Как найти арксинус по формуле

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.

Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

α -1 -32 -22 -12 0 12 22 32
arcsin αкак угол

в радианах

-π2 -π3 -π4 -π6 0 π6 π4 π3
в градусах -90° -60° -45° -30° 30° 45° 60°
arcsin α как число -π2 -π3 -π4 -π6 0 π6 π4 π3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1

Следуя из таблицы, находим значения арккосинуса:

arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0

Таблица арккосинусов.

α -1 -32 -22 -12 0 12 22 32 1
arccos αкак угол

в радианах

π 5π6 3π4 2π3 π2 π3 π4 π6 0
в градусах 180° 150° 135° 120° 90° 60° 45° 30°
arccos α как число π 5π6 3π4 2π3 π2 π3 π4 π6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α -3 -1 -33 0 33 1 3
arctg aкак угол в радианах -π3 -π4 -π6 0 π6 π4 π3
в градусах -60° -45° -30° 30° 45° 60°
arctg a как число -π3 -π4 -π6 0 π6 π4 π3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

arcsin, arccos, arctg и arcctg

Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.

Рассмотрим решение нахождения значений  arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Таким образом находятся значения arcsin, arccos, arctg и arcctg.

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:

arccos α=π2−arcsin α=π2−(−π12)=7π12.

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.

Нахождение значения arcsin, arccos, arctg и arcctg

При поиске значения арктангенса 0,9511  определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Нахождение значения arcsin, arccos, arctg и arcctg

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: {displaystyle sin ^{-1},{frac {1}{sin }},} но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.

Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, arcsin 1/2 означает множество углов left ( frac{pi}{6}, frac{5 pi}{6}, frac{13 pi}{6}, frac{17 pi}{6} dots ~ (30^circ, 150^circ, 390^circ, 510^circ dots) right ), синус которых равен 1/2. Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.

В общем случае при условии -1leqslant alpha leqslant 1 все решения уравнения sin x=alpha можно представить в виде x=(-1)^{n}arcsin alpha +pi n,~n=0,pm 1,pm 2,dots ~.[3]

Основное соотношение[править | править код]

arcsin x+arccos x={frac  {pi }{2}}
operatorname {arctg},x+operatorname {arcctg},x={frac  {pi }{2}}

Функция arcsin[править | править код]

График функции y=arcsin x

Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого {displaystyle sin y=x,quad -{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}},quad |x|leqslant 1.}

Функция y=arcsin x непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.

Свойства функции arcsin[править | править код]

Получение функции arcsin[править | править код]

Дана функция y=sin x. На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие y=arcsin x функцией не является. Поэтому рассмотрим отрезок {displaystyle [-pi /2;pi /2]}, на котором функция y=sin x строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке {displaystyle [-pi /2;pi /2]} существует обратная функция y=arcsin x, график которой симметричен графику функции y=sin x относительно прямой y=x.

Функция arccos[править | править код]

График функции y=arccos x

Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого {displaystyle cos y=x,qquad 0leqslant yleqslant pi ,quad |x|leqslant 1.}

Функция y=arccos x непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.

Свойства функции arccos[править | править код]

Получение функции arccos[править | править код]

Дана функция y=cos x. На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие y=arccos x функцией не является. Поэтому рассмотрим отрезок [0;pi ], на котором функция y=cos x строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке [0;pi ] существует обратная функция {displaystyle y=arccos x}, график которой симметричен графику функции y=cos x относительно прямой y=x.

Функция arctg[править | править код]

График функции y=operatorname {arctg},x

Аркта́нгенсом числа x называется такое значение угла {displaystyle y,} выраженное в радианах, для которого {displaystyle operatorname {tg} y=x,quad -{frac {pi }{2}}<y<{frac {pi }{2}}.}

Функция y=operatorname {arctg}x определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.

Свойства функции arctg[править | править код]

Получение функции arctg[править | править код]

Дана функция y=operatorname {tg},x. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y=operatorname {arctg},x функцией не является. Поэтому рассмотрим интервал {displaystyle (-pi /2;pi /2)}, на котором функция y=operatorname {tg},x строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале {displaystyle (-pi /2;pi /2)} существует обратная функция y=operatorname {arctg},x, график которой симметричен графику функции y=operatorname {tg},x относительно прямой y=x.

Функция arcctg[править | править код]

График функции {displaystyle y=operatorname {arcctg} x}

Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle operatorname {ctg} ,y=x,quad 0<y<pi .}

Функция y=operatorname {arcctg},x определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.

