Раздел 2. Векторная алгебра
Абсолютная величина вектора см. Модуль вектора.
Абсцисса – первая координата вектора или точки в декартовой системе координат.
Антикоммутативное свойство (Антикоммутативность) векторного произведения двух векторов: при перестановке сомножителей векторное произведение меняет знак на противоположный, т.е. a´b = – b´a.
Аппликата – третья координата вектора или точки в декартовой системе координат.
Базис n-мерного векторного пространства (Базисные векторы) – совокупность n линейно независимых векторов этого пространства, линейными комбинациями которых можно представить любой вектор пространства.
См. Ортонормированный базис.
Базис трехмерного пространства (Базис в пространстве) – упорядоченная тройка некомпланарных векторов.
Базис на плоскости – упорядоченная пара неколлинеарных векторов.
Базисные векторы см. Базис n-мерного пространства.
Базисные векторы декартовой прямоугольной системы координат – единичные ортогональные векторы i, j на плоскости и единичные попарно ортогональные векторы i, j, k в пространстве.
Вектор (Векторная величина, геометрический вектор) – направленный отрезок прямой. Пояснение. Вектор является величиной, полностью определенной своим направлением и длиной. Обозначение: a, .
См. Единичный, нулевой, свободный, связанный вектор; коллинеарные, компланарные, линейно зависимые, линейно независимые векторы.
Векторная алгебра – раздел математики, изучающий алгебраические операции над векторами.
Векторная величина см. Вектор.
Векторное произведениедвух векторов a и b – вектор c, определяемый следующими тремя условиями:
а) модуль вектора c, численно равен площади параллелограмма, построенного на векторах a и b как на сторонах, т.е. |c| = |a|×|b|×sin j, где j = Ð(a,b);
б) вектор c ортогонален векторам a и b;
в) вектор c направлен так, что векторы a, b, c образуют правую тройку.
Обозначения: a´b = c, [a, b] = c, [ab] = c.
Векторно-скалярное произведение векторов см. Смешанное произведение векторов.
Вектор-столбец – запись вектора, при которой его координаты располагаются вертикально.
Вектор-строка– запись вектора, при которой его координаты располагаются горизонтально.
Геометрический вектор см. Вектор.
Граничные точки отрезка см. Концевые точки отрезка.
Декартова прямоугольная система координат в пространстве– система координат, заданная тремя взаимно ортогональными единичными векторами, называемыми ортами.
Декартова прямоугольная система координат на плоскости– система координат, заданная двумя взаимно ортогональными единичными векторами, называемыми ортами.
Декартовы координаты вектора– проекции вектора на оси координат декартовой системы координат.
Длина вектора см. Модуль вектора.
Единичный вектор – вектор, модуль которого равен единице.
Обозначение: a o , e. См. Орт.
Квадрант – одна из четырех областей, на которые плоскость делится двумя взаимно перпендикулярными прямыми.
Коллинеарность векторов– свойство векторов быть коллинеарными.
Коллинеарные векторы – векторы, расположенные на одной прямой или на параллельных прямых. Обозначение: a||b.
Компланарность– свойство векторов быть компланарными.
Компланарные векторы– векторы, расположенные в одной плоскости или в параллельных плоскостях.
Компонента см. Координата.
Концевые точки отрезка(Граничные точки отрезка) – точки, между которыми заключен отрезок прямой.
Координата (компонента, составляющая) вектора в декартовой системе координат – проекция вектора на соответствующую ось координат.
Координатная плоскость – плоскость, проходящая через две координатные оси из трех.
Координатные оси (Оси координат) – числовые прямые, имеющие общую нулевую точку (начало координат).
Координаты точки – 1) числа, определяющие положение точки на плоскости или в пространстве; 2) координаты радиус-вектора этой точки.
Левая тройка векторов – тройка векторов, не являющаяся правой.
Линейная комбинация n векторов – сумма произведений этих векторов на произвольные скаляры (числа), называемые коэффициентами:
Линейно зависимые векторы – векторы, линейная комбинация которых равна нулю, если не все коэффициенты равны нулю.
Линейно независимые векторы – векторы, линейная комбинация которых равна нулю только при условии, когда все коэффициенты равны нулю.
Линейные операции над векторами – это операции сложения векторов и умножения вектора на число.
Многогранник (Многогранная поверхность) – поверхность, образованная из многоугольников (граней поверхности) так, что каждая сторона любого из этих многоугольников (ребро поверхности) является стороной еще одного многоугольника.
Многоугольник – замкнутая ломаная линия на плоскости.
Модуль вектора (Длина вектора, Абсолютная величина вектора) – число, равное расстоянию между его началом и концом. Обозначение: |a|, | |.
Направляющий косинус вектора– косинус соответствующего направляющего угла.
Направляющий угол вектора– угол, образуемый вектором и соответствующей осью координат декартовой системы.
Начало координат– точка пересечения координатных осей, являющаяся началом отсчета. Обозначение: O.
Нулевой вектор– вектор, модуль которого равен нулю.
Пояснение. Начало и конец нулевого вектора совпадают. Обозначение: o.
Объем тела – мера пространственных тел, не меняющая своего значения при движении тела и равная единице на единичном кубе.
Октант – одна из восьми областей, на которые трехмерное пространство делится тремя взаимно перпендикулярными плоскостями.
Ордината– вторая координата вектора или точки в декартовой системе координат.
Ориентация векторов– взаимное расположение трех векторов в пространстве; три вектора могут быть с правой или левой ориентацией. Такие векторы образуют правую или левую тройку векторов соответственно.
См. Правая тройка векторов.
Орт – единичный вектор, направление которого совпадает с направлением вектора a. Обозначение: a o .
Ортогональность– свойство векторов быть ортогональными.
Ортогональные векторы– 1) векторы, угол между которыми является прямым; 2) векторы, скалярное произведение которых равно нулю.
Ортонормированный базис – базис векторного пространства, образованный единичными попарно ортогональными векторами.
Острый угол между векторами– угол, значение которого меньше 90 о .
Оси координат см. Координатные оси.
Ось– прямая, на которой указаны начало отсчета, единица и положительное направление.
Ось абсцисс (Ось x) – первая ось в декартовой системе координат на плоскости или в пространстве.
Ось аппликат (Ось z) – третья ось в декартовой системе координат в пространстве.
Ось ординат (Ось y) – вторая ось в декартовой системе координат на плоскости или в пространстве.
