой.

Скаляр (Скалярная величина) – величина, которая полностью характеризуется одним числом.

Скалярная величинасм. Скаляр.

Скалярное произведение двух векторов– число, равное произведению модулей этих векторов на косинус угла между ними.

Обозначение: ab, a×b, (a,b).

Скалярный квадрат– скалярное произведение вектора на самого себя.

Обозначение: a 2 .

Сложение векторовсм. Сумма двух векторов.

Смешанное (Векторно-скалярное) произведение трех векторов – число, полученное по правилу: (a´b)×c), т.е. первые два вектора перемножаются векторно, а результат умножается на третий вектор скалярно. Обозначение: abc, (abc).

Составляющаясм. Координата.

Сумма двух векторов – новый вектор, получаемый по правилу треугольника или параллелограмма. Обозначение: a + b = c.

Тетраэдр– треугольная пирамида, т.е. пирамида, основанием которой является треугольник.

Пояснение. Тетраэдр имеет четыре треугольных грани, шесть ребер и четыре вершины.

Треугольная призма – призма, основания которой – треугольники.

Треугольник– многоугольник, имеющий три вершины и три стороны.

Тупой угол– угол, больший прямого, но меньший развернутого.

Угол между двумя векторами– наименьший угол, на который нужно повернуть один из векторов до совмещения с другим.

См. Острый, полный, прямой, развернутый, тупой угол.

Умножение вектора на скаляр – операция отыскания произведения вектора на скаляр. Обозначение: la = b.

Упорядоченная тройка векторов – три вектора, если указано, какой из них является первым, какой – вторым и какой – третьим.

Ортогональные векторы и условие ортогональности

В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.

Ортогональные векторы: определение и условие

Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .

Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.

Примеры решения задач на ортогональность векторов

Плоские задачи на ортогональность векторов

Если дана плоская задача, то ортогональность для векторов a ¯ = < a x × a y >и b ¯ = < b x × b y >записывают следующим образом:

a ¯ × b ¯ = a x × b x + a y × b y = 0

Задача 1. Докажем, что векторы a ¯ = < 1 ; 2 >и b ¯ = < 2 ; – 1 >ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( – 1 ) = 2 – 2 = 0

Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.

Задача 2. Докажем, что векторы a ¯ = < 3 ; – 1 >и b ¯ = < 7 ; 5 >ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 3 × 7 + ( – 1 ) × 5 = 21 – 5 = 16

Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.

Задача 3. Найдем значение числа n , при котором векторы a ¯ = < 2 ; 4 >и b ¯ = < n ; 1 >будут ортогональными.

Как решить?

Найдем скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = – 4 n = – 2

Ответ: векторы являются ортогональными при значении n = 2 .

Примеры пространственных задач на ортогональность векторов

При решении пространственной задачи на ортогональность векторов a ¯ = < 1 ; 2 ; 0 >и b ¯ = < 2 ; – 1 ; 10 >условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .

Задача 4. Докажем, что векторы a ¯ = < 1 ; 2 ; 0 >и b ¯ = < 2 ; – 1 ; 10 >являются ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( – 1 ) + 0 × 10 = 2 – 2 = 0

Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.

Задача 5. Найдем значение числа n , при котором векторы a ¯ = < 2 ; 4 ; 1 >и b ¯ = < n ; 1 ; – 8 >будут являться ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( – 8 ) = 2 n + 4 – 8 = 2 n – 4 2 n – 4 = 0 2 n = 4 n = 2

Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .

[spoiler title=”источники:”]

http://lektsii.org/1-77669.html

http://zaochnik.com/spravochnik/matematika/vektory/ortogonalnye-vektory-i-uslovie-ortogonalnosti/

[/spoiler]

Привожу то, что понял. Получилась система из трех уравнений:
[math]{2A+B+D=0[/math]

[math]{-B+2C+D=0[/math]

[math]{A+2B+frac{C}{2}=0[/math]

Кстати, не подскажете, как можно здесь показать, что уравнения являются системой координат (не знаю, как поставить слева от них одну общую фигурную скобку)?

Далее решаю получившуюся матрицу

[math]2[/math] [math]1[/math] [math]0[/math] [math]-D[/math]

[math]0[/math] [math]-1[/math] [math]2[/math] [math]-D[/math]

[math]1[/math] [math]2[/math] [math]frac{1}{2}[/math] [math]0[/math]

Получаются координаты

[math](-frac{8}{7}D;frac{9}{7}D;frac{D}{7})[/math]

Выношу коэффициент [math]frac{D}{7}[/math] за скобки.

В итоге ответ [math](-8;9;1)[/math]. Правильно?

Добавить комментарий