Свойства функции arcctg[править | править код]

Получение функции arcctg[править | править код]

Дана функция y=operatorname {ctg},x. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y=operatorname {arcctg},x функцией не является. Поэтому рассмотрим интервал (0;pi ), на котором функция y=operatorname {ctg},x строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале (0;pi ) существует обратная функция y=operatorname {arcctg},x, график которой симметричен графику функции y=operatorname {ctg},x относительно прямой y=x.

График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, xrightarrow -x) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы operatorname {arcctg}x=operatorname {arctg}(-x)+pi /2.

Функция arcsec[править | править код]

График функции {displaystyle y=operatorname {arcsec} x}

Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle sec y=x,qquad |x|geqslant 1,quad 0leqslant yleqslant pi .}

Функция {displaystyle y=operatorname {arcsec} x} непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.

Свойства функции arcsec[править | править код]

Функция arccosec[править | править код]

График функции {displaystyle y=operatorname {arccosec} x}

Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle operatorname {cosec} y=x,qquad |x|geqslant 1,quad -pi /2leqslant yleqslant pi /2.}

Функция {displaystyle y=operatorname {arccosec} x} непрерывна и ограничена на всей своей области определения. Она является строго убывающей.

Свойства функции arccosec[править | править код]

Разложение в ряды[править | править код]

Производные от обратных тригонометрических функций[править | править код]

Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:

производные обратных тригонометрических функций

Функция f(x) Производная f'(x) Примечание
{displaystyle arcsin {x}} {frac  {1}{{sqrt  {1-x^{2}}}}}

Доказательство                                 

Найти производную арксинуса можно при помощи взаимно обратных функций.
{displaystyle sin(arcsin((x))=x}
После чего мы должны взять производную этих обеих функций.
{displaystyle [sin(arcsin((x))]'=x'}
{displaystyle cos(arcsin(x))cdot (arcsin(x))'=1}
Теперь мы должны выразить производную арксинуса.
{displaystyle (arcsin(x))'={frac {1}{cos(arcsin(x))}}}
Исходя из тригонометрического тождества({displaystyle sin^{2}x+cos^{2}x=1}) — получаем.
{displaystyle (arcsin(x))'={frac {1}{pm {sqrt {1-sin^{2}(arcsin(x))}}}}}
Для того, чтобы понять плюс должен стоять или минус взглянем какие значения.
{displaystyle D(cos(x))=[{frac {pi }{2}};-{frac {pi }{2}}]}
Так как косинус находится в 2-й и 4-й четвертях то, получается что косинус положительный.
{displaystyle (arcsin(x))'={frac {1}{sqrt {1-sin^{2}(arcsin(x))}}}}
Получается.
{displaystyle (arcsin(x))'={frac {1}{sqrt {1-x^{2}}}}}

{displaystyle arccos {x}} -{frac  {1}{{sqrt  {1-x^{2}}}}}

Доказательство                                 

Найти производную арккосинуса можно при помощи данного тождества:
{displaystyle arcsin(x)+arccos(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arcsin(x)+arccos(x)]'=({frac {pi }{2}})'}
{displaystyle (arcsin(x))'+(arccos(x))'=0}
Теперь выражаем производную арккосинуса.
{displaystyle (arccos(x))'=-(arcsin(x))'}
Получается.
{displaystyle (arccos(x))'=-{frac {1}{sqrt {1-x^{2}}}}}

{displaystyle mathrm {arctg}  x} {displaystyle {frac {1}{1+x^{2}}}}

Доказательство                                 

Найти производную арктангенса можно при помощи взаимнообратной функции:
{displaystyle tg(arctg(x))=x}
Теперь находим производную обеих частей этого тождества.
{displaystyle [tg(arctg(x))]'=1}
{displaystyle {frac {1}{cos^{2}(arctg(x))}}cdot (arctg(x))'=1}
Теперь мы должны выразить производную арктангенса:
{displaystyle (arctg(x))'=cos^{2}(arctg(x))}
Теперь на помощь нам придет на помощь тождество({displaystyle cos(x)={frac {1}{sqrt {1+tg^{2}(x)}}}}):
{displaystyle (arctg(x))'=({frac {1}{sqrt {1+tg^{2}(arctg(x))}}})^{2}}
Получается.
{displaystyle (arctg(x))'={frac {1}{1+x^{2}}}}

{displaystyle mathrm {arcctg}  x} {displaystyle -{frac {1}{1+x^{2}}}}

Доказательство                                 

Найти производную арккотангенса можно при помощи данного тождества:
{displaystyle arctg(x)+arcctg(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arctg(x)+arcctg(x)]'=({frac {pi }{2}})'}
{displaystyle (arctg(x))'+(arcctg(x))'=0}
Теперь выражаем производную арккотангенса.
{displaystyle (arcctg(x))'=-(arctg(x))'}
Получается.
{displaystyle (arcctg(x))'=-{frac {1}{1+x^{2}}}}

{displaystyle mathrm {arcsec}  x} {displaystyle {frac {1}{|x|{sqrt {x^{2}-1}}}}}

Доказательство                                 

Найти производную арксеканса можно при помощи тождества:

{displaystyle arcsec(x)=arccos({frac {1}{x}})}

Теперь находим производную обеих частей этого тождества.