Отрезок прямой(Отрезок) – часть прямой, заключенная между двумя ее точками и включающая обе эти точки.
Параллелепипед– призма, основаниями которой являются параллелограммы.
Параллелограмм – плоский четырехугольник, противоположные стороны которого попарно параллельны.
Параллельный перенос (сдвиг) – перемещение фигуры, при котором каждая точка перемещается на один и тот же вектор.
Параллельный сдвиг см. Параллельный перенос.
Пирамида– многогранник, одной их граней которого является многоугольник (обычно это основание), а остальные грани – треугольники с общей вершиной.
Площадь плоской фигуры – неотрицательная функция геометрической фигуры на плоскости, сохраняющая свое значение при движениях и удовлетворяющая условию, что единичный квадрат имеет площадь, равную единице.
Полный угол – угол, равный 360 о .
Правая (Правоориентированная) тройка векторов – три некомпланарных вектора, удовлетворяющих условиям:
1) они упорядочены, и третий вектор направлен по направлению осевого движения правого винта при повороте по наименьшему углу от первого вектора ко второму;
2) они упорядочены и наблюдателю, находящемуся внутри телесного угла, образованного этими векторами, кратчайшие повороты от первого вектора ко второму и от второго к третьему кажутся происходящими против часовой стрелки;
3) они упорядочены и из конца третьего вектора кратчайший поворот от первого вектора ко второму виден совершающимся против часовой стрелки.
Пояснение. Приведены три равносильных условия (определения) правой тройки векторов.
Правило параллелограмма– графическое правило образования суммы двух векторов.
Правило треугольника– графическое правило образования суммы двух векторов.
Призма – многогранник, две грани (основания) которого – равные многоугольники, лежащие в параллельных плоскостях, а остальные грани (боковые грани) – параллелограммы.
Проекция вектора на вектор– число, равное модулю вектора, проекция которого находится, умноженному на косинус угла между векторами.
Произведение вектора a на скаляр (число) l – вектор, обозначаемый la, такой что:
а) его модуль равен произведению модулей исходного вектора и скаляра, т.е.
|la| = |l|×|a|;
б) новый вектор и исходный вектор коллинеарны, т.е. a || la;
в) векторы a и la сонаправлены, если l > 0, и противоположно направлены, если l o , в радианной мере p/2.
Прямоугольные декартовы координаты – координаты, базис которых состоит из попарно ортогональных единичных векторов.
Равные векторы – векторы, являющиеся коллинеарными, одинаково направленными и имеющие равные модули.
Радиус-вектор точки P – вектор , начало которого находится в начале координат O, а конец – в рассматриваемой точке P.
Развернутый угол – угол, стороны которого составляют одну прямую; в градусной мере равен 180 o , в радианной мере p.
Свободный вектор– множество всех векторов, равных данному вектору, т.е. множество всех векторов с одинаковым модулем и направлением, но с различными начальными точками.
Связанный вектор– вектор с фиксированной начальной точкой.
Скаляр (Скалярная величина) – величина, которая полностью характеризуется одним числом.
Скалярная величинасм. Скаляр.
Скалярное произведение двух векторов– число, равное произведению модулей этих векторов на косинус угла между ними.
Обозначение: ab, a×b, (a,b).
Скалярный квадрат– скалярное произведение вектора на самого себя.
Обозначение: a 2 .
Сложение векторовсм. Сумма двух векторов.
Смешанное (Векторно-скалярное) произведение трех векторов – число, полученное по правилу: (a´b)×c), т.е. первые два вектора перемножаются векторно, а результат умножается на третий вектор скалярно. Обозначение: abc, (abc).
Составляющаясм. Координата.
Сумма двух векторов – новый вектор, получаемый по правилу треугольника или параллелограмма. Обозначение: a + b = c.
Тетраэдр– треугольная пирамида, т.е. пирамида, основанием которой является треугольник.
Пояснение. Тетраэдр имеет четыре треугольных грани, шесть ребер и четыре вершины.
Треугольная призма – призма, основания которой – треугольники.
Треугольник– многоугольник, имеющий три вершины и три стороны.
Тупой угол– угол, больший прямого, но меньший развернутого.
Угол между двумя векторами– наименьший угол, на который нужно повернуть один из векторов до совмещения с другим.
См. Острый, полный, прямой, развернутый, тупой угол.
Умножение вектора на скаляр – операция отыскания произведения вектора на скаляр. Обозначение: la = b.
Упорядоченная тройка векторов – три вектора, если указано, какой из них является первым, какой – вторым и какой – третьим.
Векторное произведение векторов
О чем эта статья:
11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение векторного произведения
Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.
Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.
Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.
Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.
Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.
Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.
Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.
Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.
Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.
Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.
Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.
В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.
И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.
Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!
Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:
- он является нулевым, если векторы →a и →b коллинеарны;
- он перпендикулярен и вектору →a и вектору →b;
- длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
- тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.
Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.
Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:
Векторное произведение векторов →a и →b обозначается как [→a • →b].
Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.
Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.
Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:
- Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
- Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
- Если определитель равен нулю, то векторы компланарны (линейно зависимы).
Координаты векторного произведения
Рассмотрим векторное произведение векторов в координатах.
Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.
В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор
→i, →j, →k — координатные векторы.
Это определение показывает нам векторное произведение в координатной форме.
Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:
Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:
Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.
Свойства векторного произведения
Векторное произведение в координатах представляется в виде определителя матрицы:
На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:
- Антикоммутативность
- Свойство дистрибутивности
Сочетательное свойство
, где λ произвольное действительное число.
Для большей ясности докажем свойство антикоммутативности векторного произведения.
Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому
что доказывает свойство антикоммутативности векторного произведения.
Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.
Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).
Примеры решения задач
Пример 1
а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.
б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.
а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:
Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.
б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:
Пример 2
Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.
По условию снова нужно найти длину векторного произведения. Используем нашу формулу:
Согласно ассоциативным законам, выносим константы за переделы векторного произведения.
Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.
Пример 3
Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.
Сначала найдём векторы:
Затем векторное произведение:
Вычислим его длину:
Подставим данные в формулы площадей параллелограмма и треугольника:
Геометрический смысл векторного произведения
По определению длина векторного произведения векторов равна
А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.
Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.
Физический смысл векторного произведения
В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.
Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].
Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.
