В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.
Значения арксинуса, арккосинуса, арктангенса и арккотангенса
Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».
Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.
Для четкого понимания рассмотрим пример.
Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.
Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°
Основные значения arcsin, arccos, arctg и arctg
Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.
Таблица синусов основных углов предлагает такие результаты значений углов:
sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1
Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.
Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.
α | -1 | -32 | -22 | -12 | 0 | 12 | 22 | 32 | |
arcsin αкак угол |
в радианах |
-π2 | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
в градусах | -90° | -60° | -45° | -30° | 0° | 30° | 45° | 60° | |
arcsin α как число | -π2 | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:
cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1
Следуя из таблицы, находим значения арккосинуса:
arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0
Таблица арккосинусов.
α | -1 | -32 | -22 | -12 | 0 | 12 | 22 | 32 | 1 | |
arccos αкак угол |
в радианах |
π | 5π6 | 3π4 | 2π3 | π2 | π3 | π4 | π6 | 0 |
в градусах | 180° | 150° | 135° | 120° | 90° | 60° | 45° | 30° | 0° | |
arccos α как число | π | 5π6 | 3π4 | 2π3 | π2 | π3 | π4 | π6 | 0 |
Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.
α | -3 | -1 | -33 | 0 | 33 | 1 | 3 | |
arctg aкак угол | в радианах | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
в градусах | -60° | -45° | -30° | 0° | 30° | 45° | 60° | |
arctg a как число | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
arcsin, arccos, arctg и arcctg
Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.
Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.
Рассмотрим решение нахождения значений arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.
Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.
Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.
Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.
Таким образом находятся значения arcsin, arccos, arctg и arcctg.
Нахождение значения arcsin, arccos, arctg и arcctg
Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).
При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:
arccos α=π2−arcsin α=π2−(−π12)=7π12.
Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.
Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.
При поиске значения арктангенса 0,9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.
Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.
Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, означает множество углов , синус которых равен . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.
В общем случае при условии все решения уравнения можно представить в виде [3]
Основное соотношение[править | править код]
Функция arcsin[править | править код]
График функции
Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.
Свойства функции arcsin[править | править код]
Получение функции arcsin[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arccos[править | править код]
График функции
Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.
Свойства функции arccos[править | править код]
Получение функции arccos[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arctg[править | править код]
График функции
Аркта́нгенсом числа x называется такое значение угла выраженное в радианах, для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.
Свойства функции arctg[править | править код]
Получение функции arctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arcctg[править | править код]
График функции
Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.
Свойства функции arcctg[править | править код]
Получение функции arcctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, ) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы
Функция arcsec[править | править код]
График функции
Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.
Свойства функции arcsec[править | править код]
Функция arccosec[править | править код]
График функции
Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей.
Свойства функции arccosec[править | править код]
Разложение в ряды[править | править код]
Производные от обратных тригонометрических функций[править | править код]
Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:
производные обратных тригонометрических функций
Функция | Производная | Примечание |
---|---|---|
Доказательство Найти производную арксинуса можно при помощи взаимно обратных функций. |
||
Доказательство Найти производную арккосинуса можно при помощи данного тождества: |
||
Доказательство Найти производную арктангенса можно при помощи взаимнообратной функции: |
||
Доказательство Найти производную арккотангенса можно при помощи данного тождества: |
||
Доказательство Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
|
||
Доказательство Найти производную арккосеканса можно при помощи данного тождества: |
Интегралы от обратных тригонометрических функций[править | править код]
Неопределённые интегралы[править | править код]
Для действительных и комплексных x:
Для действительных x ≥ 1:
- См. также Список интегралов от обратных тригонометрических функций
Использование в геометрии[править | править код]
Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.
В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины является противолежащим для угла , то
Связь с натуральным логарифмом[править | править код]
Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:
См. также[править | править код]
- Обратные гиперболические функции
- Теорема Данжуа — Лузина
Примечания[править | править код]
Ссылки[править | править код]
- Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
- Обратные тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
- Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
- Построение графиков обратных тригонометрических функций онлайн
- Онлайн калькулятор: обратные тригонометрические функции
|
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов
|
- Определение
- График арксинуса
-
Свойства арксинуса
- Таблица арксинусов
Определение
Арксинус (arcsin) – это обратная тригонометрическая функция.
Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.