{displaystyle (arcsec(x))'=(arccos({frac {1}{x}}))'}

{displaystyle (arcsec(x))'=-{frac {1}{sqrt {1-{frac {1}{x^{2}}}}}}cdot (-{frac {1}{x^{2}}})}

{displaystyle (arcsec(x))'={frac {1}{x^{2}{sqrt {frac {x^{2}-1}{x^{2}}}}}}}

{displaystyle (arcsec(x))'={frac {1}{x^{2}{frac {sqrt {x^{2}-1}}{|x|}}}}}

Получается.

{displaystyle (arcsec(x))'={frac {1}{|x|{sqrt {x^{2}-1}}}}}

{displaystyle mathrm {arccosec}  x} {displaystyle -{frac {1}{|x|{sqrt {x^{2}-1}}}}}

Доказательство                                 

Найти производную арккосеканса можно при помощи данного тождества:
{displaystyle arccosec(x)+arcsec(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arccosec(x)+arcsec(x)]'=({frac {pi }{2}})'}
{displaystyle (arccosec(x))'+(arcsec(x))'=0}
Теперь выражаем производную арккосинуса.
{displaystyle (arccosec(x))'=-(arcsec(x))'}
Получается.
{displaystyle (arccosec(x))'=-{frac {1}{|x|{sqrt {x^{2}-1}}}}}

Интегралы от обратных тригонометрических функций[править | править код]

Неопределённые интегралы[править | править код]

Для действительных и комплексных x:

{begin{aligned}int arcsin x,dx&{}=x,arcsin x+{sqrt  {1-x^{2}}}+C,\int arccos x,dx&{}=x,arccos x-{sqrt  {1-x^{2}}}+C,\int operatorname {arctg},x,dx&{}=x,operatorname {arctg},x-{frac  {1}{2}}ln left(1+x^{2}right)+C,\int operatorname {arcctg},x,dx&{}=x,operatorname {arcctg},x+{frac  {1}{2}}ln left(1+x^{2}right)+C,\int operatorname{arcsec} x,dx&{}=x,operatorname{arcsec} x-ln left(xleft(1+{sqrt  {{x^{2}-1} over x^{2}}},right)!right)+C,\int operatorname {arccosec},x,dx&{}=x,operatorname {arccosec},x+ln left(xleft(1+{sqrt  {{x^{2}-1} over x^{2}}},right)!right)+C.end{aligned}}

Для действительных x ≥ 1:

{begin{aligned}int operatorname{arcsec} x,dx&{}=x,operatorname{arcsec} x-ln left(x+{sqrt  {x^{2}-1}}right)+C,\int operatorname {arccosec},x,dx&{}=x,operatorname {arccosec},x+ln left(x+{sqrt  {x^{2}-1}}right)+C.end{aligned}}
См. также Список интегралов от обратных тригонометрических функций

Использование в геометрии[править | править код]

Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.

В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины a является противолежащим для угла alpha , то

{displaystyle alpha =arcsin(a/c)=arccos(b/c)=operatorname {arctg} (a/b)=operatorname {arccosec} (c/a)=operatorname {arcsec}(c/b)=operatorname {arcctg} (b/a).}

Связь с натуральным логарифмом[править | править код]

Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:

{displaystyle {begin{aligned}arcsin z&{}=-iln(iz+{sqrt {1-z^{2}}})={frac {pi }{2}}-iln(z+{sqrt {z^{2}-1}})=-ioperatorname {arsh} ,iz,end{aligned}}}
{displaystyle arccos(z)={dfrac {pi }{2}}+iln(iz+{sqrt {1-z^{2}}})=-ioperatorname {arch} (iz)}
{displaystyle operatorname {arctg} (z)={dfrac {i}{2}}(ln(1-iz)-ln(1+iz))=-ioperatorname {arth} (iz)}
{displaystyle operatorname {arcctg} (z)={dfrac {i}{2}}left(ln left({dfrac {z-i}{z}}right)-ln left({dfrac {z+i}{z}}right)right)=ioperatorname {arcth} (iz)}
{displaystyle operatorname {arcsec}(z)=arccos left(z^{-1}right)={dfrac {pi }{2}}+iln left({sqrt {1-{dfrac {1}{z^{2}}}}}+{dfrac {i}{z}}right),}
{displaystyle operatorname {arccosec} ,(z)=arcsin left(z^{-1}right)=-iln left({sqrt {1-{dfrac {1}{z^{2}}}}}+{dfrac {i}{z}}right).}

