Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac{π}{2};frac{π}{2}]) синус которого равен (a) т.е.
(arcsin a=x) (<=>) (sin x=a)
Примеры:
(arcsin{frac{sqrt{2}}{2}}=frac{π}{4}) потому что (sin frac{π}{4}=frac{sqrt{2}}{2}) и (frac{π}{4}∈[-frac{π}{2}; frac{π}{2}])
(arcsin 1=frac{π}{2}) потому что (sinfrac{π}{2}=1) и (frac{π}{2}∈[-frac{π}{2};frac{π}{2}])
(arcsin 0=0) потому что (sin 0=0) и (0∈[-frac{π}{2};frac{π}{2}] )
(arcsinsqrt{3}) – не определен, потому что (sqrt{3}>1)
Проще говоря, арксинус обратен синусу.
На круге это выглядит так:
Как вычислить арксинус?
Чтобы вычислить арксинус – нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac{π}{2}) до (frac{π}{2}) ) равен аргументу арксинуса?
Например, вычислите значение арксинуса:
а) (arcsin(-frac{1}{2}))
б) (arcsin(frac{sqrt{3}}{2}))
в) (arcsin(-1))
а) Синус какого числа равен (-frac{1}{2})? Или в более точной формулировке можно спросить так: если (sin x=-frac{1}{2}), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac{π}{2}) и (frac{π}{2}). Ответ очевиден:
(arcsin(-frac{1}{2})=-frac{π}{6})
б) Синус какого числа равен (frac{sqrt{3}}{2})? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac{π}{3}).
(arcsin(-frac{sqrt{3}}{2})=-frac{π}{3})
в) Синус от чего равен (-1)?
Иначе говоря, (sin x=-1), (x=) ?
(arcsin(-1)=-frac{π}{2})
Тригонометрический круг со всеми стандартными арксинусами:
Зачем нужен арксинус? Решение уравнения (sin x=a)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin x=frac{1}{2}).
Это не вызывает затруднений:
( left[ begin{gathered}x=frac{π}{6}+2πn, n∈Z\ x=frac{5π}{6}+2πl, l∈Zend{gathered}right.)
Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.
А теперь решите уравнение: (sin x=frac{1}{3}).
Что тут будет ответом? Не (frac{π}{6}), не (frac{π}{4}), даже не (frac{π}{7}) – вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsinfrac{1}{3}), потому что известно, что синус равен (frac{1}{3}). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsinfrac{1}{3}). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsinfrac{1}{3}) от (π), то её значение составляет (π- arcsinfrac{1}{3}).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ begin{gathered}x=arcsin frac{1}{3}+2πn, n∈Z\ x=π-arcsin frac{1}{3}+2πl, l∈Zend{gathered}right.) Без арксинусов решить уравнение (sin x=frac{1}{3}) не получилось бы. Как и уравнение (sin x=0,125), (sin x=-frac{1}{9}), (sin x=frac{1}{sqrt{3}}) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: (sin x=frac{1}{sqrt{3}}).
Решение:
Ответ: ( left[ begin{gathered}x=arcsin frac{1}{sqrt{3}}+2πn, n∈Z\ x=π-arcsin frac{1}{sqrt{3}}+2πl, l∈Zend{gathered}right.)
Пример. Решите тригонометрическое уравнение: (sin x=frac{1}{sqrt{2}}).
Решение:
Кто поторопился написать ответ ( left[ begin{gathered}x=arcsin frac{1}{sqrt{2}}+2πn, n∈Z\ x=π-arcsin frac{1}{sqrt{2}}+2πl, l∈Zend{gathered}right.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin frac{1}{sqrt{2}}) – вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac{1}{sqrt{2}} = frac{1 cdot sqrt{2}}{sqrt{2} cdot sqrt{2}}= frac{sqrt{2}}{2}). Таким образом, получаем:
(arcsin frac{1}{sqrt{2}} = arcsin frac{sqrt{2}}{2}=frac{π}{4})
Значит в ответе вместо арксинусов нужно написать (frac{π}{4}).
