Как найти арккосинус по таблице

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.

Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

α -1 -32 -22 -12 0 12 22 32
arcsin αкак угол

в радианах

-π2 -π3 -π4 -π6 0 π6 π4 π3
в градусах -90° -60° -45° -30° 30° 45° 60°
arcsin α как число -π2 -π3 -π4 -π6 0 π6 π4 π3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1

Следуя из таблицы, находим значения арккосинуса:

arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0

Таблица арккосинусов.

α -1 -32 -22 -12 0 12 22 32 1
arccos αкак угол

в радианах

π 5π6 3π4 2π3 π2 π3 π4 π6 0
в градусах 180° 150° 135° 120° 90° 60° 45° 30°
arccos α как число π 5π6 3π4 2π3 π2 π3 π4 π6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α -3 -1 -33 0 33 1 3
arctg aкак угол в радианах -π3 -π4 -π6 0 π6 π4 π3
в градусах -60° -45° -30° 30° 45° 60°
arctg a как число -π3 -π4 -π6 0 π6 π4 π3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

arcsin, arccos, arctg и arcctg

Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.

Рассмотрим решение нахождения значений  arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Таким образом находятся значения arcsin, arccos, arctg и arcctg.

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:

arccos α=π2−arcsin α=π2−(−π12)=7π12.

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.

Нахождение значения arcsin, arccos, arctg и arcctg

При поиске значения арктангенса 0,9511  определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Нахождение значения arcsin, arccos, arctg и arcctg

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Арккосинус(y = arccos(x)) – это обратная тригонометрическая функция к косинусу x = cos(y). Область определения -1 ≤ x ≤ 1 и множество значений 0 ≤ y ≤ π.