См. также[править | править код]

  • Обратные гиперболические функции
  • Теорема Данжуа — Лузина

Примечания[править | править код]

Ссылки[править | править код]

  • Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
  • Обратные тригонометрические функции — статья из Большой советской энциклопедии.  — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
  • Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
  • Построение графиков обратных тригонометрических функций онлайн
  • Онлайн калькулятор: обратные тригонометрические функции

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

  • dic.academic.ru

  • Определение

  • График арксинуса

  • Свойства арксинуса

  • Таблица арксинусов

Определение

Арксинус (arcsin) – это обратная тригонометрическая функция.

Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.

Если синус угла у равен х (sin y = x), значит арксинус x равняется y:

arcsin x = sin-1 x = y

Примечание: sin-1x означает обратный синус, а не синус в степени -1.

Например:

arcsin 1 = sin-1 1 = 90° (π/2 рад)

График арксинуса

Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):

График арксинуса

Свойства арксинуса

Ниже в табличном виде представлены основные свойства арксинуса с формулами.

Таблица арксинусов

x arcsin x (рад) arcsin x (°)
-1 -π/2 -90°
-√3/2 -π/3 -60°
-√2/2 -π/4 -45°
-1/2 -π/6 -30°
0 0
1/2 π/6 30°
2/2 π/4 45°
3/2 π/3 60°
1 π/2 90°

microexcel.ru

Как найти арксинус: формула, свойства, функция

Содержание:

  • Понятие арксинуса
  • Зачем нужен арксинус
  • Получение функции arcsin с пояснением на примерах
  • Свойства функции arcsin
  • График арксинуса

Понятие арксинуса

Обратные тригонометрические функции называют по соответствующим им тригонометрическим функциям. Формулировка наименования заключается в приписывании приставки «арк», что является производным от латинского слова «дуга» (arcus).

Такая методика объясняется тем, что в геометрии функцию, обратную тригонометрической, связывают с длиной, которую имеет дуга единичной окружности, равной какому-то отрезку, либо с углом, стягивающим данную дугу. В результате с помощью синуса можно, учитывая дугу окружности, определить хорду, которая ее стягивает.

Обратная функция под названием арксинус призвана решить противоположную задачу. Арксинус обозначают (arcsin x) и определяют, как угол с синусом, равным х.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для тригонометрических функций характерна периодичность. В связи с этим, обратные тригонометрические функции являются многозначными. Аркфункция обладает значением в виде множества из углов, для которых прямая тригонометрическая функция соответствует заданному числу.

Пример 1

Рассмотрим функцию: (arcsin ½). Данная аркфункция обозначает множество из углов:

(left ( frac{pi}{6}, frac{5 pi}{6}, frac{13 pi}{6}, frac{17 pi}{6} dots ~ (30^circ, 150^circ, 390^circ, 510^circ dots) right ))

Значение синуса при этом: ½

Как правило, под обратными тригонометрическими функциями понимают ключевые значения каждой аркфункции, выделенные из ее множества значений.

Если (-1leqslant alpha leqslant 1), то любое решение уравнения (sin x=alpha) записывают в такой форме: ( x=(-1)^{n}arcsin alpha +pi n,~n=0,pm 1,pm 2,dots )~

Арксинус числа х — значение для угла у, определенного в радианах, для которого  (sin y=x,quad -{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}},quad |x|leqslant 1).

Зачем нужен арксинус

С помощью аркфункций, в том числе — арккосинуса, арктангенса, арккотангенса, арксинуса — определяют углы треугольника. Подобное действие доступно при наличии информации о сторонах данной геометрической фигуры.

В том случае, когда имеется некий прямоугольный треугольник, обратные тригонометрические функции от отношений сторон позволяют определить угол. Например, длина катета составляет «а». Этот катет определяется, как противолежащий для угла (alpha), то:

(alpha =arcsin(a/c)=arccos(b/c)=operatorname {arctg} (a/b)=operatorname {arccosec} (c/a)=operatorname {arcsec}(c/b)=operatorname {arcctg} (b/a))

Определение угла

Источник: ru.wikipedia.org

Получение функции arcsin с пояснением на примерах

Предположим, что существует некая функция:

(y=sin x)

Записанная функция обладает областью определения. В ее рамках она приобретает кусочно-монотонный вид. По этой причине обратное выражение y=arcsin x нельзя причислить к функциям.