Ответ: ( left[ begin{gathered}x=frac{π}{4}+2πn, n∈Z\ x=frac{3π}{4}+2πl, l∈Zend{gathered}right.)
Пример. Решите тригонометрическое уравнение: (sin x=frac{7}{6}).
Решение:
И вновь тот, кто поторопился написать ( left[ begin{gathered}x= arcsin frac{7}{6}+2πn, n∈Z\ x=π- arcsinfrac{7}{6}+2πl, l∈Zend{gathered}right.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsinfrac{7}{6})? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.
Ответ: решений нет.
Думаю, вы уловили закономерность.
Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ begin{gathered}x= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zend{gathered}right.)
Арксинус отрицательного числа
Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:
(arcsin({-a})=-arcsin a)
Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:
Примеры:
(arcsin(-0,7)=-arcsin 0,7)
(arcsin(-frac{sqrt{3}}{2})=-arcsinfrac{sqrt{3}}{2}=-frac{π}{6})
(arcsin(-frac{sqrt{7}}{2}) neq -arcsinfrac{sqrt{7}}{2})
Удивил последний пример? Почему в нем формула не работает? Потому что запись (arcsin(-frac{sqrt{7}}{2})) в принципе неверна, ведь (-frac{sqrt{7}}{2}<-1), а значит арксинус от (-frac{sqrt{7}}{2}) взять нельзя – он не вычислим, не существует, точно также как (sqrt{-5}) или (frac{3}{0}).
Пример. Решите тригонометрическое уравнение: (sin x=-frac{1}{sqrt{3}}).
Решение:
Можно воспользоваться готовой формулой и написать:
( left[ begin{gathered}x=arcsin (-frac{1}{sqrt{3}})+2πn, n∈Z\ x=π-arcsin (-frac{1}{sqrt{3}})+2πl, l∈Zend{gathered}right.)
( left[ begin{gathered}x=-arcsin (frac{1}{sqrt{3}})+2πn, n∈Z\ x=π+arcsin (frac{1}{sqrt{3}})+2πl, l∈Zend{gathered}right.)
Но я фанатка круга, поэтому:
Ответ: ( left[ begin{gathered}x=-arcsin frac{1}{sqrt{3}}+2πn, n∈Z\ x=π+arcsin frac{1}{sqrt{3}}+2πl, l∈Zend{gathered}right.)
На всякий случай, уточню, что при решении уравнений написанное синим писать не обязательно – это скорее пояснения, как надо рассуждать.
Смотрите также:
Синус
Тригонометрические уравнения
-
Определение
- График арксинуса
- Свойства арксинуса
- Таблица арксинусов
Определение
Арксинус (arcsin) – это обратная тригонометрическая функция.
Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.
Если синус угла у равен х (sin y = x), значит арксинус x равняется y:
arcsin x = sin-1 x = y
Примечание: sin-1x означает обратный синус, а не синус в степени -1.
Например:
arcsin 1 = sin-1 1 = 90° (π/2 рад)
График арксинуса
Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):
Свойства арксинуса
Ниже в табличном виде представлены основные свойства арксинуса с формулами.
Таблица арксинусов
x | arcsin x (рад) | arcsin x (°) |
-1 | -π/2 | -90° |
-√3/2 | -π/3 | -60° |
-√2/2 | -π/4 | -45° |
-1/2 | -π/6 | -30° |
0 | 0 | 0° |
1/2 | π/6 | 30° |
√2/2 | π/4 | 45° |
√3/2 | π/3 | 60° |
1 | π/2 | 90° |
microexcel.ru
План урока:
Арккосинус
Арксинус
Арктангенс
Решение уравнения cosx = a
Решение уравнения sinx = a
Решение уравнений tgx = a и ctgx = a
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1<а < 1, то должно получиться две точки, которым соответствуют два противоположных угла:
Получается, что каждому значению числа а соответствует некоторый угол α. А если есть соответствие, то есть и функция:
α = f (a)
В математике ее называют арккосинусом. Записывается она так:
Вертикальная прямая может пересекать единичную окружность в двух разных точках. Им соответствуют разные углы. Принято считать, что арккосинус – это значение того угла, который лежит в первой или второй четверти, то есть ему соответствует точка, лежащая выше оси Ох. Тогда другая точка пересечения будет соответствовать углу (– arccosa):
Выходит, что арккосинус может принимать только значения из отрезка [0; π]. Дадим определение арккосинуса:
Задание. Вычислите арккосинус числа 1/2.
