Косинус арксинуса cos (arcsin x) легко вычисляется на основании определения синуса, косинуса, арксинуса и теоремы Пифагора.
По определению арксинуса: если arcsin x = α, то sin α = x.
В прямоугольном треугольнике sin α равен отношению противолежащего катета к гипотенузе:
Нам нужно вычислить косинус этого же угла α. По определению, косинус — это отношение прилежащего катета к гипотенузе. В нашем случае:
Таким образом, остается найти прилежащий катет по теореме Пифагора:
Отсюда получаем искомый косинус арксинуса х:
где
Хотя найти cos (arcsin x) можно и другим способом, с применением тригонометрической единицы, геометрическая интерпретация — инструмент, позволяющий в примерах такого вида обойтись без использования многих тригонометрических формул.
Примеры:
1) Найти cos (arcsin (5/13)).
Арксинус 5/13 — это число, синус которого равен 5/13. Синус — отношение противолежащего катета к гипотенузе, следовательно противолежащий катет b = 5, гипотенуза c = 13. По теореме Пифагора находим прилежащий катет
Отсюда
2) Вычислить cos (arcsin (1/3)).
В этом примере x=1/3, отсюда противолежащий катет b=1, гипотенуза c=3. Находим прилежащий катет a:
Отсюда искомое значение cos (arcsin (1/3))
3) Вычислить cos (arcsin (-1/3)).
так как arcsin (-α)= -arcsin α, а cos (- α)= cos α, то cos (arcsin (-1/3)) = cos (- arcsin (1/3)) =
Сферы применения правил обратных тригонометрических функций
Определение
Тригонометрия — раздел математики, объясняющий зависимость между сторонами и углами треугольника, правила используют для расчета углов.
Изучая постулаты тригонометрических функций, ученики и студенты часто задаются вопросом, где эти знания могут пригодиться. Сфер применения достаточно много. Астрономы используют понятия для расчёта положения небесных объектов, тригонометрия помогает выполнять чертежи и создавать архитектурные шедевры, выстраивать модель биологических ритмов. В морской и воздушной навигации, акустике и оптике, в анализе финансового рынка, статистике, медицине, химии, во многих областях используются тригонометрические вычисления. Поэтому так важно научиться применять и выводить формулы самостоятельно.
Обратные функции тригонометрии
Обратными называются функции, которые ещё называют арксинус, арккосинус, арктангенс, арккотангенс.
Название данный вид тригонометрической зависимости, получил от соответствующей прямой функции с приставкой арк — дуга. Взаимосвязь просматривается между длиной дуги единичной окружности и соответствующим определённым отрезком.
Правила обратной функции справедливы в пределах интервалов, например,
формула арксинуса возможна при:
[arcsin (sin mathrm{x})=mathrm{x} text { при }-frac{pi}{2} leq mathrm{x} leq frac{pi}{2}]
[arccos (cos mathrm{x})=mathrm{x} text { при } 0 leq mathrm{x} leq pi]
и так далее.
Формулы с обратными функциями тригонометрии
Уже были рассмотрены обратные тригонометрические функции. Они, как и другие функции имеют между собой связи и зависимости, которые можно выразить в виде формул и использовать для решения задач.
В данной работе мы рассмотрим основные формулы, в которых применяются функции тригонометрии. Разберём их виды, деление на группы, доказательства и способы решения задач с их помощью.
Группировка основных понятий
Сначала проведём группировку формул, для того чтобы сделать более понятной логику объяснений. И объединим все правила и доказательства в одну статью.
Синус от арксинуса для [alpha in(-1 ; 1) sin (arcsin alpha)=alpha, cos (arccos alpha)=alpha]
Тангенса от арктангенса для [alpha in(-infty, infty) operatorname{tg}(operatorname{arctg} alpha)=alpha, operatorname{ctg}(operatorname{arctg} alpha)=alpha].
Указанное в данных выражениях легко выводится из самих определений обратных функций тригонометрии. При необходимости найти arcsin tg, можно использовать приведённые формулы.
Тангенс, арктангенс, котангенс, арккотангенс, синус, арксинус, косинус, арккосинус и формулы
[text{Для }-frac{pi}{2} leq alpha leq frac{pi}{2} arcsin (sin alpha)=alpha],
[text{Для } leq alpha leq pi arccos (cos alpha)=alpha],
[text{Для }-frac{pi}{2}<alpha<frac{pi}{2} operatorname{arctg}(operatorname{tg} alpha)=alpha],
[text{Для } 0<alpha<pi operatorname{arcctg}(operatorname{ctg} alpha)=alpha].