В результате целесообразно проанализировать отрезок, где наблюдается строгое возрастание функции, и все значения относятся к ряду из области значений:

(left[-{frac {pi }{2}};{frac {pi }{2}}right])

Функция (y=sin x ) на отрезке (left[-{frac {pi }{2}};{frac {pi }{2}}right]) обладает следующей особенностью: какое-либо из значений этой функции возможно только при одном значении аргумента. По этой причине на данном интервале может существовать обратная функция с формулой (y=arcsin x.)

График обратной функции является симметричным графику функции (y=sin x) в рамках интервала (left[-{frac {pi }{2}};{frac {pi }{2}}right]) по отношению к прямой y=x. Можно наблюдать симметричность в расположении графиков функций, которые являются взаимно обратными, по отношению к биссектрисе первого и третьего координатных углов на плоскости координат Oxy.

Пример 2

Определим значение выражение:

(arcsin 0,4)

По определению обратной тригонометрической функции можно сделать вывод, что запись означает угол с синусом, равным 0,4. В данном выводе заключается смысл понятия арксинус.

решение

Источник: www.egesdam.ru

Пример 3

Требуется найти, что означает (arcsin 0,5).

Если знать определение, эта простая обратная тригонометрическая функция является обозначением угла с синусом, равным 0,5. Таким синусом обладает угол в 30°. Таким образом:

(arcsin 0,5 = 30°)

Общий ответ можно высчитать не в градусах, а в радианах:

Ответ

Источник: www.egesdam.ru

Свойства функции arcsin

Рассмотрим функцию (y=arcsin x). Она является непрерывной в тригонометрии и ограничивается на протяжении всей своей области определения. Данная функция строго возрастает.

Область определения, в которой функцию можно вычислить:

(D(arcsin x)=[-1;1]qquad) (от минус единицы до плюс единицы)

Область значений:

(E(arcsin x)=left[-{frac {pi }{2}};{frac {pi }{2}}right]qquad )

Значения функций можно посчитать таким образом:

  • (sin(arcsin x)=xqquad), если (-1leqslant xleqslant 1)
  • (arcsin(sin y)=yqquad), если (-{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}})

Функция arcsin обладает следующими свойствами:

  • (arcsin(-x)=-arcsin xqquad )(нечетная функция);
  • (arcsin x>0, когда 0<xleqslant 1);
  • (arcsin x=0, когда x=0);
  • (arcsin x<0, если -1leqslant x<0);
  • (arcsin x=left{{begin{matrix}arccos {sqrt {1-x^{2}}},qquad 0leqslant xleqslant 1\-arccos {sqrt {1-x^{2}}},qquad -1leqslant x<0end{matrix}}right.)
  • (arcsin x=operatorname {arctg}{frac {x}{{sqrt {1-x^{2}}}}});
  • (arcsin x=left{{begin{matrix}operatorname {arcctg},{frac {{sqrt {1-x^{2}}}}{x}},qquad 0<xleqslant 1\operatorname {arcctg},{frac {{sqrt {1-x^{2}}}}{x}}-pi ,qquad -1leqslant x<0end{matrix}}right.)

График арксинуса

График функции (y=arcsin x):

График арксинуса

Источник: ru.wikipedia.org

Сферы применения правил обратных тригонометрических функций

Определение

Тригонометрия — раздел математики, объясняющий зависимость между сторонами и углами треугольника, правила используют для расчета углов.

Изучая постулаты тригонометрических функций, ученики и студенты часто задаются вопросом, где эти знания могут пригодиться. Сфер применения достаточно много. Астрономы используют понятия для расчёта положения небесных объектов, тригонометрия помогает выполнять чертежи и создавать архитектурные шедевры, выстраивать модель биологических ритмов. В морской и воздушной навигации, акустике и оптике, в анализе финансового рынка, статистике, медицине, химии, во многих областях используются тригонометрические вычисления. Поэтому так важно научиться применять и выводить формулы самостоятельно.

Обратные функции тригонометрии

Обратными называются функции, которые ещё называют арксинус, арккосинус, арктангенс, арккотангенс.

Название данный вид тригонометрической зависимости, получил от соответствующей прямой функции с приставкой арк — дуга. Взаимосвязь просматривается между длиной дуги единичной окружности и соответствующим определённым отрезком.

Правила обратной функции справедливы в пределах интервалов, например,

формула арксинуса возможна при:

[arcsin (sin mathrm{x})=mathrm{x} text { при }-frac{pi}{2} leq mathrm{x} leq frac{pi}{2}]

[arccos (cos mathrm{x})=mathrm{x} text { при } 0 leq mathrm{x} leq pi]

и так далее.

Формулы с обратными функциями тригонометрии

Уже были рассмотрены обратные тригонометрические функции. Они, как и другие функции имеют между собой связи и зависимости, которые можно выразить в виде формул и использовать для решения задач.