Решение. Мы помним, что косинус угла π/3 равен 1/2:
Следовательно, arccos 1/2 – это и есть угол π/3:
Ответ: π/3.
Обратим внимание, что если число а равно 1 или (– 1), то его арккосинус равен нулю в первом случае и π во втором:
В тех случаях, когда а > 1 либо а <– 1, то соответствующая прямая не пересечет единичную окружность. Это значит, что эти значения не входят в область определения арккосинуса:
Получается, что область определения арккосинуса – это промежуток [– 1; 1].
Для вычисления арккосинусов от отрицательных величин удобно пользоваться формулой
Действительно, если отложить на координатной прямой числа а и (– а), то вертикальные прямые, проходящие через них, пересекут окружность в некоторых точках А и С:
Дополнительно обозначим буквой В точку с координатами (1; 0) и буквой D точку с координатами (– 1; 0). Эти точки располагаются на пересечении оси Ох и единичной окружности. Тогда можно записать, что
ведь эти два угла образуют вместе развернутый угол ВОD, равный π. С другой стороны, из симметрии очевидно, что углы ∠COD и ∠АОВ равны друг другу, значит, ∠COD = ∠АОВ = arccosa. Тогда
Но ∠СОВ – это арккосинус от (– а), поэтому
Задание. Вычислите arccos (– 1/2).
Решение. Используем только что полученную формулу:
Ответ: 2π/3.
Арксинус
Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:
Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:
Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:
При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):
Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:
Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].
Дадим определение арксинусу:
Задание. Чему равен arcsin0,5?
Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.
Для вычисления арксинусов отрицательных углов используется формула
Справедливость этой формулы очевидна из картинки:
Задание. Вычислите arcsin (– 0,5).
Решение. Используем формулу для арксинуса отрицательного числа:
Арктангенс
Введем ф-цию, обратную тангенсу. Она называется арктангенс.
Напомним, что величину тангенса на координатной плоскости можно получить, если продолжить угол до его пересечения с вертикальной прямой х = 1. Аналогично, чтобы определить арктангенс некоторого числа а, надо отметить на этой прямой точку с координатами (1; а) и соединить её с началом координат:
Несложно видеть, что, какое бы число а нами не было выбрано, мы с помощью построения всегда сможем соединить точку А с началом координат и получить некоторый угол arctga. Это значит, что область определения арктангенса – это вся числовая прямая, то есть промежуток (– ∞; + ∞).
Ещё раз уточним, что вводимые нами функции arcos, arcsin, arctg называются ОБРАТНЫМИ тригонометрическими функциями. C их помощью можно определить угол, если известно значение его синуса, косинуса или тангенса.Образно говоря, обратные триг-кие функции играют в тригонометрии ту же роль, что и квадратные корни при исследовании квадратных ур-ний. Как без квадратных корней невозможно решать квадратные ур-ния, так и без знания об обратных триг-ких функций нельзя решать уже тригом-кие уравнения.
Теперь вернемся к понятию арктангенса. При положительном значении числа а угол arctga будет принадлежать I четверти. Если же а – отрицательное число, то угол arctga окажется также отрицательным и будет принадлежать IV четверти:
Получается, что величина arctgа может принадлежать промежутку (– π/2; π/2). Обратите внимание, что в данном случае у промежутка круглые скобки. Действительно для углов (– π/2) и π/2 тангенс не определен, а потому арктангенс не может принимать эти два значения.
Задание. Чему равен arctg 1?
Решение. Из таблицы тангенсов мы знаем, что tgπ/4 = 1. Это значит, что
Для вычисления арктангенсов отрицательных чисел используют формулу
В ее справедливости можно убедиться, взглянув на рисунок:
Задание. Вычислите arctg (– 1).
