- Определение
- График арктангенса
- Свойства арктангенса
- Таблица арктангенсов
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y:
arctg x = tg-1 x = y, причем -π/2<y<π/2
Примечание: tg-1x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg-1 1 = 45° = π/4 рад
График арктангенса
Функция арктангенса пишется как y = arctg (x). График в общем виде выглядит следующим образом:
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Таблица арктангенсов
arctg x (°) | arctg x (рад) | x |
-90° | -π/2 | -∞ |
-71.565° | -1.2490 | -3 |
-63.435° | -1.1071 | -2 |
-60° | -π/3 | -√3 |
-45° | -π/4 | -1 |
-30° | -π/6 | -1/√3 |
-26.565° | -0.4636 | -0.5 |
0° | 0 | 0 |
26.565° | 0.4636 | 0.5 |
30° | π/6 | 1/√3 |
45° | π/4 | 1 |
60° | π/3 | √3 |
63.435° | 1.1071 | 2 |
71.565° | 1.2490 | 3 |
90° | π/2 | ∞ |
microexcel.ru
Определения и свойства обратных тригонометрических функций
by on 15 сентября 2010
Обратные тригонометрические функции:
Определение:
Арксинусом числа а называется угол из отрезка , синус которого равен числу а.
Свойство арксинуса от отрицательного угла :
Определение:
Аркосинусом числа а называется угол из отрезка , косинус которого равен числу а.
Свойство арккосинуса от отрицательного угла :
Определение:
Арктангенсом числа а называется угол из интервала , тангенс которого равен числу а.
Свойство арктангенса от отрицательного угла :
Определение:
Арккотангенсом числа а называется угол из интервала , котангенс которого равен числу а.
Свойство арккотангенса от отрицательного угла :
Дополнительные свойства обратных тригонометричесикх функций:
, если ;
, если ;
, если ;
, если ;
, если ;
, если ;
, если ;
, если
, если
, если
Справочные материалы по обратным тригонометрическим функциям предназначены для учащихся 10-11 классов, школьных преподавателей и репетиторов по математике. Рекомендуется использовать материалы на уроках по тригонометрии и подготовке к ЕГЭ по математике.
Колпаков Александр Николаевич, репетитор по математике.
Метки:
Справочник репетитора,
Тригонометрия,
Ученикам
Лучший ответ
анонимно
Мастер
(1093)
16 лет назад
равен минус арктангенсу модуля этого числа
Остальные ответы
Светлана Фабер
Просветленный
(25687)
16 лет назад
Углу….какому, зависит от числа этого, отрицательного
GhostMaster
Профи
(534)
16 лет назад
углу от Пи/2 до о.
Stigma
Ученик
(207)
16 лет назад
минус арктангенс этого числа.
Leonid
Высший разум
(388685)
16 лет назад
Арктангенс – нечётная функция. Это значит, что арктангенс отрицательного числа равен минус арктангенсу такого же положиетльного.
План урока:
Арккосинус
Арксинус
Арктангенс
Решение уравнения cosx = a
Решение уравнения sinx = a
Решение уравнений tgx = a и ctgx = a
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1<а < 1, то должно получиться две точки, которым соответствуют два противоположных угла:
Получается, что каждому значению числа а соответствует некоторый угол α. А если есть соответствие, то есть и функция:
α = f (a)
В математике ее называют арккосинусом. Записывается она так:
Вертикальная прямая может пересекать единичную окружность в двух разных точках. Им соответствуют разные углы. Принято считать, что арккосинус – это значение того угла, который лежит в первой или второй четверти, то есть ему соответствует точка, лежащая выше оси Ох. Тогда другая точка пересечения будет соответствовать углу (– arccosa):
Выходит, что арккосинус может принимать только значения из отрезка [0; π]. Дадим определение арккосинуса:
Задание. Вычислите арккосинус числа 1/2.
Решение. Мы помним, что косинус угла π/3 равен 1/2:
Следовательно, arccos 1/2 – это и есть угол π/3:
Ответ: π/3.