arccos(1) = 0° arccos(-0.5) = 120° arccos(-0.5) = 240°
arccos(0.9998476952) = 1° arccos(-0.5150380749) = 121° arccos(-0.4848096202) = 241°
arccos(0.999390827) = 2° arccos(-0.5299192642) = 122° arccos(-0.4694715628) = 242°
arccos(0.9986295348) = 3° arccos(-0.544639035) = 123° arccos(-0.4539904997) = 243°
arccos(0.9975640503) = 4° arccos(-0.5591929035) = 124° arccos(-0.4383711468) = 244°
arccos(0.9961946981) = 5° arccos(-0.5735764364) = 125° arccos(-0.4226182617) = 245°
arccos(0.9945218954) = 6° arccos(-0.5877852523) = 126° arccos(-0.4067366431) = 246°
arccos(0.9925461516) = 7° arccos(-0.6018150232) = 127° arccos(-0.3907311285) = 247°
arccos(0.9902680687) = 8° arccos(-0.6156614753) = 128° arccos(-0.3746065934) = 248°
arccos(0.9876883406) = 9° arccos(-0.629320391) = 129° arccos(-0.3583679495) = 249°
arccos(0.984807753) = 10° arccos(-0.6427876097) = 130° arccos(-0.3420201433) = 250°
arccos(0.9816271834) = 11° arccos(-0.656059029) = 131° arccos(-0.3255681545) = 251°
arccos(0.9781476007) = 12° arccos(-0.6691306064) = 132° arccos(-0.3090169944) = 252°
arccos(0.9743700648) = 13° arccos(-0.6819983601) = 133° arccos(-0.2923717047) = 253°
arccos(0.9702957263) = 14° arccos(-0.6946583705) = 134° arccos(-0.2756373558) = 254°
arccos(0.9659258263) = 15° arccos(-0.7071067812) = 135° arccos(-0.2588190451) = 255°
arccos(0.9612616959) = 16° arccos(-0.7193398003) = 136° arccos(-0.2419218956) = 256°
arccos(0.956304756) = 17° arccos(-0.7313537016) = 137° arccos(-0.2249510543) = 257°
arccos(0.9510565163) = 18° arccos(-0.7431448255) = 138° arccos(-0.2079116908) = 258°
arccos(0.9455185756) = 19° arccos(-0.7547095802) = 139° arccos(-0.1908089954) = 259°
arccos(0.9396926208) = 20° arccos(-0.7660444431) = 140° arccos(-0.1736481777) = 260°
arccos(0.9335804265) = 21° arccos(-0.7771459615) = 141° arccos(-0.156434465) = 261°
arccos(0.9271838546) = 22° arccos(-0.7880107536) = 142° arccos(-0.139173101) = 262°
arccos(0.9205048535) = 23° arccos(-0.79863551) = 143° arccos(-0.1218693434) = 263°
arccos(0.9135454576) = 24° arccos(-0.8090169944) = 144° arccos(-0.1045284633) = 264°
arccos(0.906307787) = 25° arccos(-0.8191520443) = 145° arccos(-0.08715574275) = 265°
arccos(0.8987940463) = 26° arccos(-0.8290375726) = 146° arccos(-0.06975647374) = 266°
arccos(0.8910065242) = 27° arccos(-0.8386705679) = 147° arccos(-0.05233595624) = 267°
arccos(0.8829475929) = 28° arccos(-0.8480480962) = 148° arccos(-0.0348994967) = 268°
arccos(0.8746197071) = 29° arccos(-0.8571673007) = 149° arccos(-0.01745240644) = 269°
arccos(0.8660254038) = 30° arccos(-0.8660254038) = 150° arccos(0) = 270°
arccos(0.8571673007) = 31° arccos(-0.8746197071) = 151° arccos(0.01745240644) = 271°
arccos(0.8480480962) = 32° arccos(-0.8829475929) = 152° arccos(0.0348994967) = 272°
arccos(0.8386705679) = 33° arccos(-0.8910065242) = 153° arccos(0.05233595624) = 273°
arccos(0.8290375726) = 34° arccos(-0.8987940463) = 154° arccos(0.06975647374) = 274°
arccos(0.8191520443) = 35° arccos(-0.906307787) = 155° arccos(0.08715574275) = 275°
arccos(0.8090169944) = 36° arccos(-0.9135454576) = 156° arccos(0.1045284633) = 276°
arccos(0.79863551) = 37° arccos(-0.9205048535) = 157° arccos(0.1218693434) = 277°
arccos(0.7880107536) = 38° arccos(-0.9271838546) = 158° arccos(0.139173101) = 278°
arccos(0.7771459615) = 39° arccos(-0.9335804265) = 159° arccos(0.156434465) = 279°
arccos(0.7660444431) = 40° arccos(-0.9396926208) = 160° arccos(0.1736481777) = 280°
arccos(0.7547095802) = 41° arccos(-0.9455185756) = 161° arccos(0.1908089954) = 281°
arccos(0.7431448255) = 42° arccos(-0.9510565163) = 162° arccos(0.2079116908) = 282°
arccos(0.7313537016) = 43° arccos(-0.956304756) = 163° arccos(0.2249510543) = 283°
arccos(0.7193398003) = 44° arccos(-0.9612616959) = 164° arccos(0.2419218956) = 284°
arccos(0.7071067812) = 45° arccos(-0.9659258263) = 165° arccos(0.2588190451) = 285°
arccos(0.6946583705) = 46° arccos(-0.9702957263) = 166° arccos(0.2756373558) = 286°
arccos(0.6819983601) = 47° arccos(-0.9743700648) = 167° arccos(0.2923717047) = 287°
arccos(0.6691306064) = 48° arccos(-0.9781476007) = 168° arccos(0.3090169944) = 288°
arccos(0.656059029) = 49° arccos(-0.9816271834) = 169° arccos(0.3255681545) = 289°
arccos(0.6427876097) = 50° arccos(-0.984807753) = 170° arccos(0.3420201433) = 290°
arccos(0.629320391) = 51° arccos(-0.9876883406) = 171° arccos(0.3583679495) = 291°
arccos(0.6156614753) = 52° arccos(-0.9902680687) = 172° arccos(0.3746065934) = 292°
arccos(0.6018150232) = 53° arccos(-0.9925461516) = 173° arccos(0.3907311285) = 293°
arccos(0.5877852523) = 54° arccos(-0.9945218954) = 174° arccos(0.4067366431) = 294°
arccos(0.5735764364) = 55° arccos(-0.9961946981) = 175° arccos(0.4226182617) = 295°
arccos(0.5591929035) = 56° arccos(-0.9975640503) = 176° arccos(0.4383711468) = 296°
arccos(0.544639035) = 57° arccos(-0.9986295348) = 177° arccos(0.4539904997) = 297°
arccos(0.5299192642) = 58° arccos(-0.999390827) = 178° arccos(0.4694715628) = 298°
arccos(0.5150380749) = 59° arccos(-0.9998476952) = 179° arccos(0.4848096202) = 299°