Решение.
Ответ: – 1
В принципе можно ввести ещё ф-цию, обратную котангенсу – арккотангенс. Однако для решения тригонометрических уравнений, как мы убедимся далее, она не требуется, а поэтому в рамках школьного курса математики ее можно не изучать.
В заключение приведем таблицы, которые помогают вычислять значение обратных тригон-ких функций:
Решение уравнения cosx = a
Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:
По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь
Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:
Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:
Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:
Здесь мы использовали тот факт, косинус – четная функция, то есть
Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:
Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть
Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:
Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение
При n = 5 получим корень
При n = – 10 у нас получится решение
Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:
Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень
Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:
Объединить же обе серии можно одной записью:
Напомним, что мы решали ур-ние
и получили для него решение
Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид
где а – некоторое число, его решением будут все такие х, что
Для краткости запись «n– целое число» заменяют эквивалентной записью
«n ∈ Z»
Напомним, что буквой Z обозначают множество целых чисел.
Задание. Решите ур-ние
Решение. Вспомним, что
Задание. Решите ур-ние
Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:
Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.
Задание. Укажите три наименьших положительных корня ур-ния
Решение. Так как
то все решения образуют две серии:
Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.
Для первой серии:
Для второй серии:
Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):
Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4
Ответ: π/4, 7π/4 и 9π/4.
Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния
На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния
являются точки, в которых график пересекает ось Ох:
Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].
Решение уравнения sinx = a
Ур-ние cosx = a называют простейшим тригонометрическим уравнением, ведь, ведь для его решения не требуется проводить никаких преобразований. Аналогично простейшими являются ур-ния sinx = a, tgx = a и ctgx = a.
Ситуация с ур-нием sinx = a аналогична ситуации с косинусом. Если число а не принадлежит промежутку [– 1; 1], то корней у ур-ния не будет. Если же число а будет принадлежать этому промежутку, то у ур-ния окажется бесконечное число решений.
Рассмотрим случай, когда 0<а< 1. Тогда решениями ур-ния окажутся числа arcsina и π – arcsina:
В свою очередь каждое из этих двух решений порождает свою собственную бесконечную серию решений
Однако, как и в случае с косинусом, существует способ записать одной формулой сразу оба этих решения. Для этого перепишем первую серию таким образом:
Действительно, если n окажется четным, то, то выражение (– 1)n,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1)n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Решениями ур-ния
Наконец, решениями ур-ния
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
x = arctg a
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
Определения и свойства обратных тригонометрических функций
by on 15 сентября 2010
Обратные тригонометрические функции:
Определение:
Арксинусом числа а называется угол из отрезка , синус которого равен числу а.
Свойство арксинуса от отрицательного угла :
Определение:
Аркосинусом числа а называется угол из отрезка , косинус которого равен числу а.
Свойство арккосинуса от отрицательного угла :
Определение:
Арктангенсом числа а называется угол из интервала , тангенс которого равен числу а.
Свойство арктангенса от отрицательного угла :
Определение:
Арккотангенсом числа а называется угол из интервала , котангенс которого равен числу а.
Свойство арккотангенса от отрицательного угла :
Дополнительные свойства обратных тригонометричесикх функций:
, если ;
, если ;
, если ;
, если ;
, если ;
, если ;
, если ;
, если
, если
, если
Справочные материалы по обратным тригонометрическим функциям предназначены для учащихся 10-11 классов, школьных преподавателей и репетиторов по математике. Рекомендуется использовать материалы на уроках по тригонометрии и подготовке к ЕГЭ по математике.
Колпаков Александр Николаевич, репетитор по математике.
Метки:
Справочник репетитора,
Тригонометрия,
Ученикам
Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства
Арксинус, арккосинус, арктангенс и арккотангенс – обратные тригонометрические функции. Они обладают рядом свойств, которые мы рассмотрим в этой статье. Помимо словесных и математических формулировок основных свойств арксинуса, арккосинуса, арктангенса и арккотангенса, будут приведены доказательства этих свойств.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса
Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа
- sin a r c sin a = a , a ∈ 1 ; – 1 ;
- cos a r c cos a = a , a ∈ 1 ; – 1 ;
- t g ( a r c t g a ) = a , a ∈ – ∞ ; + ∞ ;
- c t g ( a r c c t g a ) = a , a ∈ – ∞ ; + ∞ .
Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.
Рассмотрим доказательство на примере арксинуса. Согласно определению, арксинус числа – это такой угол или число, синус которого равен числу a . При этом число a лежит в пределах от – 1 до + 1 включительно. В виде формулы определение запишется так:
sin ( a r c sin a ) = a
Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.
Пример 1. Свойства обратных тригонометрических функций
sin ( a r c sin ( 0 , 3 ) = 0 , 3 cos a r c cos – 3 2 = – 3 2 t g ( a r c t g ( 8 ) ) = 8 c t g ( a r c c t g ( 15 8 9 ) ) = 15 8 9
Важно отметить, что для обратных функций синуса и косинуса имеет место ограничение для значений числа a . Так, при a , лежащем вне пределов отрезка – 1 , 1 , арксинус и арккосинус не определены и записи a r c sin a и a r c cos a попросту не имеют смысла. Это связано с тем, что область значений синуса и косинуса – от минус единицы до плюс единицы. Например, нельзя записать cos ( a r c cos ( 9 ) ) , так как 9 больше 1 и данное выражение не имеет смысла. Делать подобные записи – ошибочно!
Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел
Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.
arcsin, arccos, arctg и arcctg противоположных чисел
- a r c sin – a = – a r c sin a , a ∈ – 1 , 1 ;
- a r c cos – a = π – a r c cos a , a ∈ – 1 , 1 ;
- a r c t g – a = – a r c t g a , a ∈ – ∞ , + ∞ ;
- a r c c t g – a = π – a r c c t g a , a ∈ – ∞ , + ∞ .
Докажем записанное. Начнем, как всегда, с доказательства для арксинусов. При – 1 ≤ a ≤ 1 имеет место равенство a r c sin – a = – a r c sin a . Согласно дефиниции, a r c sin ( – a ) – это угол (число) в пределах от – π 2 до π 2 , синус которого равен – a . Для доказательства справедливости первого равенства необходимо доказать, что – a r c sin a лежит в тех же пределах от – π 2 до π 2 , что и a r c sin ( – a ) . Также необходимо обосновать, что sin ( – a r c sin a ) = – a .
Для арксинуса, по определению, справедливо двойное неравенство – π 2 ≤ a r c sin a ≤ π 2 . Умножим каждую часть неравенства на – 1 и получим эквивалентное неравенство π 2 ≥ – a r c sin a ≥ – π 2 . Переписав его, получим – π 2 ≤ – a r c sin a ≤ π 2 .
Переходим ко второй части доказательства. Теперь осталось показать, что sin ( – a r c sin a ) = – a . Для этого воспользуемся свойством синусов противоположных углов и запишем: sin – a r c sin a = – sin a r c sin a . С учетом свойства арксинуса, рассмотренного в предыдущем пункте, закончим доказательство.
sin – a r c sin a = – sin a r c sin a = – a
Доказательство свойства арксинусов противоположных чисел завершено.
Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.
Для того, чтобы доказать, что a r c cos – a = π – a r c cos a при a ∈ – 1 , 1 необходимо во-первых показать, что число undefined.
Для арккосинуса, по определению, справедливо двойное неравенство 0 ≤ a r c cos a ≤ π . Умножив каждую часть неравенства на – 1 и поменяв знаки, получим эквивалентное неравенство 0 ≥ – a r c cos a ≥ – π . Перепишем его в другом виде. По свойствам неравенств, можно добавить к каждой части слагаемое, не меняя знаков. Добавим в каждую часть неравенства слагаемое π . Получим π ≥ π – a r c cos a ≥ 0 , или 0 ≤ π – a r c cos a ≤ π .
