Арктангенс — обратная тригонометрическая функция. Общепринятое обозначение арктангенса — arctg x. При этом довольно часто, особенно в зарубежной литературе можно встретить иное обозначение — arctan x.
Арктангенс калькулятор
Калькулятор арктангенса
Как пользоваться калькулятором арктангенса
Введите значение тангенса угла и нажмите кнопку посчитать. В результате вы получите значение арктангенса выраженное в градусах и радианах.
Что такое арктангенс
Арктангенс числа x — это значение угла в радианах, для которого справедливо равенство tg a = m.
К примеру, что такое arctg 1? Это угол в радианах, тангенс которого равен 1.
Ваша оценка
[Оценок: 9084 Средняя: 3.8]
Арктангенс Автор admin средний рейтинг 3.8/5 – 9084 рейтинги пользователей
Арктангенс(y = arctg(x)) – это обратная тригонометрическая функция к тангенсу x = tg(y). Область определения -∞ ≤ x ≤ +∞ и множество значений -π/2 ≤ y ≤ +π/2.
arctg(0) = 0° | arctg(-1.732050808) = 120° | arctg(1.732050808) = 240° |
arctg(0.01745506493) = 1° | arctg(-1.664279482) = 121° | arctg(1.804047755) = 241° |
arctg(0.03492076949) = 2° | arctg(-1.600334529) = 122° | arctg(1.880726465) = 242° |
arctg(0.05240777928) = 3° | arctg(-1.539864964) = 123° | arctg(1.962610506) = 243° |
arctg(0.06992681194) = 4° | arctg(-1.482560969) = 124° | arctg(2.050303842) = 244° |
arctg(0.08748866353) = 5° | arctg(-1.428148007) = 125° | arctg(2.144506921) = 245° |
arctg(0.1051042353) = 6° | arctg(-1.37638192) = 126° | arctg(2.246036774) = 246° |
arctg(0.1227845609) = 7° | arctg(-1.327044822) = 127° | arctg(2.355852366) = 247° |
arctg(0.1405408347) = 8° | arctg(-1.279941632) = 128° | arctg(2.475086853) = 248° |
arctg(0.1583844403) = 9° | arctg(-1.234897157) = 129° | arctg(2.605089065) = 249° |
arctg(0.1763269807) = 10° | arctg(-1.191753593) = 130° | arctg(2.747477419) = 250° |
arctg(0.1943803091) = 11° | arctg(-1.150368407) = 131° | arctg(2.904210878) = 251° |
arctg(0.2125565617) = 12° | arctg(-1.110612515) = 132° | arctg(3.077683537) = 252° |
arctg(0.2308681911) = 13° | arctg(-1.07236871) = 133° | arctg(3.270852618) = 253° |
arctg(0.2493280028) = 14° | arctg(-1.035530314) = 134° | arctg(3.487414444) = 254° |
arctg(0.2679491924) = 15° | arctg(-1) = 135° | arctg(3.732050808) = 255° |
arctg(0.2867453858) = 16° | arctg(-0.9656887748) = 136° | arctg(4.010780934) = 256° |
arctg(0.3057306815) = 17° | arctg(-0.9325150861) = 137° | arctg(4.331475874) = 257° |
arctg(0.3249196962) = 18° | arctg(-0.9004040443) = 138° | arctg(4.704630109) = 258° |
arctg(0.3443276133) = 19° | arctg(-0.8692867378) = 139° | arctg(5.144554016) = 259° |
arctg(0.3639702343) = 20° | arctg(-0.8390996312) = 140° | arctg(5.67128182) = 260° |
arctg(0.383864035) = 21° | arctg(-0.8097840332) = 141° | arctg(6.313751515) = 261° |
arctg(0.4040262258) = 22° | arctg(-0.7812856265) = 142° | arctg(7.115369722) = 262° |
arctg(0.4244748162) = 23° | arctg(-0.7535540501) = 143° | arctg(8.144346428) = 263° |
arctg(0.4452286853) = 24° | arctg(-0.726542528) = 144° | arctg(9.514364454) = 264° |
arctg(0.4663076582) = 25° | arctg(-0.7002075382) = 145° | arctg(11.4300523) = 265° |
arctg(0.4877325886) = 26° | arctg(-0.6745085168) = 146° | arctg(14.30066626) = 266° |
arctg(0.5095254495) = 27° | arctg(-0.6494075932) = 147° | arctg(19.08113669) = 267° |
arctg(0.5317094317) = 28° | arctg(-0.6248693519) = 148° | arctg(28.63625328) = 268° |