3.1.7. Примеры решения задач по теме «Линейные операции над векторами. Скалярное произведение»
Даны векторы А = (-2; 3; 5) и B = (4; -1; 7). Найти координаты вектора
При умножении вектора на число все его координаты
Умножаются на это число, при сложении векторов складываются их соответствующие координаты.
Координаты коллинеарных векторов пропорциональны.
Если A || B, то . Отсюда:
Ответ: .
Найти направляющие косинусы вектора А = <-2; -1; 2>.
Направляющие косинусы являются координатами орта (единичного вектора) данного направления.
Найдем модуль вектора А:
Разделив все координаты вектора А на его модуль, получим координаты орта:
Ответ:
Тогда AA + BB + GC = <2A + B– 3G; –A + B+ G; 3A – B+ 2G>, причем координаты этого вектора должны равняться соответствующим координатам вектора D. Приравнивая эти координаты, получаем систему уравнений для определения A, B, G:
Для векторов A = <1; -2; 3>, B = <-1; 1; -2>, C = <3; 2; 1>, D = < 15; 7; 4>найти такие числа A, B, G, чтобы векторы AA, BB, GC и D образовали замкнутую ломаную линию, если начало каждого последующего вектора совместить с концом предыдущего.
C = <1; -4; 3>линейно зависимой или линейно независимой.
Система векторов называется линейно независимой, если равенство
Вычислим главный определитель Δ системы уравнений
По правилу Крамера система имеет единственное решение, но для однородной системы всегда существует нулевое решение (A = B = G = 0).
Поскольку других решений нет, данная система векторов линейно независима.
Ответ: Система векторов линейно независима.
Найти координаты какого-либо вектора, направленного по биссектрисе угла между векторами А = (-4; 3; 0) и B = (12; -15; 16).
Диагональ параллелограмма является биссектрисой угла между сторонами только в том случае, если этот параллелограмм – ромб. Следовательно, искомым вектором можно считать сумму двух векторов равной длины, коллинеарных соответственно векторам А и B.
Вектор A + B направлен по диагонали параллелограмма, построенного на векторах А и B как на смежных сторонах и выходящей из общего начала векторов А и B.
Диагональ параллелограмма является биссектрисой угла между сторонами только в том случае, если этот параллелограмм – ромб. Следовательно, искомым вектором можно считать сумму двух векторов равной длины, коллинеарных соответственно векторам А и B.
Следовательно, |5A| = |B|. Значит, параллелограмм со сторонами, совпадающими с векторами 5A и B, является ромбом, поэтому вектор 5A + B будет иметь заданное направление.
При каких значениях X, Y, Z точки А(Х; -1; 3), В(5; -4; Z), C(-2; Y; 9), D(-5; 1; 7) являются вершинами параллелограмма?
Для выполнения условия задачи требуется коллинеарность векторов и и и .
Для выполнения условия задачи требуется коллинеарность векторов и и и .
Найдем координаты этих векторов:
Из последней пропорции получаем, что Z = 1 – 2Y. Тогда
Но при этих значениях неизвестных
Условие задачи выполнено.
Используйте определение скалярного произведения:
Используем свойства скалярного произведения:
По определению скалярного произведения
Сложим левые и правые части полученных равенств:
Даны векторы А = <2; -3; 1>и B = <-1; 2; 1>. Найти скалярное произведение
Найдите координаты векторов 3А – B и A + 2B или используйте свойства скалярного произведения.
Используем свойства скалярного произведения:
Используйте формулу, выражающую косинус угла между векторами через их скалярное произведение.
Ответ: .
Координаты вектора B пропорциональны координатам А. Если K – коэффициент пропорциональности, то B = <2K; -2K; 3K>.
Координаты вектора B пропорциональны координатам А. Если K – коэффициент пропорциональности, то B = <2K; -2K; 3K>.
Известно, что |A| = 2, |B| = 7. Найти значения K, при которых векторы
Если векторы перпендикулярны, то их скалярное произведение равно нулю.
Если векторы перпендикулярны, то их скалярное произведение равно нулю.
Ответ: K = .
Найти проекцию вектора А = <7; 0; -5>на ось, образующую с координатными осями Ох и Оу углы 60о и 45о, а с осью Oz – тупой угол γ.
Используйте свойство направляющих косинусов:
Найдем cosγ: cos260o + cos245o + cos2γ = 1,
Тогда проекция А на заданную ось равна:
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/vektornoe-proizvedenie-vektorov
http://matica.org.ua/metodichki-i-knigi-po-matematike/lineinaia-algebra-i-analiticheskaia-geometriia/3-1-7-primery-resheniia-zadach-po-teme-lineinye-operatcii-nad-vektorami-skaliarnoe-proizvedenie
[/spoiler]
Как найти аппликата вектора
Адиль Айжанов
Ученик
(95),
на голосовании
1 год назад
Здравствуйте! Ищу в интернете и не могу найти формулу и нормальное разъяснение что такое аппликата и как её найти. Сама задача:
Заданы координаты точек А(-4, 6, 3), В(-5, -2, 6). Найдите аппликату вектора .
Голосование за лучший ответ
- Основные определения.
- Вектор (геометрический вектор) — это направленный отрезок (отрезок, у которого одна граничная точка считается начальной, другая – конечной).
На чертеже вектор обозначается стрелкой
над буквенным обозначением вектора также ставится стрелка .
Вектор, фигурирующий в определении, носит название связанного, или закрепленного вектора. - Закрепленный вектор — это направленный отрезок АВ, началом которого является точка А, а концом — точка В.
Свободный вектор — это множество всех закрепленных векторов, получающихся из фиксированного закрепленного вектора с помощью параллельного переноса. Обозначается .
Если же точка приложения вектора (точка A для вектора ) может быть выбрана произвольно, вектор называется свободным.
Если точка приложения может двигаться по линии действия вектора, говорят о скользящем векторе. Иначе говоря, свободный вектор является представителем бесконечного множества связанных или скользящих векторов. - Нулевой вектор — это вектор, у которого начало и конец совпадают:
- Коллинеарные векторы — это векторы, которые лежат на одной прямой, либо на параллельных прямых.
Нулевой вектор коллинеарен любому вектору. - Три вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
Если тройка векторов содержит нулевой вектор или пару коллинеарных векторов, то эти векторы компланарны. - Длина вектора (модуль) — это расстояние между началом и концом вектора. Обозначение: или
- Два вектора равны, если они коллинеарны, имеют одинаковую длину и направление. Например,
- Алгебраические операции над векторами.