Теперь покажем, что cos π – arccos a = – a . Для этого воспользуемся формулами приведения, согласно которым можно записать cos π – arccos a = – cos ( a r c cos a ) . Обратившись к свойству арккосинуса, разобранному ранее (см. 1 пункт), заканчиваем доказательство.
cos π – arccos a = – cos ( a r c cos a ) = – a .
Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.
Основная польза данного свойства – возможность избавиться от операций с отрицательными числами при работе с арксинусами, арккосинусами, арктангенсами и арккотангенсами. Например, справедливы записи:
a r c sin – 1 2 = – a r c sin 1 2 a r c cos – 5 5 7 = π – arccos 5 5 7 arctg – 1 = – arctg 1 arcctg ( – 3 ) = π – arcctg 3
Сумма арксинуса и арккосинуса, арктангенса и арккотангенса
Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.
Сумма arcsin и arccos
a r c sin a + a r c cos a = π 2 , a ∈ – 1 , 1
Соответственно, для арктангенса и арккотангенса
Сумма arctg и arcctg
a r c t g a + a r c c t g a = π 2 , a ∈ – ∞ , + ∞
Приведем доказательство для арксинуса и арккосинуса. Формулу для суммы arcsin и arccos можно переписать в виде a r c sin a = π 2 – a r c cos a . Теперь обратимся к определению, согласно которому арксинус – это число (угол), лежащее в пределах от – π 2 до π 2 , синус которого равен a .
Запишем неравенство, вытекающее из определения арккосинуса: 0 ≤ a r c cos a ≤ π . Умножим все его части на – 1 , а затем прибавим к каждой части π 2 . Получим:
0 ≤ a r c cos a ≤ π 0 ≥ – arccos a ≥ – π π 2 ≥ π 2 – arccos a ≥ – π 2 – π 2 ≤ π 2 – arccos a ≤ π 2
Завершая доказательство, покажем, что sin π 2 – a r c cos a = a . Для этого используем формулу приведения и свойство косинуса от арккосинуса.
sin π 2 – a r c cos a = cos a r c cos a = a
Таким образом, доказано, что сумма арксинуса и арккосинуса равна π 2 . По такому же принципу проводится доказательство для суммы арктангенса и арккотангенса.
Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.
Пример 2. Сумма арксинуса и арккосинуса
Известно, что a r c sin 6 – 2 2 = π 12 . Найдем арккосинус этого числа.
a r c sin 6 – 2 2 + a r c cos 6 – 2 2 = π 2 a r c cos 6 – 2 2 = π 2 – a r c sin 6 – 2 2 a r c cos 6 – 2 2 = π 2 – π 12 = 5 π 12
Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса
Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса
- a r c sin ( sin α ) = α , – π 2 ≤ α ≤ π 2 ;
- a r c cos ( cos α ) = α , 0 ≤ α ≤ π ;
- a r c t g ( t g α ) = α , – π 2 ≤ α ≤ π 2 ;
- a r c c t g ( c t g α ) = α , 0 ≤ α ≤ π .
Данные равенства и неравенства являются прямым следствием определений арксинуса, арккосинуса, арктангенса и арккотангенса. Покажем это, доказав, что a r c sin ( sin α ) = α при – π 2 ≤ α ≤ π 2 .
Обозначим sin α через a . a – число, лежащее в интервале от – 1 до + 1 . Тогда равенство a r c sin ( sin α ) = α можно переписать в виде a r c sin a = α . Данное равенство, при заданных условиях, аналогично определению синуса. Таким образом, мы доказали, что a r c sin ( sin α ) = α при – π 2 ≤ α ≤ π 2 .
Выражение a r c sin ( sin α ) имеет смысл не только при α , лежащем в пределах от – π 2 до π 2 . Однако, равенство a r c sin ( sin α ) = α выполняется только при соблюдении условия – π 2 ≤ α ≤ π 2 .
Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.
Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.
Обратная тригонометрическая функция: Арктангенс (arctg)
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :
Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg -1 1 = 45° = π/4 рад
График арктангенса
Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Наконец, решениями ур-ния
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
[spoiler title=”источники:”]
http://100urokov.ru/predmety/urok-4-prostejshaya-trigonometriya
[/spoiler]