arccos(0.5) = 60° arccos(-1) = 180° arccos(0.5) = 300°
arccos(0.4848096202) = 61° arccos(-0.9998476952) = 181° arccos(0.5150380749) = 301°
arccos(0.4694715628) = 62° arccos(-0.999390827) = 182° arccos(0.5299192642) = 302°
arccos(0.4539904997) = 63° arccos(-0.9986295348) = 183° arccos(0.544639035) = 303°
arccos(0.4383711468) = 64° arccos(-0.9975640503) = 184° arccos(0.5591929035) = 304°
arccos(0.4226182617) = 65° arccos(-0.9961946981) = 185° arccos(0.5735764364) = 305°
arccos(0.4067366431) = 66° arccos(-0.9945218954) = 186° arccos(0.5877852523) = 306°
arccos(0.3907311285) = 67° arccos(-0.9925461516) = 187° arccos(0.6018150232) = 307°
arccos(0.3746065934) = 68° arccos(-0.9902680687) = 188° arccos(0.6156614753) = 308°
arccos(0.3583679495) = 69° arccos(-0.9876883406) = 189° arccos(0.629320391) = 309°
arccos(0.3420201433) = 70° arccos(-0.984807753) = 190° arccos(0.6427876097) = 310°
arccos(0.3255681545) = 71° arccos(-0.9816271834) = 191° arccos(0.656059029) = 311°
arccos(0.3090169944) = 72° arccos(-0.9781476007) = 192° arccos(0.6691306064) = 312°
arccos(0.2923717047) = 73° arccos(-0.9743700648) = 193° arccos(0.6819983601) = 313°
arccos(0.2756373558) = 74° arccos(-0.9702957263) = 194° arccos(0.6946583705) = 314°
arccos(0.2588190451) = 75° arccos(-0.9659258263) = 195° arccos(0.7071067812) = 315°
arccos(0.2419218956) = 76° arccos(-0.9612616959) = 196° arccos(0.7193398003) = 316°
arccos(0.2249510543) = 77° arccos(-0.956304756) = 197° arccos(0.7313537016) = 317°
arccos(0.2079116908) = 78° arccos(-0.9510565163) = 198° arccos(0.7431448255) = 318°
arccos(0.1908089954) = 79° arccos(-0.9455185756) = 199° arccos(0.7547095802) = 319°
arccos(0.1736481777) = 80° arccos(-0.9396926208) = 200° arccos(0.7660444431) = 320°
arccos(0.156434465) = 81° arccos(-0.9335804265) = 201° arccos(0.7771459615) = 321°
arccos(0.139173101) = 82° arccos(-0.9271838546) = 202° arccos(0.7880107536) = 322°
arccos(0.1218693434) = 83° arccos(-0.9205048535) = 203° arccos(0.79863551) = 323°
arccos(0.1045284633) = 84° arccos(-0.9135454576) = 204° arccos(0.8090169944) = 324°
arccos(0.08715574275) = 85° arccos(-0.906307787) = 205° arccos(0.8191520443) = 325°
arccos(0.06975647374) = 86° arccos(-0.8987940463) = 206° arccos(0.8290375726) = 326°
arccos(0.05233595624) = 87° arccos(-0.8910065242) = 207° arccos(0.8386705679) = 327°
arccos(0.0348994967) = 88° arccos(-0.8829475929) = 208° arccos(0.8480480962) = 328°
arccos(0.01745240644) = 89° arccos(-0.8746197071) = 209° arccos(0.8571673007) = 329°
arccos(0) = 90° arccos(-0.8660254038) = 210° arccos(0.8660254038) = 330°
arccos(-0.01745240644) = 91° arccos(-0.8571673007) = 211° arccos(0.8746197071) = 331°
arccos(-0.0348994967) = 92° arccos(-0.8480480962) = 212° arccos(0.8829475929) = 332°
arccos(-0.05233595624) = 93° arccos(-0.8386705679) = 213° arccos(0.8910065242) = 333°
arccos(-0.06975647374) = 94° arccos(-0.8290375726) = 214° arccos(0.8987940463) = 334°
arccos(-0.08715574275) = 95° arccos(-0.8191520443) = 215° arccos(0.906307787) = 335°
arccos(-0.1045284633) = 96° arccos(-0.8090169944) = 216° arccos(0.9135454576) = 336°
arccos(-0.1218693434) = 97° arccos(-0.79863551) = 217° arccos(0.9205048535) = 337°
arccos(-0.139173101) = 98° arccos(-0.7880107536) = 218° arccos(0.9271838546) = 338°
arccos(-0.156434465) = 99° arccos(-0.7771459615) = 219° arccos(0.9335804265) = 339°
arccos(-0.1736481777) = 100° arccos(-0.7660444431) = 220° arccos(0.9396926208) = 340°
arccos(-0.1908089954) = 101° arccos(-0.7547095802) = 221° arccos(0.9455185756) = 341°
arccos(-0.2079116908) = 102° arccos(-0.7431448255) = 222° arccos(0.9510565163) = 342°
arccos(-0.2249510543) = 103° arccos(-0.7313537016) = 223° arccos(0.956304756) = 343°
arccos(-0.2419218956) = 104° arccos(-0.7193398003) = 224° arccos(0.9612616959) = 344°
arccos(-0.2588190451) = 105° arccos(-0.7071067812) = 225° arccos(0.9659258263) = 345°
arccos(-0.2756373558) = 106° arccos(-0.6946583705) = 226° arccos(0.9702957263) = 346°
arccos(-0.2923717047) = 107° arccos(-0.6819983601) = 227° arccos(0.9743700648) = 347°
arccos(-0.3090169944) = 108° arccos(-0.6691306064) = 228° arccos(0.9781476007) = 348°
arccos(-0.3255681545) = 109° arccos(-0.656059029) = 229° arccos(0.9816271834) = 349°
arccos(-0.3420201433) = 110° arccos(-0.6427876097) = 230° arccos(0.984807753) = 350°
arccos(-0.3583679495) = 111° arccos(-0.629320391) = 231° arccos(0.9876883406) = 351°
arccos(-0.3746065934) = 112° arccos(-0.6156614753) = 232° arccos(0.9902680687) = 352°
arccos(-0.3907311285) = 113° arccos(-0.6018150232) = 233° arccos(0.9925461516) = 353°
arccos(-0.4067366431) = 114° arccos(-0.5877852523) = 234° arccos(0.9945218954) = 354°
arccos(-0.4226182617) = 115° arccos(-0.5735764364) = 235° arccos(0.9961946981) = 355°
arccos(-0.4383711468) = 116° arccos(-0.5591929035) = 236° arccos(0.9975640503) = 356°
arccos(-0.4539904997) = 117° arccos(-0.544639035) = 237° arccos(0.9986295348) = 357°
arccos(-0.4694715628) = 118° arccos(-0.5299192642) = 238° arccos(0.999390827) = 358°
arccos(-0.4848096202) = 119° arccos(-0.5150380749) = 239° arccos(0.9998476952) = 359°
  • Определение