- Операция сложения.
Суммой двух свободных векторов и называется свободный вектор , начало которого совпадает с началом первого, а конец — с концом второго, если совмещены конец вектора и начало вектора .
Сумма двух векторов и () — это вектор, идущий из начала вектора в конец вектора при условии, что начало вектора приложено к концу вектора (правило треугольника).
Свойства операции сложения векторов:
1) Переместительное свойство: (коммутативность).
2) Сочетательное свойство: (ассоциативность).
3) Существует нулевой вектор , такой, что для любого вектора (особая роль нулевого вектора).
Нулевой вектор порождается нулевым закрепленным вектором, то есть точкой.
4) Для каждого вектора существует противоположный ему вектор , такой, что . Вектор называется вектором, противоположным вектору .
Правило параллелограмма (правило сложения векторов): если векторы и приложены к общему началу и на них построен параллелограмм, то сумма этих векторов представляет собой диагональ параллелограмма, идущую из общего начала векторов и
Вычитание векторов определяется через сложение: .
Другими словами, если векторы и приложены к общему началу, то разностью векторов и будет вектор , идущий из конца вектора к концу вектора .
- Операция умножения вектора на число.
Произведением вектора на число называется вектор такой, что:
1) если λ > 0, ≠ , то получается из растяжением в λ раз: ;
2) если λ < 0, ≠ , то получается из растяжением в |λ| раз и последующим отражением: ;
3) если λ = 0 или , то .
Свойства операции умножения:
1) Распределительное свойство относительно суммы чисел: для любых действительных и всех (дистрибутивность).
2) Распределительное свойство относительно суммы векторов: (дистрибутивность).
3) Сочетательное свойство числовых сомножителей: (ассоциативность).
4) Существование единицы: .
- Ортонормированный базис. Декартова прямоугольная система координат.
- Ортонормированный базис (ОНБ) — это три взаимно перпендикулярных вектора с длинами, равными единице.
Обозначения: - Базисные орты — это векторы .
- Зафиксированная точка О – это начало координат.
Отложим от точки O векторы .
Полученная система координат — это прямоугольная декартова система координат. - Декартовы координаты вектора — это координаты любого вектора в этом базисе:
Пример 11. - Координатные оси — это прямые линии, проведенные через начало координат (точку O) по направлениям базисных векторов:
– порождает Ox;
– порождает Oy;
– порождает Oz. - Абсцисса — это координата точки M (вектора в декартовой системе координат по оси Ox.
Ордината — это координата точки M (вектора в декартовой системе координат по оси Oy.
Аппликата — это координата точки M (вектора ) в декартовой системе координат по оси Oz. - Декартовы прямоугольные координаты x, y, z вектора равны проекциям этого вектора на оси Ox, Oy, Oz, соответственно. Иначе:
где α, β, γ – углы, которые составляет вектор с координатными осями Ox, Oy, Oz, соответственно, при этом cosα, cosβ, cosγ называются направляющими косинусами вектора . Пример 12.
Для направляющих косинусов справедливо соотношение:
- Орт направления — это вектор единичной длины данного направления.
Формулы, уравнения, теоремы, примеры решения задач
Содержание:
Векторная алгебра
Векторная алгебра – это раздел векторного исчисления, изучающий линейные операции с векторами и их геометрические свойства; часть линейной алгебры, занимающаяся векторными пространствами; различные векторные алгебры XIX века (например, кватернионов, бикватернионов, сплит-кватернионов).
Векторы и линейные операции над ними
Займемся теперь таким важным как в самой математике, так и в ее многочисленных приложениях, понятием вектора.
Определение: Вектором, на плоскости или в пространстве называется отрезок прямой с заданным на нем направлением, т. е. одна из его граничных точек считается начальной, а вторая – конечной.
Обозначать векторы мы будем строчными латинскими буквами
Длина отрезка, изображающего вектор называется его длиной и обозначается через Вектор с совпадающими начальной и конечной точками называется нуль-вектором. Для него используется обозначение
По определению, два вектора считаются равными, если один из них можно преобразовать в другой с помощью параллельного переноса.
Учитывая приведенное определение, всюду в дальнейшем мы без специальных оговорок будем перемещать вектор параллельным переносом в любую удобную для нас точку.
Два вектора называются коллинеарными (обозначение ), если отрезки их изображающие параллельны.
Аналогично, векторы а и b называются ортогональными (обозначение ), если соответствующие отрезки перпендикулярны.
Три вектора называются компланарными, если после приведения их общему началу, они будут расположены в одной плоскости.
Углом между векторами приведенными к общему началу, называется меньший из двух углов между соответствующими отрезками. Обозначать угол мы будем строчными греческими буквами … или через
Два ненулевых вектора мы будем считать одинаково направленными, если и противоположно направленными, если
Введем теперь линейные операции над векторами.
а) Умножение числа на вектор.
Произведением действительного числа на векторназывается вектор длина которого равна а направление его совпадает с направлением вектора если и имеет противоположное с ним направление, если Если или
В частности, вектор обозначается через и называется вектором, противоположным вектору
Если то произведение мы будем иногда записывать в виде
Из приведенного определения сразу же следует, что коллинеарные векторы линейно связаны, т. е. существует константа такая,что В качестве такой константы следует
взять число Если то В частности, если то вектором единичной длины с направлением данного вектора является вектор
b) Сложение векторов.
Суммой двух векторов называется вектор который находится по правилу треугольника
или по равносильному ему правилу параллелограмма
Вектор называется разностью векторов
Свойства линейных операций над векторами аналогичны соответствующим свойствам действительных чисел.
Проекцией вектора на вектор называется число
Геометрически очевидны следующие свойства проекции:
Пример №1
Пусть Е и F – середины сторон AD и ВС соответственно выпуклого четырехугольника ABCD. Доказать, что
Доказательство. Из четырехугольников EDCF и EABF по правил}’ сложения векторов получим:
Сложив данные равенства и учитывая, что будем иметь:
что и требовалось.
Базис и декартова система координат
Определение: Базисом на плоскости называется упорядоченная пара неколлинеарных векторов. Базисом в пространстве называется упорядоченная тройка некомпланарных векторов.