arctg(0.5543090515) = 29° | arctg(-0.600860619) = 149° | arctg(57.28996163) = 269° |
arctg(0.5773502692) = 30° | arctg(-0.5773502692) = 150° | arctg(∞) = 270° |
arctg(0.600860619) = 31° | arctg(-0.5543090515) = 151° | arctg(-57.28996163) = 271° |
arctg(0.6248693519) = 32° | arctg(-0.5317094317) = 152° | arctg(-28.63625328) = 272° |
arctg(0.6494075932) = 33° | arctg(-0.5095254495) = 153° | arctg(-19.08113669) = 273° |
arctg(0.6745085168) = 34° | arctg(-0.4877325886) = 154° | arctg(-14.30066626) = 274° |
arctg(0.7002075382) = 35° | arctg(-0.4663076582) = 155° | arctg(-11.4300523) = 275° |
arctg(0.726542528) = 36° | arctg(-0.4452286853) = 156° | arctg(-9.514364454) = 276° |
arctg(0.7535540501) = 37° | arctg(-0.4244748162) = 157° | arctg(-8.144346428) = 277° |
arctg(0.7812856265) = 38° | arctg(-0.4040262258) = 158° | arctg(-7.115369722) = 278° |
arctg(0.8097840332) = 39° | arctg(-0.383864035) = 159° | arctg(-6.313751515) = 279° |
arctg(0.8390996312) = 40° | arctg(-0.3639702343) = 160° | arctg(-5.67128182) = 280° |
arctg(0.8692867378) = 41° | arctg(-0.3443276133) = 161° | arctg(-5.144554016) = 281° |
arctg(0.9004040443) = 42° | arctg(-0.3249196962) = 162° | arctg(-4.704630109) = 282° |
arctg(0.9325150861) = 43° | arctg(-0.3057306815) = 163° | arctg(-4.331475874) = 283° |
arctg(0.9656887748) = 44° | arctg(-0.2867453858) = 164° | arctg(-4.010780934) = 284° |
arctg(1) = 45° | arctg(-0.2679491924) = 165° | arctg(-3.732050808) = 285° |
arctg(1.035530314) = 46° | arctg(-0.2493280028) = 166° | arctg(-3.487414444) = 286° |
arctg(1.07236871) = 47° | arctg(-0.2308681911) = 167° | arctg(-3.270852618) = 287° |
arctg(1.110612515) = 48° | arctg(-0.2125565617) = 168° | arctg(-3.077683537) = 288° |
arctg(1.150368407) = 49° | arctg(-0.1943803091) = 169° | arctg(-2.904210878) = 289° |
arctg(1.191753593) = 50° | arctg(-0.1763269807) = 170° | arctg(-2.747477419) = 290° |
arctg(1.234897157) = 51° | arctg(-0.1583844403) = 171° | arctg(-2.605089065) = 291° |
arctg(1.279941632) = 52° | arctg(-0.1405408347) = 172° | arctg(-2.475086853) = 292° |
arctg(1.327044822) = 53° | arctg(-0.1227845609) = 173° | arctg(-2.355852366) = 293° |
arctg(1.37638192) = 54° | arctg(-0.1051042353) = 174° | arctg(-2.246036774) = 294° |
arctg(1.428148007) = 55° | arctg(-0.08748866353) = 175° | arctg(-2.144506921) = 295° |
arctg(1.482560969) = 56° | arctg(-0.06992681194) = 176° | arctg(-2.050303842) = 296° |
arctg(1.539864964) = 57° | arctg(-0.05240777928) = 177° | arctg(-1.962610506) = 297° |
arctg(1.600334529) = 58° | arctg(-0.03492076949) = 178° | arctg(-1.880726465) = 298° |
arctg(1.664279482) = 59° | arctg(-0.01745506493) = 179° | arctg(-1.804047755) = 299° |
arctg(1.732050808) = 60° | arctg(0) = 180° | arctg(-1.732050808) = 300° |
arctg(1.804047755) = 61° | arctg(0.01745506493) = 181° | arctg(-1.664279482) = 301° |
arctg(1.880726465) = 62° | arctg(0.03492076949) = 182° | arctg(-1.600334529) = 302° |
arctg(1.962610506) = 63° | arctg(0.05240777928) = 183° | arctg(-1.539864964) = 303° |
arctg(2.050303842) = 64° | arctg(0.06992681194) = 184° | arctg(-1.482560969) = 304° |
arctg(2.144506921) = 65° | arctg(0.08748866353) = 185° | arctg(-1.428148007) = 305° |
arctg(2.246036774) = 66° | arctg(0.1051042353) = 186° | arctg(-1.37638192) = 306° |
arctg(2.355852366) = 67° | arctg(0.1227845609) = 187° | arctg(-1.327044822) = 307° |