Обратим внимание, что если число а равно 1 или (– 1), то его арккосинус равен нулю в первом случае и π во втором:
В тех случаях, когда а > 1 либо а <– 1, то соответствующая прямая не пересечет единичную окружность. Это значит, что эти значения не входят в область определения арккосинуса:
Получается, что область определения арккосинуса – это промежуток [– 1; 1].
Для вычисления арккосинусов от отрицательных величин удобно пользоваться формулой
Действительно, если отложить на координатной прямой числа а и (– а), то вертикальные прямые, проходящие через них, пересекут окружность в некоторых точках А и С:
Дополнительно обозначим буквой В точку с координатами (1; 0) и буквой D точку с координатами (– 1; 0). Эти точки располагаются на пересечении оси Ох и единичной окружности. Тогда можно записать, что
ведь эти два угла образуют вместе развернутый угол ВОD, равный π. С другой стороны, из симметрии очевидно, что углы ∠COD и ∠АОВ равны друг другу, значит, ∠COD = ∠АОВ = arccosa. Тогда
Но ∠СОВ – это арккосинус от (– а), поэтому
Задание. Вычислите arccos (– 1/2).
Решение. Используем только что полученную формулу:
Ответ: 2π/3.
Арксинус
Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:
Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:
Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:
При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):
Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:
Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].
Дадим определение арксинусу:
Задание. Чему равен arcsin0,5?
Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.
Для вычисления арксинусов отрицательных углов используется формула
Справедливость этой формулы очевидна из картинки:
Задание. Вычислите arcsin (– 0,5).
Решение. Используем формулу для арксинуса отрицательного числа:
Арктангенс
Введем ф-цию, обратную тангенсу. Она называется арктангенс.
Напомним, что величину тангенса на координатной плоскости можно получить, если продолжить угол до его пересечения с вертикальной прямой х = 1. Аналогично, чтобы определить арктангенс некоторого числа а, надо отметить на этой прямой точку с координатами (1; а) и соединить её с началом координат:
Несложно видеть, что, какое бы число а нами не было выбрано, мы с помощью построения всегда сможем соединить точку А с началом координат и получить некоторый угол arctga. Это значит, что область определения арктангенса – это вся числовая прямая, то есть промежуток (– ∞; + ∞).
Ещё раз уточним, что вводимые нами функции arcos, arcsin, arctg называются ОБРАТНЫМИ тригонометрическими функциями. C их помощью можно определить угол, если известно значение его синуса, косинуса или тангенса.Образно говоря, обратные триг-кие функции играют в тригонометрии ту же роль, что и квадратные корни при исследовании квадратных ур-ний. Как без квадратных корней невозможно решать квадратные ур-ния, так и без знания об обратных триг-ких функций нельзя решать уже тригом-кие уравнения.
Теперь вернемся к понятию арктангенса. При положительном значении числа а угол arctga будет принадлежать I четверти. Если же а – отрицательное число, то угол arctga окажется также отрицательным и будет принадлежать IV четверти:
Получается, что величина arctgа может принадлежать промежутку (– π/2; π/2). Обратите внимание, что в данном случае у промежутка круглые скобки. Действительно для углов (– π/2) и π/2 тангенс не определен, а потому арктангенс не может принимать эти два значения.
Задание. Чему равен arctg 1?
Решение. Из таблицы тангенсов мы знаем, что tgπ/4 = 1. Это значит, что
Для вычисления арктангенсов отрицательных чисел используют формулу
В ее справедливости можно убедиться, взглянув на рисунок:
Задание. Вычислите arctg (– 1).
Решение.
Ответ: – 1
В принципе можно ввести ещё ф-цию, обратную котангенсу – арккотангенс. Однако для решения тригонометрических уравнений, как мы убедимся далее, она не требуется, а поэтому в рамках школьного курса математики ее можно не изучать.