Обозначение: — базис на плоскости, — базис в пространстве. Всюду в дальнейшем, не оговаривая это особо, будем рассматривать только положительно ориентированные базисы, т. е. базисы, у которых кратчайший поворот от вектора к вектору совершается против часовой стрелки, если наблюдение ведется со стороны вектораСформулируем теперь фундаментальное свойство базиса.
Теорема. Любой вектор единственным образом разлагается по базису, т. е. представляется в виде где действительные числа – координаты вектора в базисе
Приведем геометрическое доказательство этого утверждения.
Вектор можно единственным образом представить как большую диагональ параллелепипеда, ребра которого, параллельны базисным векторам. Тогда по правилу сложения векторов В виду коллинеарности векторов соответствующим базисным векторам, мы можем записать, что — некоторые действительные числа. Отсюда и следует искомое разложение.
Если базис зафиксирован, то факт, что вектор а в этом базисе имеет координаты коротко записывается как
Из доказанной теоремы следует, что при выполнении линейных операций над векторами точно также преобразуются и их координаты, т. е. если если Отсюда, в частности, следует, что два вектора коллинеарны тогда и только тогда, когда их координаты пропорциональны, т. е.
Рассмотрим теперь ортонормированный базис т.е. базис, в котором все векторы имеют единичную длин}’ и попарно ортогональны. Векторы этого базиса мы будем называть ортами. Пусть в этом базисе
Как видно из чертежа, координаты вектора в ортонормированном базисе представляют собой проекции этого вектора на соответствующие орты. т. е.
Величины т. е. косинусы углов, которые образует данный вектор с ортами к соответственно, называются направляющими косинусами вектора Единичный вектор имеет координаты
Очевидно также, что
Свяжем теперь с ортонормированным базисом декартову (прямоугольную) систему координат. Для этого поместим начала ортов в некоторую точку О, ось Ох (абсцисс) направим вдоль орта ось (ординат) — вдоль орта наконец, ось (аппликат) направим вдоль орта
В выбранной системе координат координаты радиуса-вектора мы будем называть координатами точки М и записывать
Если известны координаты начальной и конечной точек вектора, то из равенства слезет, что его координаты равны
и, значит, расстояние между точками вычисляется по формуле
Найдем теперь координаты точки М, делящей отрезок с концами в точках в данном
отношении Так как Отсюда, переходя к координатам получим:
Следовательно, координаты искомой точки вычисляются по формулам:
Найдем, в частности, координаты середины отрезка. Здесь А = 1, поэтому
Пример №2
Треугольник задан координатами своих вершин Найти координаты точки пересечения его медиан. Решение.
Пусть – середина отрезка – точка пересечения медиан. Тогда
По известному свойству точки пересечения медиан и потому
Подставив сюда найденные координаты точки ползучим:
Таким образом, координаты точки пересечения медиан треугольника равны средним арифметическим соответствующих координат его вершин.
Замечание. Базисом n-мерного пространства называется упорядоченная совокупность n векторов
обладающая тем свойством, что любой вектор единственным образом представляется в виде линейной комбинации базисных векторов (1), т.е. существуют действительные числа (координаты векторав базисе (1)) такие, что
В качестве базиса в мы можем взять, например, векторы
так как, очевидно, любой вектор однозначно представляется в виде (2).
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется число
Из этого определения сразу же следует, что
и таким образом, если один из векторов имеет единичную длину, то их скалярное произведение равно проекции второго вектора на единичный.
Отметим основные свойства скалярного произведения.
Первые два и последнее свойства немедленно следуют из определения скалярного произведения, а третье и четвертое – из сформулированных в §1 свойств проекции.
Найдем теперь представление скалярного произведения в координатах. Пусть в орто-нормированном базисе векторы имеют координаты Заметив, что по свойствам 1) и 5) скалярного произведения
перемножим векторыскалярно, используя свойства 2) – 4):
Таким образом, скалярное произведение в ортонормированном базисе равно сумме произведений соответствующих координат векторов.
Пример №3
Разложить вектор на две ортогональные составляющие, одна из которых коллинеарна вектору
Решение.
Из чертежа следует, что – искомое разложение. Найдем векторы Составляющая коллинеарная вектору равна, очевидно, вектору проекции и, следовательно,
Тогда вторая ортогональная составляющая вектора равна
В заключение параграфа рассмотрим одно простое приложение скалярного произведения в механике. Пусть под действием постоянной силы материальная тотп<а переместилась по прямой из положения В в положение С.
Найдем работу этой силы. Для этого разложим вектор силы на две ортогональные составляющие. одна из которых коллинеарна вектору перемещения Тогда
Составляющая работы не совершает, следовательно, работа силы равна работе составляющей и, таким образом,
Окончательно, работа силы, под действием которой материальная точка перемещается по отрезку прямой из положения В в положение С, вычисляется по формуле:
Замечание. Скалярным произведением векторов n-мерного пространстваназывается число равное произведению первого вектора, записанного строкой, на второй вектор, записанный столбцом. Таким образом, если
то
Несложной проверкой мы можем убедиться в том, что таким образом определенное скалярное произведение в обладает свойствами 2) — 4) скалярного произведения векторов на плоскости или в пространстве.
Длиной вектора называется число
Векторы называются ортогональными, если Векторы
составляют ортонормированный базис пространства , так как каждый из этих векторов имеет единичную длину и все они попарно ортогональны.
Любой вектор мы можем рассматривать как точку
n-мерного пространства с координатами
Взяв еще одну точку соответствующую вектору мы под расстоянием между точками М и N будем понимать длину вектора т. е. число
Таким образом переопределенное пространство с расстоянием (2) между точками мы будем называть евклидовым пространством, сохранив для него то же обозначение.
Совокупность точки О(0.0,…, 0) и ортонормированного базиса (1) называется декартовой системой координат евклидова пространства R”. Точка 0(0,0,… ,0) называется, естественно, началом координат.
Векторное произведение векторов
Определение: Векторным произведением некоялинеарных векторов называется вектор такой, что
Из этого определения следует, что площадь параллелограмма, построенного на векторах и равна длине векторного произведения , т. е.
Сформулируем основные свойства векторного произведения.
Первые два свойства очевидным образом следуют из определения векторного произведения. Доказательство третьего ввиду его громоздкости мы приводить не будем.
Найдем формулу для вычисления векторного произведения в координатах. Пусть векторы и в ортонормированном базисе имеют координаты Учитывая, tito по определению векторного произведения
раскроем скобки в векторном произведении принимая во внимание свойства 1) – 3):
Полученный вектор мы можем записать в виде следующего символического определителя.