arctg(2.475086853) = 68° | arctg(0.1405408347) = 188° | arctg(-1.279941632) = 308° |
arctg(2.605089065) = 69° | arctg(0.1583844403) = 189° | arctg(-1.234897157) = 309° |
arctg(2.747477419) = 70° | arctg(0.1763269807) = 190° | arctg(-1.191753593) = 310° |
arctg(2.904210878) = 71° | arctg(0.1943803091) = 191° | arctg(-1.150368407) = 311° |
arctg(3.077683537) = 72° | arctg(0.2125565617) = 192° | arctg(-1.110612515) = 312° |
arctg(3.270852618) = 73° | arctg(0.2308681911) = 193° | arctg(-1.07236871) = 313° |
arctg(3.487414444) = 74° | arctg(0.2493280028) = 194° | arctg(-1.035530314) = 314° |
arctg(3.732050808) = 75° | arctg(0.2679491924) = 195° | arctg(-1) = 315° |
arctg(4.010780934) = 76° | arctg(0.2867453858) = 196° | arctg(-0.9656887748) = 316° |
arctg(4.331475874) = 77° | arctg(0.3057306815) = 197° | arctg(-0.9325150861) = 317° |
arctg(4.704630109) = 78° | arctg(0.3249196962) = 198° | arctg(-0.9004040443) = 318° |
arctg(5.144554016) = 79° | arctg(0.3443276133) = 199° | arctg(-0.8692867378) = 319° |
arctg(5.67128182) = 80° | arctg(0.3639702343) = 200° | arctg(-0.8390996312) = 320° |
arctg(6.313751515) = 81° | arctg(0.383864035) = 201° | arctg(-0.8097840332) = 321° |
arctg(7.115369722) = 82° | arctg(0.4040262258) = 202° | arctg(-0.7812856265) = 322° |
arctg(8.144346428) = 83° | arctg(0.4244748162) = 203° | arctg(-0.7535540501) = 323° |
arctg(9.514364454) = 84° | arctg(0.4452286853) = 204° | arctg(-0.726542528) = 324° |
arctg(11.4300523) = 85° | arctg(0.4663076582) = 205° | arctg(-0.7002075382) = 325° |
arctg(14.30066626) = 86° | arctg(0.4877325886) = 206° | arctg(-0.6745085168) = 326° |
arctg(19.08113669) = 87° | arctg(0.5095254495) = 207° | arctg(-0.6494075932) = 327° |
arctg(28.63625328) = 88° | arctg(0.5317094317) = 208° | arctg(-0.6248693519) = 328° |
arctg(57.28996163) = 89° | arctg(0.5543090515) = 209° | arctg(-0.600860619) = 329° |
arctg(∞) = 90° | arctg(0.5773502692) = 210° | arctg(-0.5773502692) = 330° |
arctg(-57.28996163) = 91° | arctg(0.600860619) = 211° | arctg(-0.5543090515) = 331° |
arctg(-28.63625328) = 92° | arctg(0.6248693519) = 212° | arctg(-0.5317094317) = 332° |
arctg(-19.08113669) = 93° | arctg(0.6494075932) = 213° | arctg(-0.5095254495) = 333° |
arctg(-14.30066626) = 94° | arctg(0.6745085168) = 214° | arctg(-0.4877325886) = 334° |
arctg(-11.4300523) = 95° | arctg(0.7002075382) = 215° | arctg(-0.4663076582) = 335° |
arctg(-9.514364454) = 96° | arctg(0.726542528) = 216° | arctg(-0.4452286853) = 336° |
arctg(-8.144346428) = 97° | arctg(0.7535540501) = 217° | arctg(-0.4244748162) = 337° |
arctg(-7.115369722) = 98° | arctg(0.7812856265) = 218° | arctg(-0.4040262258) = 338° |
arctg(-6.313751515) = 99° | arctg(0.8097840332) = 219° | arctg(-0.383864035) = 339° |
arctg(-5.67128182) = 100° | arctg(0.8390996312) = 220° | arctg(-0.3639702343) = 340° |
arctg(-5.144554016) = 101° | arctg(0.8692867378) = 221° | arctg(-0.3443276133) = 341° |
arctg(-4.704630109) = 102° | arctg(0.9004040443) = 222° | arctg(-0.3249196962) = 342° |
arctg(-4.331475874) = 103° | arctg(0.9325150861) = 223° | arctg(-0.3057306815) = 343° |
arctg(-4.010780934) = 104° | arctg(0.9656887748) = 224° | arctg(-0.2867453858) = 344° |
arctg(-3.732050808) = 105° | arctg(1) = 225° | arctg(-0.2679491924) = 345° |
arctg(-3.487414444) = 106° | arctg(1.035530314) = 226° | arctg(-0.2493280028) = 346° |
