Как найти аргумент функции калькулятор

Вычисление значений функции

Онлайн калькулятор поможет найти значения функции в заданном интервале, построить таблицу значений функции онлайн, табулировать функцию.
Вычисляет значения функции одной переменной y для заданных значений переменной x. Функция задается при помощи формулы, пример:
Построить таблицу значений функции f(x)=x/(x+1) на отрезке от 0 до 6 с шагом в единицу.

Синтаксис
основных функций:

xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]

sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]

arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]

areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция “И” ∧: &&
дизъюнкция “ИЛИ” ∨: ||
отрицание “НЕ” ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Данный онлайн калькулятор вычисляет значения функции одной переменной y для заданных значений переменной x. Функция задается при помощи формулы, в которой могут участвовать математические операции, константы и математические функции. Синтаксис описания формулы см. ниже.

PLANETCALC, Вычисление значений функции

Вычисление значений функции

Значения переменной x через запятую

Значения переменной x через запятую, для указания десятичной точки используйте точку.

Точность вычисления

Знаков после запятой: 1

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

В формуле допускается использование одной переменной (обозначается как x), числа пи ( pi), следующих математических операторов:
+ — сложение
— вычитание
* — умножение
/ — деление
^ — возведение в степень

и следующих функций:

  • sqrt — квадратный корень
  • rootp — корень степени p, например root3(x) – кубический корень
  • exp — e в указанной степени
  • lb — логарифм по основанию 2
  • lg — логарифм по основанию 10
  • ln — натуральный логарифм (по основанию e)
  • logp — логарифм по основанию p, например log7(x) — логарифм по основанию 7
  • sin — синус
  • cos — косинус
  • tg — тангенс
  • ctg — котангенс
  • sec — секанс
  • cosec — косеканс
  • arcsin — арксинус
  • arccos — арккосинус
  • arctg — арктангенс
  • arcctg — арккотангенс
  • arcsec — арксеканс
  • arccosec — арккосеканс
  • versin — версинус
  • vercos — коверсинус
  • haversin — гаверсинус
  • exsec — экссеканс
  • excsc — экскосеканс
  • sh — гиперболический синус
  • ch — гиперболический косинус
  • th — гиперболический тангенс
  • cth — гиперболический котангенс
  • sech — гиперболический секанс
  • csch — гиперболический косеканс
  • abs — абсолютное значение (модуль)
  • sgn — сигнум (знак)

Аргумент и значения функции онлайн

Функция, значения которой надо высчитать
Точность вычисления (знаков после запятой)
Начальное значение аргумента
Конечное значение аргумента
Шаг
Вы ввели следующую функцию
Табличное представление значений функции

Табличные данные функции

Нередко  в учебе  необходимо представить в табличной форме значения какой либо функции одной переменной в зависимости от аргумента этой функции.

Где это может применяться? Например в исследовании функции на пределы, просто для того что бы получить табличную форму соответствия аргумента функции и её результатом.

Функция задается при помощи формулы, в которой могут участвовать все математические операции и математические функции языка PHP.

Есть другой подобный калькулятор который рассчитывает в такой же форме, но в комплексном поле чисел Аргумент и значения функции комплексной переменной

Примеры

Рассчитать  значения функции   значения функции в виде таблицы    в диапазоне [1;2]  с шагом 0.2

Если это происходит через XMPP клиент то мы пишем

fx tan(x)/(1+ln(x));1;2;0.2

 и получаем результат

Аргумент = 1   Значение функции= 1.5574077246549

Аргумент = 1.2   Значение функции= 2.1755093674354

Аргумент = 1.4   Значение функции= 4.3381998941786

Аргумент = 1.6   Значение функции= -23.287379741453

Аргумент = 1.8   Значение функции= -2.69951988474

Аргумент = 2   Значение функции= -1.2905197423764

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • y=frac{x^2+x+1}{x}

  • f(x)=x^3

  • f(x)=ln (x-5)

  • f(x)=frac{1}{x^2}

  • y=frac{x}{x^2-6x+8}

  • f(x)=sqrt{x+3}

  • f(x)=cos(2x+5)

  • f(x)=sin(3x)

  • Показать больше

Описание

Изучите функции шаг за шагом

functions-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Functions

    A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти


    Как пользоваться калькулятором функций

    1

    Шаг 1

    Введите проблему с функцией в поле ввода.

    2

    Шаг 2

    Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.

    3

    Шаг 3

    Во всплывающем окне выберите нужную операцию. Вы также можете воспользоваться поиском.

    Калькулятор функций

    Что такое функции

    Понятие функции – одно из основных в математике. Функция – это зависимость одной переменной от другой. Другими словами, отношения между количествами. Любой физический закон, любая формула отражает такую взаимосвязь величин. Например, формула p = pgh – это зависимость давления жидкости p от глубины h.

    Можно дать другое определение. Функция – это конкретное действие над переменной. Это означает, что мы берем значение x, выполняем с ним определенное действие (например, возводим его в квадрат или вычисляем его логарифм) – и получаем значение y.

    Дадим еще одно определение функции – то, что чаще всего встречается в учебниках. Функция – это соответствие между двумя наборами, причем каждый элемент первого набора соответствует одному и только одному элементу второго набора.

    Функцию можно указать с помощью формулы или графически – с помощью графика.

    Добавить комментарий