Если синус угла у равен х (sin y = x), значит арксинус x равняется y:
arcsin x = sin-1 x = y
Примечание: sin-1x означает обратный синус, а не синус в степени -1.
Например:
arcsin 1 = sin-1 1 = 90° (π/2 рад)
График арксинуса
Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):
Свойства арксинуса
Ниже в табличном виде представлены основные свойства арксинуса с формулами.
Таблица арксинусов
x | arcsin x (рад) | arcsin x (°) |
-1 | -π/2 | -90° |
-√3/2 | -π/3 | -60° |
-√2/2 | -π/4 | -45° |
-1/2 | -π/6 | -30° |
0 | 0 | 0° |
1/2 | π/6 | 30° |
√2/2 | π/4 | 45° |
√3/2 | π/3 | 60° |
1 | π/2 | 90° |
microexcel.ru
План урока:
Арккосинус
Арксинус
Арктангенс
Решение уравнения cosx = a
Решение уравнения sinx = a
Решение уравнений tgx = a и ctgx = a
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1<а < 1, то должно получиться две точки, которым соответствуют два противоположных угла:
Получается, что каждому значению числа а соответствует некоторый угол α. А если есть соответствие, то есть и функция:
α = f (a)
В математике ее называют арккосинусом. Записывается она так:
Вертикальная прямая может пересекать единичную окружность в двух разных точках. Им соответствуют разные углы. Принято считать, что арккосинус – это значение того угла, который лежит в первой или второй четверти, то есть ему соответствует точка, лежащая выше оси Ох. Тогда другая точка пересечения будет соответствовать углу (– arccosa):
Выходит, что арккосинус может принимать только значения из отрезка [0; π]. Дадим определение арккосинуса:
Задание. Вычислите арккосинус числа 1/2.
Решение. Мы помним, что косинус угла π/3 равен 1/2:
Следовательно, arccos 1/2 – это и есть угол π/3:
Ответ: π/3.
Обратим внимание, что если число а равно 1 или (– 1), то его арккосинус равен нулю в первом случае и π во втором:
В тех случаях, когда а > 1 либо а <– 1, то соответствующая прямая не пересечет единичную окружность. Это значит, что эти значения не входят в область определения арккосинуса:
Получается, что область определения арккосинуса – это промежуток [– 1; 1].
Для вычисления арккосинусов от отрицательных величин удобно пользоваться формулой
Действительно, если отложить на координатной прямой числа а и (– а), то вертикальные прямые, проходящие через них, пересекут окружность в некоторых точках А и С:
Дополнительно обозначим буквой В точку с координатами (1; 0) и буквой D точку с координатами (– 1; 0). Эти точки располагаются на пересечении оси Ох и единичной окружности. Тогда можно записать, что
ведь эти два угла образуют вместе развернутый угол ВОD, равный π. С другой стороны, из симметрии очевидно, что углы ∠COD и ∠АОВ равны друг другу, значит, ∠COD = ∠АОВ = arccosa. Тогда
Но ∠СОВ – это арккосинус от (– а), поэтому
Задание. Вычислите arccos (– 1/2).
Решение. Используем только что полученную формулу:
Ответ: 2π/3.
Арксинус
Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:
Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:
Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:
При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):
Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:
Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].
Дадим определение арксинусу:
Задание. Чему равен arcsin0,5?
Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.
Для вычисления арксинусов отрицательных углов используется формула
Справедливость этой формулы очевидна из картинки:
Задание. Вычислите arcsin (– 0,5).
Решение. Используем формулу для арксинуса отрицательного числа:
Арктангенс
Введем ф-цию, обратную тангенсу. Она называется арктангенс.
Напомним, что величину тангенса на координатной плоскости можно получить, если продолжить угол до его пересечения с вертикальной прямой х = 1. Аналогично, чтобы определить арктангенс некоторого числа а, надо отметить на этой прямой точку с координатами (1; а) и соединить её с началом координат:
Несложно видеть, что, какое бы число а нами не было выбрано, мы с помощью построения всегда сможем соединить точку А с началом координат и получить некоторый угол arctga. Это значит, что область определения арктангенса – это вся числовая прямая, то есть промежуток (– ∞; + ∞).