arctg(-3.270852618) = 107° | arctg(1.07236871) = 227° | arctg(-0.2308681911) = 347° |
arctg(-3.077683537) = 108° | arctg(1.110612515) = 228° | arctg(-0.2125565617) = 348° |
arctg(-2.904210878) = 109° | arctg(1.150368407) = 229° | arctg(-0.1943803091) = 349° |
arctg(-2.747477419) = 110° | arctg(1.191753593) = 230° | arctg(-0.1763269807) = 350° |
arctg(-2.605089065) = 111° | arctg(1.234897157) = 231° | arctg(-0.1583844403) = 351° |
arctg(-2.475086853) = 112° | arctg(1.279941632) = 232° | arctg(-0.1405408347) = 352° |
arctg(-2.355852366) = 113° | arctg(1.327044822) = 233° | arctg(-0.1227845609) = 353° |
arctg(-2.246036774) = 114° | arctg(1.37638192) = 234° | arctg(-0.1051042353) = 354° |
arctg(-2.144506921) = 115° | arctg(1.428148007) = 235° | arctg(-0.08748866353) = 355° |
arctg(-2.050303842) = 116° | arctg(1.482560969) = 236° | arctg(-0.06992681194) = 356° |
arctg(-1.962610506) = 117° | arctg(1.539864964) = 237° | arctg(-0.05240777928) = 357° |
arctg(-1.880726465) = 118° | arctg(1.600334529) = 238° | arctg(-0.03492076949) = 358° |
arctg(-1.804047755) = 119° | arctg(1.664279482) = 239° | arctg(-0.01745506493) = 359° |
Обратные тригонометрические функции, аркфункции, круговые функции – решают следующую задачу: найти дугу (число) по заданному значению её тригонометрической функции.
К обратным тригонометрическим функциям относят шесть функций:
arcsin — арксинус, возвращает угол по значению его синуса
arccos — арккосинус, возвращает угол по значению его косинуса
arctg — арктангенс, возвращает угол по значению его тангенса
arcсtg — арккотангенс, возвращает угол по значению его котангенса
arcsec — арксеканс, возвращает угол по значению его секанса
arccosec — арккосеканс, возвращает угол по значению его косеканса
Следующий онлайн калькулятор рассчитывает значения обратных тригонометрических функций.
Обратные тригонометрические функции
Точность вычисления
Знаков после запятой: 10
Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.
Если обратная тригонометрическая функция не определена в указанной точке, то ее значение не появится в результирующей таблице. Функции arcsec и arccosec не определены на отрезке (-1,1),а arcsin и arccos определены только на отрезке [-1,1].
0 | |||
AC | +/- | ÷ | |
7 | 8 | 9 | × |
4 | 5 | 6 | – |
1 | 2 | 3 | + |
0 | 00 | , | = |
Арктангенс онлайн калькулятор
Данный калькулятор вычислит арксинус, арккосинус, арктангенс, арккотангенс, арксеканс и арккосеканс и определит значение угла как в градусной, так и в радианной мере.
Что такое арктангенс угла
Арктангенсом (arctg x) числа x, является угол α заданный в радианной мере, такой, что tg α = x.
Вычислить арктангенс, означает найти угол α, тангенс которого равен числу x.
Область значений (определяющее неравенства угла α в радианной и градусной мерах):
−π/2 < α < π/2
−90° < α < 90°
Область определения (определяющее неравенство числа x):
-∞ ≤ x ≤ ∞
Вам могут также быть полезны следующие сервисы |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор пределов функций |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер по математике |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Чтобы воспользоваться калькулятором арктангенса (arctan), введите число и нажмите Рассчитать. Ответ будет возвращен в радианах и градусах.
.
Поделиться расчетом:
Число:
Радианы:
Градусы:
Рассчитать
Арктангенс — это функция, обратная к тангенсу ( x = tg y ).