В данном примере собраны тригонометрические выражения, достаточно очевидные, которые можно вывести из определений функций тригонометрии. Необходимо обратить внимание, на то, что высказывания будут верны, если «а» (угол, или числовое значение) будет входить в определённый предел. Если условие не выполняется, расчёт будет не верен и формулу использовать нельзя.
Соотношение между собой обратных тригонометрических функций противоположных чисел
Рассмотрим важное определение:
Обратные функции тригонометрии можно выразить через аркфункции противоположного положительного числа.
[text{Для }alpha in operatorname{open}-1,1] text { arccis }(-alpha)= -operatorname{arc} sin alpha, quad operatorname{arc} cos (-alpha)=pi -a r c cos alpha]
[text { Для } alpha in(-infty, infty) operatorname{arctg}(-alpha)= -operatorname{arctg} alpha, operatorname{arcctg}(-alpha)=pi-operatorname{arcctg} alpha]
Это значит, если расчёты имеют функции отрицательного числа, от них можно избавиться. Для этого необходимо преобразовать их в аркфункции положительных чисел. Такие вычисления проводить проще.
Формулы суммы: arcsin + arccos, arctg +arcctg
Правила суммы выглядят так:
Для [alpha in[-1,1] arcsin alpha+arccos alpha=frac{pi}{2}],
Для [alpha in[-infty, infty] operatorname{arctg} alpha+operatorname{arctg} alpha=frac{pi}{2}].
Отсюда видно, что arcsin определённого числа можно выразить через его arccos , и наоборот. Тоже правило касается и arctg и arcctg, которые выражаются аналогично.
Формулы связи между обратными и прямыми тригонометрическими функциями
Чтобы иметь возможность решить множество задач, требуется знание связей между прямыми тригонометрическими функциями, и их аркфункциями. Рассмотрим, как необходимо поступить, если нужно вычислить тангенс арксинуса. Ниже представлен список основных формул, которые помогут в решении таких задач.
[-1 leq alpha leq 1], [sin (arcsin alpha)=alpha] |
[-1 leq alpha leq 1], [sin (arccos alpha) =sqrt{1-alpha^{2}}] |
[-infty leq alpha leq+infty], [sin (operatorname{arctg} alpha)=frac{alpha}{sqrt{1+alpha^{2}}}] |
[-infty leq alpha leq+infty], [sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}] |
[-1 leq alpha leq 1], [cos (arcsin alpha)=sqrt{1-alpha^{2}}] |
[-1 leq alpha leq 1], [cos (arccos alpha)=alpha] |
[-infty leq alpha leq+infty], [cos (operatorname{arctg} alpha)=frac{1}{sqrt{1+a^{2}}}] |
[-infty leq alpha leq+infty], [cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}] |
[-1<alpha<1], [operatorname{tg}(arcsin alpha)=frac{alpha}{sqrt{1-alpha^{2}}}] |
[alpha in(-1,0) cup(0,1)], [operatorname{tg}(arccos alpha)=frac{sqrt{1-a^{2}}}{alpha}] |
[-infty leq alpha leq+infty], [operatorname{tg}(operatorname{arctg} alpha)=alpha] |
[alpha neq 0], [operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{alpha}] |
[alpha in(-1,0) cup(0,1)], [operatorname{ctg}(arcsin alpha)=frac{sqrt{1-alpha^{2}}}{alpha}] |
[-1<alpha<1], [operatorname{ctg}(arccos alpha)=frac{alpha}{sqrt{1-a^{2}}}] |
[alpha neq 0], [operatorname{ctg}(operatorname{arctg} alpha)=frac{1}{alpha}] |
[-infty leq alpha leq+infty], [operatorname{ctg}(operatorname{arcctg} alpha)=alpha] |
Примеры 1 — 2
Нужно найти косинус арктангенса из 5.
Решение. Для этого необходимо воспользоваться формулой следующего вида: [cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
Подставим необходимое значение: [cos (operatorname{arctg} sqrt{5})=frac{1}{sqrt{1+sqrt{5^{2}}}}=frac{2}{sqrt{6}}]
Определить синус арккосинуса [frac{1}{2}]
Решение. Реализовать решение нам поможет формула: [sin (arccos alpha)=sqrt{1-alpha^{2}}]
Ставим значение и получаем: [sin left(arccos frac{1}{2}right)=sqrt{1-left(frac{1}{2}right)^{2}}=frac{sqrt{3}}{2}]
Заметим, что непосредственное вычисление приведёт к тому же ответу: [sin left(arccos frac{1}{2}right)=sin frac{pi}{3}=frac{sqrt{3}}{2}]
Для правильного вычисления значений прямых и обратных тригонометрических функций, стоит вспомнить начальные материалы.