В заключение приведем таблицы, которые помогают вычислять значение обратных тригон-ких функций:
Решение уравнения cosx = a
Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:
По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь
Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:
Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:
Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:
Здесь мы использовали тот факт, косинус – четная функция, то есть
Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:
Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть
Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:
Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение
При n = 5 получим корень
При n = – 10 у нас получится решение
Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:
Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень
Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:
Объединить же обе серии можно одной записью:
Напомним, что мы решали ур-ние
и получили для него решение
Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид
где а – некоторое число, его решением будут все такие х, что
Для краткости запись «n– целое число» заменяют эквивалентной записью
«n ∈ Z»
Напомним, что буквой Z обозначают множество целых чисел.
Задание. Решите ур-ние
Решение. Вспомним, что
Задание. Решите ур-ние
Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:
Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.
Задание. Укажите три наименьших положительных корня ур-ния
Решение. Так как
то все решения образуют две серии:
Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.
Для первой серии:
Для второй серии:
Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):
Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4
Ответ: π/4, 7π/4 и 9π/4.
Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния
На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния
являются точки, в которых график пересекает ось Ох:
Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].
Решение уравнения sinx = a
Ур-ние cosx = a называют простейшим тригонометрическим уравнением, ведь, ведь для его решения не требуется проводить никаких преобразований. Аналогично простейшими являются ур-ния sinx = a, tgx = a и ctgx = a.
Ситуация с ур-нием sinx = a аналогична ситуации с косинусом. Если число а не принадлежит промежутку [– 1; 1], то корней у ур-ния не будет. Если же число а будет принадлежать этому промежутку, то у ур-ния окажется бесконечное число решений.
Рассмотрим случай, когда 0<а< 1. Тогда решениями ур-ния окажутся числа arcsina и π – arcsina:
В свою очередь каждое из этих двух решений порождает свою собственную бесконечную серию решений
Однако, как и в случае с косинусом, существует способ записать одной формулой сразу оба этих решения. Для этого перепишем первую серию таким образом:
Действительно, если n окажется четным, то, то выражение (– 1)n,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1)n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Решениями ур-ния
Наконец, решениями ур-ния
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
x = arctg a
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства
Арксинус, арккосинус, арктангенс и арккотангенс – обратные тригонометрические функции. Они обладают рядом свойств, которые мы рассмотрим в этой статье. Помимо словесных и математических формулировок основных свойств арксинуса, арккосинуса, арктангенса и арккотангенса, будут приведены доказательства этих свойств.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса
Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа
- sin a r c sin a = a , a ∈ 1 ; – 1 ;
- cos a r c cos a = a , a ∈ 1 ; – 1 ;
- t g ( a r c t g a ) = a , a ∈ – ∞ ; + ∞ ;
- c t g ( a r c c t g a ) = a , a ∈ – ∞ ; + ∞ .
Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.
Рассмотрим доказательство на примере арксинуса. Согласно определению, арксинус числа – это такой угол или число, синус которого равен числу a . При этом число a лежит в пределах от – 1 до + 1 включительно. В виде формулы определение запишется так:
sin ( a r c sin a ) = a
Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.
Пример 1. Свойства обратных тригонометрических функций
sin ( a r c sin ( 0 , 3 ) = 0 , 3 cos a r c cos – 3 2 = – 3 2 t g ( a r c t g ( 8 ) ) = 8 c t g ( a r c c t g ( 15 8 9 ) ) = 15 8 9
Важно отметить, что для обратных функций синуса и косинуса имеет место ограничение для значений числа a . Так, при a , лежащем вне пределов отрезка – 1 , 1 , арксинус и арккосинус не определены и записи a r c sin a и a r c cos a попросту не имеют смысла. Это связано с тем, что область значений синуса и косинуса – от минус единицы до плюс единицы. Например, нельзя записать cos ( a r c cos ( 9 ) ) , так как 9 больше 1 и данное выражение не имеет смысла. Делать подобные записи – ошибочно!
Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел
Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.
arcsin, arccos, arctg и arcctg противоположных чисел
- a r c sin – a = – a r c sin a , a ∈ – 1 , 1 ;
- a r c cos – a = π – a r c cos a , a ∈ – 1 , 1 ;
- a r c t g – a = – a r c t g a , a ∈ – ∞ , + ∞ ;
- a r c c t g – a = π – a r c c t g a , a ∈ – ∞ , + ∞ .