  • График арккосинуса

  • Свойства арккосинуса

  • Таблица арккосинусов

Определение

Арккосинус (arccos) – это обратная тригонометрическая функция.

Арккосинус x определяется как функция, обратная к косинусу x, при -1≤x≤1.

Если косинус угла у равен х (cos y = x), значит арккосинус x равняется y:

arccos x = cos-1 x = y

Примечание: cos-1x означает обратный косинус, а не косинус в степени -1.

Например:

arccos 1 = cos-1 1 = 0° (0 рад)

График арккосинуса

Функция арккосинуса пишется как y = arccos (x). График в общем виде выглядит следующим образом:

График арккосинуса

Свойства арккосинуса

Ниже в табличном виде представлены основные свойства арккосинуса с формулами.

Таблица арккосинусов

x arccos x (рад) arccos x (°)
-1 π 180°
-√3/2 5π/6 150°
-√2/2 3π/4 135°
-1/2 2π/3 120°
0 π/2 90°
1/2 π/3 60°
2/2 π/4 45°
3/2 π/6 30°
1 0

microexcel.ru

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin ( – π 2 ) = – 1 , sin ( – π 3 ) = – 3 2 , sin ( – π 4 ) = – 2 2 , sin ( – π 6 ) = – 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от – 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

в р а д и а н а х

α – 1 – 3 2 – 2 2 – 1 2 0 1 2 2 2 3 2
a r c sin α к а к у г о л – π 2 – π 3 – π 4 – π 6 0 π 6 π 4 π 3
в г р а д у с а х – 90 ° – 60 ° – 45 ° – 30 ° 0 ° 30 ° 45 ° 60 °
a r c sin α к а к ч и с л о – π 2 – π 3 – π 4 – π 6 0 π 6 π 4 π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = – 1 2 , cos 3 π 4 = – 2 2 , cos 5 π 6 = – 3 2 , cos π = – 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos ( – 1 ) = π , arccos ( – 3 2 ) = 5 π 6 , arcocos ( – 2 2 ) = 3 π 4 , arccos – 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