вычислять который удобно разложением по первой строке.
Пример №4
Найти составляющую вектора , ортогональную плоскости векторов .
Решение.
Из чертежа видно, что искомая составляющая представляет собой вектор проекции данного вектора на векторное произведение и, следовательно.
Переходим к вычислениям:
Тогда
Среди многочисленных приложений векторного произведения отметим его применение в механике при вычислении момента силы.
Итак, пусть сила приложена к материальной точке В. Моментом этой силы относительно неподвижной точки С называется вектор
Смешанное произведение векторов
Определение: Смешанным произведением трех векторов называется число
Выясним геометрический смысл смешанного произведения для тройки некомпланарных векторов.
По определению смешанного произведения
Поскольку – площадь параллелограмма, построенного на векторах (§4)
-высота параллелепипеда построенного на векторах то
– объем параллелепипеда. Таким образом, абсолютная величина смешанного произведения трех векторов равна объему параллелепипеда, построенного на этих векторах.
Если векторы заданы своими координатами в ортонормированном базисе , т.е. то учитывая формулы для вычисления скалярного и векторного произведений (§3, §4), получим:
Следовательно (глава I. §2, пункт 3, свойство 7)), в координатах смешанное произведение вычисляется по формуле:
Докажем, пользуясь этой формулой, некоторые свойства смешанного произведения.
что следует из свойства 4) определителя (глава I. §2, пункт 3). Таким образом, в смешанном произведении можно менять местами знаки скалярного и векторного произведения, и поэтому для него используется более короткое обозначение . которым мы и будем пользоваться в дальнейшем.
Эти свойства смешанного произведения также являются прямыми следствиями соответствующих свойств определителя.
Докажем еще одно, геометрическое свойство смешанного произведения.
Теорема. Три вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю.
Доказательство. Докажем необходимость условия теоремы. Пусть векторы компланарны. Очевидно, что, если хотя бы один из них равен нулю, то и их смешанное произведение равно нулю. Если же все они ненулевые, то, ввиду их компланарности, векторное произведение ортогонально вектору с и, следовательно, . Аналогично проверяется достаточность условия теоремы.
Следствие. Три вектора образуют базис в том и только в том случае, когда их смешанное произведение отлично от нуля.
Заметим, кроме того, что, если , то угол между векторами -острый (тупой) и, следовательно, базис является положительно (отрицательно) ориентированным.
Пример №5
Доказать, что пять точек
расположены в одной плоскости.
Решение. Рассмотрим векторы Так как
то по доказанной выше теореме эти векторы компланарны и, стало быть. точки находятся в одной плоскости Аналогично покажем, что и точки также принадлежат одной плоскости . Действительно,
так как первая и третья строки в определителе пропорциональны. Плоскости имеют три общие точки , следовательно, они совпадают и, таким образом, все пять точек расположены в одной плоскости.
Векторы и линейные операции над ними
Определение: Вектором называется направленный отрезок (рис. 1).
А – начало, В – конец вектора
Рис. 1
Так как вектор определяется его началом и концом, то можно сформулировать эквивалентное данному определение.
Определение: Вектором называется упорядоченная пара точек.
Определение: Длина вектора – расстояние между его началом и концом.
Определение: Два вектора называются равными, если они имеют равные длины и одинаково направлены. При этом одинаково направленными называются векторы, лежащие на параллельных прямых и имеющие одинаковые направления.
Из этого определения следует, что точка приложения вектора значения не имеет, то есть вектор не изменяется, если его перемещать параллельно самому себе, сохраняя длину. Такие векторы называются свободными.
Если начало и конец вектора совпадают, он называется нулевым:
– нулевой вектор: его направление не определено, а длина .
Определение: Векторы называются коллинеарными, если они лежат на параллельных прямых:
Так как направление нулевого вектора не определено, то он коллинеарен любому другому.
Определение: Векторы называются компланарными, если они параллельны одной плоскости.
Нулевой вектор компланарен любой системе компланарных векторов.
Линейные операции над векторами
Линейными называются операции сложения векторов и умножения на число.
Сложение
а) Правило параллелограмма (рис.2): начала совмещаются в одной точке, и – диагональ параллелограмма, построенного на .
б) Правило треугольника (рис. 3): начало совмещается с концом направлен от начала к концу .
в) Правило сложения нескольких векторов (рис. 4).
Вектор замыкает ломаную линию, построенную таким образом: конец предыдущего вектора совмещается с началом последующего и направлен от начала к концу .
Умножение на число
Определение: Произведением вектора на число называется вектор , aудовлетворяющий условиям:
а)
б)
в) , если ,a если , если .
Произведение называется вектором, противоположным вектору . Очевидно, .
Определение: Разностью называется сумма вектора и вектора, противоположного (рис. 5).
Начала совмещаются в одной точке, и направлен от конца к концу .
Свойства линейных операций
Определение: Результат конечного числа линейных операций над векторами называется их линейной комбинацией: – линейная комбинация векторов с коэффициентами
Пример №6
Пусть М – точка пересечения медиан треугольника АВС, а О – произвольная точка пространства. Представить как линейную комбинацию
(рис. 6).
. Так как точка пересечения медиан треугольника делит их в отношении 2:1, считая от вершины, то из правила параллелограмма следует, что
По правилу треугольника , то есть – линейная комбинация с коэффициентами
Теорема: Пусть – неколлинеарные векторы. Тогда любой компланарный с ними вектор c может быть представлен в виде
где коэффициенты (2.1) определяются единственным образом.
Представление вектора в виде (2.1) называется разложением его по двум неколлинеарным векторам.
Доказательство:
- Пусть среди есть два коллинеарных, например:
- Пусть среди коллинеарных нет, тогда совместим начала всех трех векторов в одной точке. Построим параллелограмм, диагональ которого совпадает с , а стороны параллельны прямым, на которых лежат (рис. 7).
Тогда c но Поэтому
Докажем единственность разложения. Предположим, что и Тогда, вычитая одно равенство из другого, получим:
Если , что противоречит условию. Теорема доказана.
Теорема: Пусть – некомпланарные векторы. Тогда любой вектор может быть представлен в виде
причем единственным образом.
Представление вектора в виде (2.2) называется разложением его по трем некомпланарным.
Доказать самостоятельно.
Проекция вектора на ось
Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.