Доказательство формул синуса от арккосинуса, арккотангенса и арктангенса
Чтобы вывести формулы и разобрать их более наглядно, необходимо применить основные тригонометрические тождества и правила обратных тригонометрических функций, которые были выведены ранее.
Доказательство формул 1
Используя тождества получим:
[sin ^{2} alpha+cos ^{2} alpha=1]
[1+operatorname{ctg}^{2} alpha=frac{1}{sin ^{2} alpha}]
Вспомним тот факт, что tg α *ctg α= 1, следовательно
[sin alpha=sqrt{1-cos ^{2} alpha}, 0 leq alpha leq pi]
[sin alpha=frac{operatorname{tg} alpha}{sqrt{1+operatorname{tg}^{2} alpha}},-frac{pi}{2}<alpha<frac{pi}{2}]
[sin alpha=frac{1}{sqrt{1+c t g^{2} alpha}}, 0<alpha<pi]
Результатом станет вывод синуса через подходящие аркфункции в заданном условии.
В математическое выражение вместо α, ставим arccos α, получаем в итоге формулу синуса арккосинуса.
Во втором случае вместо α подставляем arctg α, соответственно получаем формулу синуса арктангенса.
В третьем варианте проводим аналогичную операцию и подставляем arcctg α для выражения формулы синуса арккотангенса.
Нет времени решать самому?
Наши эксперты помогут!
Доказательство формул для тангенса, обратных функций(arcsin, arccos, arcctg)
В данном разделе рассмотрим доказательство закона тангенса обратных функций тригонометрии.
Доказательство формул 2
- Исходя из: [frac{sin alpha}{sqrt{1-sin alpha^{2}}},-frac{pi}{2}<alpha<frac{pi}{2}]Получим [operatorname{tg}(arcsin alpha)=frac{sin (arcsin alpha)}{sqrt{1-sin ^{2}(arcsin alpha)}}=frac{alpha}{sqrt{1-alpha^{2}}}]При условии [-1<alpha<1]
- Из выражения [operatorname{tg} alpha=frac{sqrt{1-cos ^{2} alpha}}{cos alpha}, alpha inleft[0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright]]
Получаем [operatorname{tg}(arccos alpha)=frac{sqrt{1-cos ^{2}(arccos alpha)}}{cos (arccos alpha)}=frac{sqrt{1-alpha^{2}}}{alpha}] при условии [alpha in(-1,0) cup(0,1)]. - Исходя из [operatorname{tg} alpha=frac{1}{operatorname{ctg} alpha}, alpha inleft(0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright)] получаем [operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{operatorname{ctg}(operatorname{arcctg} alpha)}=frac{1}{alpha}] при условии, что [alpha neq 0].
Далее нам понадобятся понятия котангенсов арксинуса, арккосинуса, арктангенса. Напомним такое тригонометрическое равенство:
[operatorname{ctg} alpha=frac{1}{operatorname{tg} alpha}]
Применяя данное выражение можно вывести необходимые формулы, вставляя выражения тангенса обратных функций тригонометрии. Практически необходимо поменять местами числитель и знаменатель.
Выражение арксинуса с помощью арккосинуса, арктангенса и арккотангенса
Прямые и обратные функции в тригонометрии связаны между собой. Полученные в результате выведения формулы помогут найти связь и между обратными функциями тригонометрии, выразив одни аркфункции через другие. Рассмотрим примеры.