Ещё раз уточним, что вводимые нами функции arcos, arcsin, arctg называются ОБРАТНЫМИ тригонометрическими функциями. C их помощью можно определить угол, если известно значение его синуса, косинуса или тангенса.Образно говоря, обратные триг-кие функции играют в тригонометрии ту же роль, что и квадратные корни при исследовании квадратных ур-ний. Как без квадратных корней невозможно решать квадратные ур-ния, так и без знания об обратных триг-ких функций нельзя решать уже тригом-кие уравнения.
Теперь вернемся к понятию арктангенса. При положительном значении числа а угол arctga будет принадлежать I четверти. Если же а – отрицательное число, то угол arctga окажется также отрицательным и будет принадлежать IV четверти:
Получается, что величина arctgа может принадлежать промежутку (– π/2; π/2). Обратите внимание, что в данном случае у промежутка круглые скобки. Действительно для углов (– π/2) и π/2 тангенс не определен, а потому арктангенс не может принимать эти два значения.
Задание. Чему равен arctg 1?
Решение. Из таблицы тангенсов мы знаем, что tgπ/4 = 1. Это значит, что
Для вычисления арктангенсов отрицательных чисел используют формулу
В ее справедливости можно убедиться, взглянув на рисунок:
Задание. Вычислите arctg (– 1).
Решение.
Ответ: – 1
В принципе можно ввести ещё ф-цию, обратную котангенсу – арккотангенс. Однако для решения тригонометрических уравнений, как мы убедимся далее, она не требуется, а поэтому в рамках школьного курса математики ее можно не изучать.
В заключение приведем таблицы, которые помогают вычислять значение обратных тригон-ких функций:
Решение уравнения cosx = a
Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:
По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь
Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:
Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:
Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:
Здесь мы использовали тот факт, косинус – четная функция, то есть
Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:
Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть
Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:
Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение
При n = 5 получим корень
При n = – 10 у нас получится решение
Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:
Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень
Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:
Объединить же обе серии можно одной записью:
Напомним, что мы решали ур-ние
и получили для него решение
Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид
где а – некоторое число, его решением будут все такие х, что
Для краткости запись «n– целое число» заменяют эквивалентной записью
«n ∈ Z»
Напомним, что буквой Z обозначают множество целых чисел.
Задание. Решите ур-ние
Решение. Вспомним, что
Задание. Решите ур-ние
Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:
Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.
Задание. Укажите три наименьших положительных корня ур-ния
Решение. Так как
то все решения образуют две серии:
Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.
Для первой серии:
Для второй серии:
Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):
Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4
Ответ: π/4, 7π/4 и 9π/4.
Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния
На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния
являются точки, в которых график пересекает ось Ох:
Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].
Решение уравнения sinx = a
Ур-ние cosx = a называют простейшим тригонометрическим уравнением, ведь, ведь для его решения не требуется проводить никаких преобразований. Аналогично простейшими являются ур-ния sinx = a, tgx = a и ctgx = a.
Ситуация с ур-нием sinx = a аналогична ситуации с косинусом. Если число а не принадлежит промежутку [– 1; 1], то корней у ур-ния не будет. Если же число а будет принадлежать этому промежутку, то у ур-ния окажется бесконечное число решений.
Рассмотрим случай, когда 0<а< 1. Тогда решениями ур-ния окажутся числа arcsina и π – arcsina:
В свою очередь каждое из этих двух решений порождает свою собственную бесконечную серию решений
Однако, как и в случае с косинусом, существует способ записать одной формулой сразу оба этих решения. Для этого перепишем первую серию таким образом:
Действительно, если n окажется четным, то, то выражение (– 1)n,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1)n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Решениями ур-ния
Наконец, решениями ур-ния
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
x = arctg a
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
- Понятие арксинуса
- График и свойства функции y=arcsinx
- Уравнение sinx=a
- Примеры
Определение синуса через отношение сторон прямоугольника и с помощью числовой окружности – см. §2 данного справочника.
Свойства функции y=sinx на всей области определения (xinmathbb{R}) – см. §4 данного справочника.
Определение и свойства взаимно обратных функций – см. §2 справочника для 9 класса.
п.1. Понятие арксинуса
В записи (y=sinx) аргумент x – это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb{Z}); если (sinx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).