В данной работе мы рассмотрим основные формулы, в которых применяются функции тригонометрии. Разберём их виды, деление на группы, доказательства и способы решения задач с их помощью.

Группировка основных понятий

Сначала проведём группировку формул, для того чтобы сделать более понятной логику объяснений. И объединим все правила и доказательства в одну статью.

Синус от арксинуса для [alpha in(-1 ; 1) sin (arcsin alpha)=alpha, cos (arccos alpha)=alpha]

Тангенса от арктангенса для [alpha in(-infty, infty) operatorname{tg}(operatorname{arctg} alpha)=alpha, operatorname{ctg}(operatorname{arctg} alpha)=alpha].

Указанное в данных выражениях легко выводится из самих определений обратных функций тригонометрии. При необходимости найти arcsin tg, можно использовать приведённые формулы.

Тангенс, арктангенс, котангенс, арккотангенс, синус, арксинус, косинус, арккосинус и формулы

[text{Для }-frac{pi}{2} leq alpha leq frac{pi}{2} arcsin (sin alpha)=alpha],

[text{Для } leq alpha leq pi arccos (cos alpha)=alpha],

[text{Для }-frac{pi}{2}<alpha<frac{pi}{2} operatorname{arctg}(operatorname{tg} alpha)=alpha],

[text{Для } 0<alpha<pi operatorname{arcctg}(operatorname{ctg} alpha)=alpha].

В данном примере собраны тригонометрические выражения, достаточно очевидные, которые можно вывести из определений функций тригонометрии. Необходимо обратить внимание, на то, что высказывания будут верны, если «а» (угол, или числовое значение) будет входить в определённый предел. Если условие не выполняется, расчёт будет не верен и формулу использовать нельзя.

Соотношение между собой обратных тригонометрических функций противоположных чисел

Рассмотрим важное определение:

Обратные функции тригонометрии можно выразить через аркфункции противоположного положительного числа.

[text{Для }alpha in operatorname{open}-1,1] text { arccis }(-alpha)= -operatorname{arc} sin alpha, quad operatorname{arc} cos (-alpha)=pi -a r c cos alpha]

[text { Для } alpha in(-infty, infty) operatorname{arctg}(-alpha)= -operatorname{arctg} alpha, operatorname{arcctg}(-alpha)=pi-operatorname{arcctg} alpha]

Это значит, если расчёты имеют функции отрицательного числа, от них можно избавиться. Для этого необходимо преобразовать их в аркфункции положительных чисел. Такие вычисления проводить проще.

Формулы суммы: arcsin + arccos, arctg +arcctg

Правила суммы выглядят так:

Для [alpha in[-1,1] arcsin alpha+arccos alpha=frac{pi}{2}],

Для [alpha in[-infty, infty] operatorname{arctg} alpha+operatorname{arctg} alpha=frac{pi}{2}].

Отсюда видно, что arcsin определённого числа можно выразить через его arccos , и наоборот. Тоже правило касается и arctg и arcctg, которые выражаются аналогично.

Формулы связи между обратными и прямыми тригонометрическими функциями

Чтобы иметь возможность решить множество задач, требуется знание связей между прямыми тригонометрическими функциями, и их аркфункциями. Рассмотрим, как необходимо поступить, если нужно вычислить тангенс арксинуса. Ниже представлен список основных формул, которые помогут в решении таких задач.

[-1 leq alpha leq 1],
[sin (arcsin alpha)=alpha]
[-1 leq alpha leq 1],
[sin (arccos alpha) =sqrt{1-alpha^{2}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arctg} alpha)=frac{alpha}{sqrt{1+alpha^{2}}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1 leq alpha leq 1],
[cos (arcsin alpha)=sqrt{1-alpha^{2}}]
[-1 leq alpha leq 1],
[cos (arccos alpha)=alpha]
[-infty leq alpha leq+infty],
[cos (operatorname{arctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-infty leq alpha leq+infty],
[cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1<alpha<1],
[operatorname{tg}(arcsin alpha)=frac{alpha}{sqrt{1-alpha^{2}}}]
[alpha in(-1,0) cup(0,1)],
[operatorname{tg}(arccos alpha)=frac{sqrt{1-a^{2}}}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{tg}(operatorname{arctg} alpha)=alpha]
[alpha neq 0],
[operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{alpha}]
[alpha in(-1,0) cup(0,1)],
[operatorname{ctg}(arcsin alpha)=frac{sqrt{1-alpha^{2}}}{alpha}]
[-1<alpha<1],
[operatorname{ctg}(arccos alpha)=frac{alpha}{sqrt{1-a^{2}}}]
[alpha neq 0],
[operatorname{ctg}(operatorname{arctg} alpha)=frac{1}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{ctg}(operatorname{arcctg} alpha)=alpha]
Таблица 1.