В первом случае меняем арксинус на арккосинус, а арктангенс на арккотангенс, получим следующие формулы арксинуса и арккосинуса:
[begin{aligned}
&arcsin a=left{begin{array}{l}
arccos sqrt{1-a^{2}}, 0 leq a leq 1 \
-arccos sqrt{1-a^{2}},-1 leq a<0
end{array}right. \
&arcsin a=operatorname{arctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 \
&arcsin a=left{begin{array}{l}
operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \
operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}-pi,-1 leq a<0
end{array}right.
end{aligned}]
Для арккосинуса также есть свои формулы:
[begin{aligned}
&arccos a=left{begin{array}{l}
arcsin sqrt{1-a^{2}}, 0 leq a leq 1 \
pi-arcsin sqrt{1-a^{2}},-1 leq a<0
end{array}right. \
&arccos a=left{begin{array}{l}
operatorname{arctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \
pi+operatorname{arctg} frac{sqrt{1-a^{2}}}{a},-1 leq a<0
end{array}right. \
&arccos a=operatorname{arcctg} frac{a}{sqrt{1-a^{2}}},-1<a<1
end{aligned}]
Выражения для арктангенса:
[begin{aligned}
&operatorname{arctg} a=arcsin frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\
&operatorname{arctg} a=left{begin{array}{l}
arccos frac{1}{sqrt{1+a^{2}}}, a geq 0 \
-arccos frac{1}{sqrt{1+a^{2}}}, a<0
end{array}right.\
&operatorname{arctg} a=operatorname{arcctg} frac{1}{a}, a neq 0
end{aligned}]
Последний блок формул покажет преобразование арккотангенса через другие обратные функции тригонометрии:
[begin{aligned}
&operatorname{arcctg} a=left{begin{array}{l}
arcsin frac{1}{sqrt{1+a^{2}}}, a geq 0 \
pi-arcsin frac{1}{sqrt{1+a^{2}}}, a<0
end{array}right.\
&operatorname{arctg} a=arccos frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\
&operatorname{arcctg} a=operatorname{arctg} frac{1}{a}, a neq 0
end{aligned}]
Рассмотренные формулы арксинуса, арккосинуса, арктангенса помогут в решении различных задач. Разберём доказательство с использованием основных определений обратных функций и ранее рассмотренных правил.
Возьмём arcsin [alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1] для выведения доказательства.
Мы имеем выражение [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] — число, которое имеет значение от минус половины [pi] до плюс половины [pi]. Используя выражение синуса арктангенса, получаем следующее:
[sin left(operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}right)=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+left(frac{alpha}{sqrt{1-alpha^{2}}}right)^{2}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+frac{alpha^{2}}{1-alpha^{2}}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{frac{1}{sqrt{1-alpha^{2}}}}=alpha]
Получается, что [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] с условием [-1<alpha<1] — арксинус числа [alpha].
Вывод: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1].
Другие подобные формулы доказываются по аналогичной схеме.
Рассмотрим пример применения полученных истин.
Пример 3
Необходимо вычислить синус арккотангенса — [sqrt{3}]
Решение. Для того чтобы провести решение задачи, необходимо использовать формулу связи арккотангенса и арксинуса: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}]
Подставим в неё [alpha=-sqrt{3}] и получим [-frac{1}{2}].
Используя непосредственное вычисление ответ был бы такой же: [sin (operatorname{arcctg}(-sqrt{3}))=sin frac{5 pi}{6}=frac{1}{2}]
Можно использовать и следующую формулу:
[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[sin (operatorname{arcctg}(-sqrt{3}))=frac{1}{sqrt{1+(-sqrt{3})^{2}}}=frac{1}{2}]
Другие формулы, в которых используются обратные функции тригонометрии
Разобраны основные функции, которые чаще всего используются для решения задач. Но представлены не все формулы с обратными тригонометрическими функциями, есть некоторые специфичные, употребляемые редко, но они тоже полезны. Учить их нет смысла, лучше вывести при необходимости.
Пример 4
Разберём для примера одну такую формулу. Выглядит она так:
[sin ^{2} frac{alpha}{2}=sqrt{frac{1-cos alpha}{2}}]
Если представленный угол имеет значение больше нуля, но меньше Пи, то получаем:
[sin frac{arccos alpha}{2}=sqrt{frac{1-cos (arccos alpha)}{2}}]
[Leftrightarrow sin frac{arccos alpha}{2}=frac{sqrt{1-alpha}}{2}]
Здесь мы выводим следующую готовую формулировку, арксинус которой выведен через арккосинус:
[frac{arccos alpha}{2}=arcsin sqrt{frac{1-alpha}{2}}]
В тексте рассмотрены лишь некоторые, самые популярные виды связей между прямыми и обратными функциями тригонометрии. Главное не выучить наизусть данные постулаты, а научиться их применять и выводить, исходя из уже известных определений.
Удобно использовать инженерный вид калькулятора, на котором есть, необходимые для вычислений тригонометрические формулы и функции.