Арксинусом числа (a |a|leq 1) называется такое число (xin[-fracpi2; fracpi2]), синус которого равен (a). $$ begin{cases} arcsina=x\ |a|leq 1 end{cases} Leftrightarrow begin{cases} sinx=a\ -fracpi2leq xleq fracpi2 end{cases} $$
Например:
(arcsinfrac12=fracpi6, arcsinleft(-frac{sqrt{3}}{2}right)=-frac{pi}{3})
(arcsin2) – не существует, т.к. 2> 1
п.2. График и свойства функции y=arcsinx
1. Область определения (-1leq xleq1).
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2). Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_{max}=fracpi2) достигается в точке x=1
Минимальное значение (y_{min}=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)).
п.3. Уравнение sinx=a
Значениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус?
Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса. |
Например:
1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac{5pi}{6}) – это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac{13pi}{6}), синус полученного угла (sinfrac{13pi}{6}=frac12), т.е. (frac{13pi}{6}) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac{5pi}{6}+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac{5pi}{6}+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.
2) Решим уравнение (sinx=0,8)
Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках. По определению правая точка – это угол, равный arcsin0,8. Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin0,8). Добавление или вычитание полных оборотов к каждому из решений даст другие корни. Получаем ответ: (x_1=arcsin0,8+2pi k,) (x_2=pi-arcsin0,8+2pi k) |
В общем случае:
Если (|a|leq 1), то уравнение (sinx=a) имеет решения $$ left[ begin{array} {l l} x=arcsina+2pi k\ x=pi-arcsina+2pi k end{array} right. Leftrightarrow x=(-1)^k arcsina+pi k, kinmathbb{Z} $$ Если (|a|gt 1) уравнение решений не имеет.
Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^{2n} arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^{2n+1} arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin{array} {l l} x=arcsina+2pi n\ x=pi-arcsina+2pi n end{array} right. $$ Что и требовалось доказать.
Для примеров, решённых выше, можем записать: $$ 1) left[ begin{array} {l l} x_1=fracpi6+2pi k\ x_2=frac{5pi}{6}+2pi k end{array} right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin{array} {l l} x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end{array} right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.
п.4. Примеры
Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.
Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.
Пример 2. Решите уравнения:
a) (sin x=-1) (x=-fracpi2+2pi k) |
б) (sin x=frac{sqrt{2}}{2}) $$ left[ begin{array} {l l} x_1=fracpi4+2pi k\ x_2=frac{3pi}{4}+2pi k end{array} right. Leftrightarrow x=(-1)^frac{pi}{4} +pi k $$ |
в) (sin x=0) (x=pi k) |
г) (sin x=sqrt{2}) (sqrt{2}gt 1, xinvarnothing) Решений нет |
д) (sin x=0,7) begin{gather*} left[ begin{array} {l l} x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end{array} right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end{gather*} |
e) (sin x=-0,2) Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin{gather*} left[ begin{array} {l l} x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end{array} right. Leftrightarrow\ Leftrightarrow x=(-1)^{k+1}arcsin(0,2) +pi k end{gather*} |
Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$
Способ 1. Решение с помощью числовой окружности
Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79) |
|
Способ 2. Решение с помощью графика (y=arcsinx)
Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY – получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$ |
|
Способ 3. Аналитический Арксинус – функция возрастающая: чем больше аргумент, тем больше функция. Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4). И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4) |
Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin{gather*} x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end{gather*} Ответ: {1; 2}
(б) arcsin^2x-arcsinx-2=0)
( text{ОДЗ:} -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin{array} {l l} t_1=2gt fracpi2 – text{не подходит}\ t_2=-1 end{array} right. $$ Возвращаемся к исходной переменной: begin{gather*} arcsinx=-1\ x=sin(-1)=-sin1 end{gather*} Ответ: -sin1
(в) arcsin^2x-pi arcsinx+frac{2pi^2}{9}=0)
( text{ОДЗ:} -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin{gather*} t^2-pi t+frac{2pi^2}{9}=0\ D=(-pi)^2-4cdot frac{2pi^2}{9}=frac{pi^2}{9}, sqrt{D}=fracpi3 Rightarrow left[ begin{array} {l l} t_1=frac{pi-fracpi3}{2}=fracpi3\ t_2=frac{pi+fracpi3}{2}=frac{2pi}{3}gt fracpi2 — text{не подходит} end{array} right. end{gather*} Возвращаемся к исходной переменной:
begin{gather*} arcsinx=fracpi3\ x=sinfracpi3=frac{sqrt{3}}{2} end{gather*} Ответ: (frac{sqrt{3}}{2})