Координаты вектора
Осью называется направленная прямая.
Определение: Ортом оси называется единичный вектор
направление которого совпадает с направлением оси.
Определение: Ортогональной проекцией точки М на ось называется основание перпендикуляра, опущенного из М на .
Определение: Ортогональной проекцией вектора на ось называется длина отрезка этой оси, заключенного между ортогональными проекциями его начала и конца, взятая со знаком «+», если направление вектора совпадает с направлением оси, и со знаком «–», если эти направления противоположны (рис. 8).
Определение: Углом между вектором и осью называется угол, на который нужно повернуть в положительном направлении ось до совпадения ее направления с направлением вектора (положительным считается поворот против часовой стрелки).
Очевидно, проекцию вектора на ось можно найти по формуле
Можно показать, что проекция линейной комбинации векторов равна та-
кой же линейной комбинации их проекций:
В частности, проекция суммы векторов равна сумме их проекций:
Рассмотрим прямоугольную декартову систему координат ХОY. Обозначим – орт оси ОХ, – орт оси OY. Выберем точку A , и пусть x, y – проекции ее на ОХ и OY,то есть координаты этой точки (рис. 9).
Аналогично в пространственной системе OXYZ – орты координатных осей) (рис. 10):
– разложение по ортам координатных осей (единственно по теореме 2).
Таким образом, если задана прямоугольная декартова система координат (пдск), то со всяким пространственным вектором можно связать три числа x,y,z (или два числа x, y, если вектор плоский), которые являются коэффициентами разложения этого вектора по ортам координатных осей, а также являются проекциями этого вектора на координатные оси.
Определение: Координатами вектора в любой пдск называются коэффициенты в разложении этого вектора по ортам координатных осей.
Таким образом, можно дать еще одно определение вектора.
Определение: Вектором называется упорядоченная тройка чисел (упорядоченная пара, если вектор плоский).
Пример №7
Если и наоборот, если
Так как, с одной стороны, вектор – объект, имеющий длину и направление, а с другой, – упорядоченная тройка чисел, то, зная длину и направление, можно определить его координаты и наоборот. Направление вектора в заданной системе координат характеризуется его направляющими косинусами (рис. 11):
Из этих формул очевидно следует основное свойство направляющих косинусов:
Если известны длина и направляющие косинусы вектора, то его координаты вычисляются по формулам:
Пусть AB – произвольный вектор в системе OXYZ, OA,OB – радиус-векторы его начала и конца,
Тогда
(см. свойства линейных операций над векторами). Таким образом,, то есть для определения координат вектора надо из координат его конца вычесть координаты начала.
Определение: Базисом в пространстве называется любая упорядоченная тройка некомпланарных векторов (рис. 13).
Если – базис, то – другой базис, так как изменился порядок следования векторов.
Определение: Базис называется прямоугольным декартовым, если базисные векторы взаимно перпендикулярны и длина каждого равна 1.
Такой базис принято обозначать
Из теоремы 2 следует, что всякий вектор может быть разложен по базису , то есть представлен в виде: . Числа x,y,z называются координатами в базисе .
Определение: Базисом на плоскости называется любая упорядоченная пара неколлинеарных векторов.
Если – базис, то представление вектора в виде называется разложением по базису и x, y – координаты в этом базисе.
Определение: Базисом на прямой называется любой ненулевой вектор этой прямой.
Деление отрезка в данном отношении
Рассмотрим задачу: дан отрезок AB . Найти точку D , которая делит AB в заданном отношении (рис. 14).
Введем прямоугольную декартову систему координат (пдск) OXYZ, тогда
Обозначим
Так как (лежат на одной прямой) и то
Переходя от этого векторного равенства к равенству соответствующих координат, получим:
ЗАМЕЧАНИЕ 1. Если D – середина отрезка AB , то k 1, поэтому
ЗАМЕЧАНИЕ 2. Если k < 0, , то точка D лежит за пределами AB : так как , то при
В этом случае
Скалярное произведение векторов
Определение: Скалярным произведением векторов называется скаляр (число), равный
Скалярное произведение обозначается так: или
Так как (рис. 16) или то
Свойства скалярного произведения
1. – очевидно из определения.
2.
Доказательство:
3.
Доказательство:
а) – очевидно.
б)
в) В этом случае
4.
Отсюда следует, что
Необходимым и достаточным условием перпендикулярности векторов является равенство нулю их скалярного произведения:
5.
Доказательство:
а) пусть
б) пусть
В первом и втором случаях один из сомножителей – нулевой вектор. Его направление не определено, поэтому можно считать, что . В третьем случае
Используя свойства 4 и 5, составим таблицу вычисления скалярного произведения базисных векторов
Пусть в некоторой пдск . Найдем скалярное произведение этих векторов:
Таким образом,
Пример №8
Найти, при каком значении x векторы перпендикулярны.
Два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю (свойство 5), поэтому найдем скалярное произведение по формуле (2.5):
Пример №9
Найти угол между биссектрисой AD и медианой если
Так как
то
Найдем координаты векторов . Точка M – середина BC , поэтому по формулам (2.4)
По теореме о биссектрисе внутреннего угла треугольника
Чтобы найти k , вычислим длины AC и AB :
Разделим отрезок CB в данном отношении по формулам (2.3):
отсюда
Заметим, что . Это замечание позволит нам не иметь дело с дробями, так как
Пример №10
Найти
Воспользуемся свойствами 1–4 скалярного произведения:
Отсюда
ЗАМЕЧАНИЕ. Так как работа силы по перемещению материальной точки вдоль вектора вычисляется по формуле
Определение векторного произведения векторов
Определение: Тройка некомпланарных векторов , имеющих общее начало, называется правой (левой), если конца третьего вектора c вращение первого вектора ко второму вектору по кратчайшему пути наблюдается против (по) часовой стрелки (рис. 17).
Определение: Векторным произведением вектора на вектор называется вектор, удовлетворяющий условиям:
- ( перпендикулярен плоскости векторов и ).
- Направление таково, что тройка– правая.
Векторное произведение обозначается так:
ЗАМЕЧАНИЕ 1. Геометрический смысл векторного произведения: длина векторного произведения численно равна площади параллелограмма, построенного на этих векторах.
Это следует из того, что площадь параллелограмма равна произведению длин смежных сторон на синус угла между ними.