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте
его в существующую тему, а создайте новую в корневом разделе “Помогите решить/разобраться (М)”.
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Не ищите на этом форуме халяву
, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения
и указать конкретные затруднения.
Обязательно просмотрите тему
Правила данного раздела, иначе Ваша тема может быть удалена
или перемещена в Карантин, а Вы так и не узнаете, почему.
Limit79 |
Как найти cos(arcsin(x)) ? 11.05.2013, 02:20 |
29/08/11 |
То есть: Во многих пособия, да и в интернетах, пишут однозначно: То есть как-то исключают ситуацию с минусом, но как?
|
|
|
Ms-dos4 |
Re: Как найти cos(arcsin(x)) ? 11.05.2013, 02:47 |
||
25/02/08 |
Область значений арксинуса
|
||
|
|||
Limit79 |
Re: Как найти cos(arcsin(x)) ? 11.05.2013, 02:49 |
29/08/11 |
|
|
|
Munin |
Re: Как найти cos(arcsin(x)) ? 11.05.2013, 16:50 |
||
30/01/06 |
Но если у вас стоит задача найти косинус по известному синусу, то плюс-минус, конечно, забывать нельзя.
|
||
|
|||
Модераторы: Модераторы Математики, Супермодераторы
suxofructik,
[math]arcsin{left( cos{x} right) } =frac{ pi }{ 2 } -arccos{left( cos{x} right) } =frac{ pi }{ 2 }-x[/math], для [math]x in [0, pi ][/math]
Так как [math]arccos{left( cos{x} right) }= x,x in [0, pi ][/math] ;
Можно еще представить и так :
[math]left{!begin{aligned}
& arcsin{left( cos{x} right) } =frac{ pi }{ 2 } -arcsin{sqrt{1-cos^2{x} } }=frac{ pi }{ 2 } -arcsin{sin{x} } = frac{ pi }{ 2 } -x,x in [0,frac{ pi }{ 2 } ] \
& arcsin{left( cos{x} right) } =-frac{ pi }{ 2 } +arcsin{sqrt{1-cos^2{x} } }=-frac{ pi }{ 2 } +arcsin{sin{x} } = -frac{ pi }{ 2 } +x,x in [-frac{ pi }{ 2 },0]
end{aligned}right.[/math]
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.
Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, означает множество углов , синус которых равен . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.
В общем случае при условии все решения уравнения можно представить в виде [3]
Основное соотношение[править | править код]
Функция arcsin[править | править код]
График функции
Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.
Свойства функции arcsin[править | править код]
Получение функции arcsin[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arccos[править | править код]
График функции
Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.
Свойства функции arccos[править | править код]
Получение функции arccos[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arctg[править | править код]
График функции
Аркта́нгенсом числа x называется такое значение угла выраженное в радианах, для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.
Свойства функции arctg[править | править код]
Получение функции arctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arcctg[править | править код]
График функции
Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.
Свойства функции arcctg[править | править код]
Получение функции arcctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, ) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы
Функция arcsec[править | править код]
График функции
Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.
Свойства функции arcsec[править | править код]
Функция arccosec[править | править код]
График функции
Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей.
Свойства функции arccosec[править | править код]
Разложение в ряды[править | править код]
Производные от обратных тригонометрических функций[править | править код]
Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:
производные обратных тригонометрических функций
Функция | Производная | Примечание |
---|---|---|
Доказательство Найти производную арксинуса можно при помощи взаимно обратных функций. |
||
Доказательство Найти производную арккосинуса можно при помощи данного тождества: |
||
Доказательство Найти производную арктангенса можно при помощи взаимнообратной функции: |
||
Доказательство Найти производную арккотангенса можно при помощи данного тождества: |
||
Доказательство Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
|
||
Доказательство Найти производную арккосеканса можно при помощи данного тождества: |
Интегралы от обратных тригонометрических функций[править | править код]
Неопределённые интегралы[править | править код]
Для действительных и комплексных x:
Для действительных x ≥ 1:
- См. также Список интегралов от обратных тригонометрических функций
Использование в геометрии[править | править код]
Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.
В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины является противолежащим для угла , то
Связь с натуральным логарифмом[править | править код]
Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:
См. также[править | править код]
- Обратные гиперболические функции
- Теорема Данжуа — Лузина
Примечания[править | править код]
Ссылки[править | править код]
- Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
- Обратные тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
- Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
- Построение графиков обратных тригонометрических функций онлайн
- Онлайн калькулятор: обратные тригонометрические функции
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов
|