в р а д и а н а х

α – 1 – 3 2 – 2 2 – 1 2 0 1 2 2 2 3 2 1
a r c cos α к а к у г о л π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0
в г р а д у с а х 180 ° 150 ° 135 ° 120 ° 90 ° 60 ° 45 ° 30 ° 0 °
a r c cos α к а к ч и с л о π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α – 3 – 1 – 3 3 0 3 3 1 3
a r c t g a к а к у г о л в р а д и а н а х – π 3 – π 4 – π 6 0 π 6 π 4 π 3
в г р а д у с а х – 60 ° – 45 ° – 30 ° 0 ° 30 ° 45 ° 60 °
a r c t g a к а к ч и с л о – π 3 – π 4 – π 6 0 π 6 π 4 π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( – α ) = – a r c sin α , a r c cos ( – α ) = π – a r c cos α , a r c t g ( – α ) = – a r c t g α , a r c c t g ( – α ) = π – a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном a r c sin α = – π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число , такое, что Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса — отрезок Область значений — отрезок .

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка , синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: — это такое число из отрезка , синус которого равен . Да, это

Строим график функции

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное – , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

Вот график арккосинуса:

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса — промежуток Область значений — интервал .

Почему в определении арктангенса исключены концы промежутка — точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график – уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

– Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений — интервал

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

1. Область определения

2. Область значений

3. Функция – общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Урок 9. Обратные тригонометрические функции. Теория

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы рассмотрим особенности обратных функций и повторим обратные тригонометрические функции. Отдельно будут рассмотрены свойства всех основных обратных тригонометрических функций: арксинуса, арккосинуса, арктангенса и арккотангенса.

Данный урок поможет Вам подготовиться к одному из типов задания В7 и С1.

[spoiler title=”источники:”]

http://interneturok.ru/lesson/algebra/11-klass/bzadachi-iz-egeb/urok-9-obratnye-trigonometricheskie-funktsii-teoriya

[/spoiler]

Таблица Брадиса: арккосинус

Автор статьи

Щебетун Виктор

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Для того чтобы воспользоваться таблицей Брадиса, ищут угол в градусах в крайнем столбце слева для синуса (для косинуса в соответствующем столбце справа), а затем в верхней строке минуты. На пересечении строки со столбцом находится искомое значение.

При необходимости найти значения обратных тригонометрических функций — таблицу Брадиса используют наоборот. Например, ищут числовое значение в таблице арктангенсов и тангенсов и для него определяют, в какой строке градусов и столбце минут оно находится.

Таким образом, Таблицу Брадиса можно использовать не только для поиска обычных тригонометрических функций, но и как таблицу арккосинуса и арксинуса, арктангенсов и арккотангенсов.

Сверху в этой статье расположена таблица значений arcsin и arccos, ближе к концу — таблица значений arctg и arcctg.

Таблица Брадиса: таблица arcsin, arccos, cos и sin

Таблица Брадиса таблица значений arcsin и arccos. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Таблица Брадиса таблица значений arcsin и arccos. Автор24 — интернет-биржа студенческих работ

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Таблица. Автор24 — интернет-биржа студенческих работ

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Таблица. Автор24 — интернет-биржа студенческих работ

«Таблица Брадиса: арккосинус» 👇

Таблица значений арктангенсов и арккотангенсов, тангенсов и котангенсов

Таблица Брадиса: таблица значений арктангенсов arctg и арккотангенсов arctg. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Таблица Брадиса: таблица значений арктангенсов arctg и арккотангенсов arctg. Автор24 — интернет-биржа студенческих работ

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 5. Таблица. Автор24 — интернет-биржа студенческих работ

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 6. Таблица. Автор24 — интернет-биржа студенческих работ

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 7. Таблица. Автор24 — интернет-биржа студенческих работ

Пример 1

Найдите значение $arccos (0,2504)$.

Найдём в строке число, находящееся максимально близко к $0,2504$. В нашем случае это число $0,2588$. Так как оно больше чем $0,2504$, дальше смотрим в строки, которые находятся справа сверху от этого значения. Наконец, значение $0,2504$ найдено, оно находится на пересечении строки 75 градусов и 30 минут, значит $arccos (0,2504)=75°30’$.

Таблица. Автор24 — интернет-биржа студенческих работ

Рисунок 8. Таблица. Автор24 — интернет-биржа студенческих работ

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.03.2023

Добавить комментарий