Заметим, что
Таким образом, длину вектора векторного произведения можно вычислить с помощью скалярного произведения по формуле
Пример №11
Найти площадь параллелограмма, построенного на векторах
По формуле (2.7):
ЗАМЕЧАНИЕ 2. Направление вектора можно также (кроме п.2) определить по правилу винта: направление вектора совпадает с направлением поступательного движения винта в правой резьбой при вращении его в сторону поворота первого вектора ко второму вектору по кратчайшему пути (рис. 19).
Свойства векторного произведения
1.
Доказательство:
а)пусть или . В первом и втором случаях один из сомножителей – нулевой вектор.
Его направление не определено, поэтому можно считать, что . Если
б)пусть
2.
Доказательство: По определению направления векторов и противоположны, а модули равны, значит, векторы отличаются лишь знаком.
3. – свойство линейности векторного произведения по первому сомножителю (без доказательства).
Векторное произведение также линейно и по второму сомножителю.
Используя определение и свойства 1 и 2, составим таблицу вычисления векторного произведения базисных векторов : векторы, стоящие в левом столбце, умножаются на соответствующие векторы верхней строки (рис. 20).
Пусть в некоторой пдск . Найдем векторное произведение этих векторов:
Заметим, что это выражение можно получить, вычислив символический определитель (сделать это можно по-разному, но лучше разложить по первой строке):
Таким образом,
Пример №12
Вычислить векторное произведение векторов
По формуле (2.8):
Заметим, что площадь треугольника, построенного на векторах , можно вычислить двумя способами: как половину длины найденного вектора или используя формулу (2.7). Заметим, что
или
Пример №13
Вычислить площадь параллелограмма, построенного на векторах
Так как , то вычислим векторное произведение, используя его свойства:
Отсюда
Определение смешанного произведения векторов
Определение: Смешанным произведением векторов называется число – скалярное произведение a на векторное произведение
Смешанное произведение обозначается так:
Пусть в некоторой пдск
Обозначим
Тогда
по 7 свойству определителей.
Таким образом,
По определению скалярного произведения
Совместим начала всех трех векторов в одной точке. Тогда (рис. 21)
– площадь параллелограмма,
– высота параллелепипеда,
– объем параллелепипеда.
Геометрический смысл смешанного произведения: модуль смешанного произведения численно равен объему параллелепипеда, построенного на векторах-сомножителях, при этом – правая тройка, и – левая тройка.
Свойства смешанного произведения
1. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения: компланарны
Доказательство: а) компланарны
Если компланарны, то на них нельзя построить параллелепипед, а потому
б)компланарны.
Во всех трех случаях компланарны: в частности, если параллелен плоскости векторов , что означает их компланарность.
2. Круговая перестановка сомножителей в смешанном произведении не изменяет его величины. Перестановка соседних сомножителей изменяет его знак, не изменяя абсолютной величины:
Доказательство следует из формулы (2.9) и свойства 3 определителей, при этом круговая перестановка сомножителей соответствует двойной перемене строк в определителе, а потому оставляет его неизменным.
3. В смешанном произведении векторное и скалярное произведения можно менять местами:
Доказательство: из свойства 2 смешанного произведения и свойства 1 скалярного получим:
4. Смешанное произведение линейно по каждому из трех сомножителей.
– линейность по первому сомножителю.
Доказательство следует из формулы (2.9) и свойств определителей.
Пример №14
Найти объем тетраэдра, построенного на векторах
, и его высоту, перпендикулярную плоскости векторов .
Объем тетраэдра в 6 раз меньше объема параллелепипеда, построенного на этих векторах, поэтому
Отсюда (заметим, что – левая тройка, так как смешанное произведение отрицательно).
Чтобы найти высоту, воспользуемся формулой
По формуле (2.7)
Лекции по предметам:
- Математика
- Алгебра
- Линейная алгебра
- Геометрия
- Аналитическая геометрия
- Высшая математика
- Дискретная математика
- Математический анализ
- Теория вероятностей
- Математическая статистика
- Математическая логика
Единичный вектор (орты координатных осей) — это вектор, длина которого равна единице.
i — единичный вектор оси абсцисс;
j — единичный вектор оси ординат;
k — единичный вектор оси аппликат.
i⊥j⊥k, i=j=k=1
В прямоугольной системе координат в пространстве координаты векторов равны:
i(1;0;0);j(0;1;0); k(0;0;1);
Замечание 1
Единичные векторы являются некомпланарными.
Замечание 2
Любой вектор можно разложить в виде вектора по ортам координатных осей, формула ниже.
a=xi+уj+zk
где x, y, z — координаты вектора проекции на соответствующие координатные оси.
Эта формула называется разложением вектора по ортам координатных осей.
Единичный вектор определяется по формуле:
Пример
Дан вектор а = (1; 2; -2)
Требуется найти длину (модуль) и единичный вектор e направления вектора а
Решение
Находим длину вектора a
$left| {vec a} right| = sqrt {{1^2} + {2^2} + {{left( { — 2} right)}^2}} = 3$
затем вычисляем единичный вектор e
$vec e = left( {frac{1}{3};frac{2}{3}; — frac{2}{3}} right)$
Векторное произведения единичных векторов
Если направление кратчайшего пути от первого вектора ко второму вектору совпадает с направлением стрелки, то произведение равно третьему вектору, а если не совпадает, то третий вектор берется со знаком «минус». Смотрите схему 1.
Схема 1
На основании схемы получаем таблицу векторного произведения единичных векторов
i×i=0 i×j=k i×k=-j
j×i=-k j×j=0 j×k=i
k×i=j k×j=-i k×k=0
Пример 1
Найти векторное произведение iхj, где i, j — единичные векторы (орты) правой системы координат.
Решение
1) Так как длины основных векторов равны единице масштаба, то площадь параллелограмма MOKT численно равна единице. Значит, модуль векторного произведения равен единице.
2) Так как перпендикуляр к плоскости MOKT есть ось OZ, то искомое векторное произведение есть вектор, коллинеарный с вектором k; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.
3) Из этих двух возможных векторов надо выбрать первый, так как векторы i, j, k образуют правую систему (а векторы i, j, -k — левую).
iхj=k
Пример 2
Найти векторное произведение jхi.
Решение
Как в примере 1, заключаем, что вектор jхi равен либо k, либо —k. Но теперь надо выбрать -k, ибо векторы j, i, —k образуют правую систему (а векторы i, j, —k -левую).
jхi = −k
20798