Примеры 1 — 2

Нужно найти косинус арктангенса из 5.

Решение. Для этого необходимо воспользоваться формулой следующего вида: [cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

Подставим необходимое значение: [cos (operatorname{arctg} sqrt{5})=frac{1}{sqrt{1+sqrt{5^{2}}}}=frac{2}{sqrt{6}}]


Определить синус арккосинуса [frac{1}{2}]
Решение. Реализовать решение нам поможет формула: [sin (arccos alpha)=sqrt{1-alpha^{2}}]

Ставим значение и получаем: [sin left(arccos frac{1}{2}right)=sqrt{1-left(frac{1}{2}right)^{2}}=frac{sqrt{3}}{2}]

Заметим, что непосредственное вычисление приведёт к тому же ответу: [sin left(arccos frac{1}{2}right)=sin frac{pi}{3}=frac{sqrt{3}}{2}]

Для правильного вычисления значений прямых и обратных тригонометрических функций, стоит вспомнить начальные материалы.

Доказательство формул синуса от арккосинуса, арккотангенса и арктангенса

Чтобы вывести формулы и разобрать их более наглядно, необходимо применить основные тригонометрические тождества и правила обратных тригонометрических функций, которые были выведены ранее.

Доказательство формул 1

Используя тождества получим:

[sin ^{2} alpha+cos ^{2} alpha=1]

[1+operatorname{ctg}^{2} alpha=frac{1}{sin ^{2} alpha}]

Вспомним тот факт, что tg α *ctg α= 1, следовательно

[sin alpha=sqrt{1-cos ^{2} alpha}, 0 leq alpha leq pi]

[sin alpha=frac{operatorname{tg} alpha}{sqrt{1+operatorname{tg}^{2} alpha}},-frac{pi}{2}<alpha<frac{pi}{2}]

[sin alpha=frac{1}{sqrt{1+c t g^{2} alpha}}, 0<alpha<pi]

Результатом станет вывод синуса через подходящие аркфункции в заданном условии.

В математическое выражение вместо α, ставим arccos α, получаем в итоге формулу синуса арккосинуса.

Во втором случае вместо α подставляем arctg α, соответственно получаем формулу синуса арктангенса.

В третьем варианте проводим аналогичную операцию и подставляем arcctg α для выражения формулы синуса арккотангенса.

Нет времени решать самому?

Наши эксперты помогут!

Доказательство формул для тангенса, обратных функций(arcsin, arccos, arcctg)

В данном разделе рассмотрим доказательство закона тангенса обратных функций тригонометрии.

Доказательство формул 2

  1. Исходя из: [frac{sin alpha}{sqrt{1-sin alpha^{2}}},-frac{pi}{2}<alpha<frac{pi}{2}]Получим [operatorname{tg}(arcsin alpha)=frac{sin (arcsin alpha)}{sqrt{1-sin ^{2}(arcsin alpha)}}=frac{alpha}{sqrt{1-alpha^{2}}}]При условии [-1<alpha<1]
  2. Из выражения [operatorname{tg} alpha=frac{sqrt{1-cos ^{2} alpha}}{cos alpha}, alpha inleft[0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright]]
    Получаем [operatorname{tg}(arccos alpha)=frac{sqrt{1-cos ^{2}(arccos alpha)}}{cos (arccos alpha)}=frac{sqrt{1-alpha^{2}}}{alpha}] при условии [alpha in(-1,0) cup(0,1)].
  3. Исходя из [operatorname{tg} alpha=frac{1}{operatorname{ctg} alpha}, alpha inleft(0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright)] получаем [operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{operatorname{ctg}(operatorname{arcctg} alpha)}=frac{1}{alpha}] при условии, что [alpha neq 0].

Далее нам понадобятся понятия котангенсов арксинуса, арккосинуса, арктангенса. Напомним такое тригонометрическое равенство:

[operatorname{ctg} alpha=frac{1}{operatorname{tg} alpha}]

Применяя данное выражение можно вывести необходимые формулы, вставляя выражения тангенса обратных функций тригонометрии. Практически необходимо поменять местами числитель и знаменатель.

Выражение арксинуса с помощью арккосинуса, арктангенса и арккотангенса

Прямые и обратные функции в тригонометрии связаны между собой. Полученные в результате выведения формулы помогут найти связь и между обратными функциями тригонометрии, выразив одни аркфункции через другие. Рассмотрим примеры.

В первом случае меняем арксинус на арккосинус, а арктангенс на арккотангенс, получим следующие формулы арксинуса и арккосинуса:

[begin{aligned}
&arcsin a=left{begin{array}{l}
arccos sqrt{1-a^{2}}, 0 leq a leq 1 \
-arccos sqrt{1-a^{2}},-1 leq a<0
end{array}right. \
&arcsin a=operatorname{arctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 \
&arcsin a=left{begin{array}{l}
operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \
operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}-pi,-1 leq a<0
end{array}right.
end{aligned}]

Для арккосинуса также есть свои формулы:

[begin{aligned}
&arccos a=left{begin{array}{l}
arcsin sqrt{1-a^{2}}, 0 leq a leq 1 \
pi-arcsin sqrt{1-a^{2}},-1 leq a<0
end{array}right. \
&arccos a=left{begin{array}{l}
operatorname{arctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \
pi+operatorname{arctg} frac{sqrt{1-a^{2}}}{a},-1 leq a<0
end{array}right. \
&arccos a=operatorname{arcctg} frac{a}{sqrt{1-a^{2}}},-1<a<1
end{aligned}]

Выражения для арктангенса:

[begin{aligned}
&operatorname{arctg} a=arcsin frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\
&operatorname{arctg} a=left{begin{array}{l}
arccos frac{1}{sqrt{1+a^{2}}}, a geq 0 \
-arccos frac{1}{sqrt{1+a^{2}}}, a<0
end{array}right.\
&operatorname{arctg} a=operatorname{arcctg} frac{1}{a}, a neq 0
end{aligned}]

Последний блок формул покажет преобразование арккотангенса через другие обратные функции тригонометрии:

[begin{aligned}
&operatorname{arcctg} a=left{begin{array}{l}
arcsin frac{1}{sqrt{1+a^{2}}}, a geq 0 \
pi-arcsin frac{1}{sqrt{1+a^{2}}}, a<0
end{array}right.\
&operatorname{arctg} a=arccos frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\
&operatorname{arcctg} a=operatorname{arctg} frac{1}{a}, a neq 0
end{aligned}]

Рассмотренные формулы арксинуса, арккосинуса, арктангенса помогут в решении различных задач. Разберём доказательство с использованием основных определений обратных функций и ранее рассмотренных правил.

Возьмём arcsin [alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1] для выведения доказательства.

Мы имеем выражение [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] — число, которое имеет значение от минус половины [pi] до плюс половины [pi]. Используя выражение синуса арктангенса, получаем следующее:

[sin left(operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}right)=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+left(frac{alpha}{sqrt{1-alpha^{2}}}right)^{2}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+frac{alpha^{2}}{1-alpha^{2}}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{frac{1}{sqrt{1-alpha^{2}}}}=alpha]

Получается, что [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] с условием [-1<alpha<1] — арксинус числа [alpha].

Вывод: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1].

Другие подобные формулы доказываются по аналогичной схеме.

Рассмотрим пример применения полученных истин.

Пример 3

Необходимо вычислить синус арккотангенса — [sqrt{3}]
Решение. Для того чтобы провести решение задачи, необходимо использовать формулу связи арккотангенса и арксинуса: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}]

Подставим в неё [alpha=-sqrt{3}] и получим [-frac{1}{2}].

Используя непосредственное вычисление ответ был бы такой же: [sin (operatorname{arcctg}(-sqrt{3}))=sin frac{5 pi}{6}=frac{1}{2}]

Можно использовать и следующую формулу:

[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

[sin (operatorname{arcctg}(-sqrt{3}))=frac{1}{sqrt{1+(-sqrt{3})^{2}}}=frac{1}{2}]

Другие формулы, в которых используются обратные функции тригонометрии

Разобраны основные функции, которые чаще всего используются для решения задач. Но представлены не все формулы с обратными тригонометрическими функциями, есть некоторые специфичные, употребляемые редко, но они тоже полезны. Учить их нет смысла, лучше вывести при необходимости.

Пример 4

Разберём для примера одну такую формулу. Выглядит она так:

[sin ^{2} frac{alpha}{2}=sqrt{frac{1-cos alpha}{2}}]

Если представленный угол имеет значение больше нуля, но меньше Пи, то получаем:

[sin frac{arccos alpha}{2}=sqrt{frac{1-cos (arccos alpha)}{2}}]

[Leftrightarrow sin frac{arccos alpha}{2}=frac{sqrt{1-alpha}}{2}]

Здесь мы выводим следующую готовую формулировку, арксинус которой выведен через арккосинус:

[frac{arccos alpha}{2}=arcsin sqrt{frac{1-alpha}{2}}]

В тексте рассмотрены лишь некоторые, самые популярные виды связей между прямыми и обратными функциями тригонометрии. Главное не выучить наизусть данные постулаты, а научиться их применять и выводить, исходя из уже известных определений.

Удобно использовать инженерный вид калькулятора, на котором есть, необходимые для вычислений тригонометрические формулы и функции.

Добавить комментарий