Докажем записанное. Начнем, как всегда, с доказательства для арксинусов. При – 1 ≤ a ≤ 1 имеет место равенство a r c sin – a = – a r c sin a . Согласно дефиниции, a r c sin ( – a ) – это угол (число) в пределах от – π 2 до π 2 , синус которого равен – a . Для доказательства справедливости первого равенства необходимо доказать, что – a r c sin a лежит в тех же пределах от – π 2 до π 2 , что и a r c sin ( – a ) . Также необходимо обосновать, что sin ( – a r c sin a ) = – a .
Для арксинуса, по определению, справедливо двойное неравенство – π 2 ≤ a r c sin a ≤ π 2 . Умножим каждую часть неравенства на – 1 и получим эквивалентное неравенство π 2 ≥ – a r c sin a ≥ – π 2 . Переписав его, получим – π 2 ≤ – a r c sin a ≤ π 2 .
Переходим ко второй части доказательства. Теперь осталось показать, что sin ( – a r c sin a ) = – a . Для этого воспользуемся свойством синусов противоположных углов и запишем: sin – a r c sin a = – sin a r c sin a . С учетом свойства арксинуса, рассмотренного в предыдущем пункте, закончим доказательство.
sin – a r c sin a = – sin a r c sin a = – a
Доказательство свойства арксинусов противоположных чисел завершено.
Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.
Для того, чтобы доказать, что a r c cos – a = π – a r c cos a при a ∈ – 1 , 1 необходимо во-первых показать, что число undefined.
Для арккосинуса, по определению, справедливо двойное неравенство 0 ≤ a r c cos a ≤ π . Умножив каждую часть неравенства на – 1 и поменяв знаки, получим эквивалентное неравенство 0 ≥ – a r c cos a ≥ – π . Перепишем его в другом виде. По свойствам неравенств, можно добавить к каждой части слагаемое, не меняя знаков. Добавим в каждую часть неравенства слагаемое π . Получим π ≥ π – a r c cos a ≥ 0 , или 0 ≤ π – a r c cos a ≤ π .
Теперь покажем, что cos π – arccos a = – a . Для этого воспользуемся формулами приведения, согласно которым можно записать cos π – arccos a = – cos ( a r c cos a ) . Обратившись к свойству арккосинуса, разобранному ранее (см. 1 пункт), заканчиваем доказательство.
cos π – arccos a = – cos ( a r c cos a ) = – a .
Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.
Основная польза данного свойства – возможность избавиться от операций с отрицательными числами при работе с арксинусами, арккосинусами, арктангенсами и арккотангенсами. Например, справедливы записи:
a r c sin – 1 2 = – a r c sin 1 2 a r c cos – 5 5 7 = π – arccos 5 5 7 arctg – 1 = – arctg 1 arcctg ( – 3 ) = π – arcctg 3
Сумма арксинуса и арккосинуса, арктангенса и арккотангенса
Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.
Сумма arcsin и arccos
a r c sin a + a r c cos a = π 2 , a ∈ – 1 , 1
Соответственно, для арктангенса и арккотангенса
Сумма arctg и arcctg
a r c t g a + a r c c t g a = π 2 , a ∈ – ∞ , + ∞
Приведем доказательство для арксинуса и арккосинуса. Формулу для суммы arcsin и arccos можно переписать в виде a r c sin a = π 2 – a r c cos a . Теперь обратимся к определению, согласно которому арксинус – это число (угол), лежащее в пределах от – π 2 до π 2 , синус которого равен a .
Запишем неравенство, вытекающее из определения арккосинуса: 0 ≤ a r c cos a ≤ π . Умножим все его части на – 1 , а затем прибавим к каждой части π 2 . Получим:
0 ≤ a r c cos a ≤ π 0 ≥ – arccos a ≥ – π π 2 ≥ π 2 – arccos a ≥ – π 2 – π 2 ≤ π 2 – arccos a ≤ π 2
Завершая доказательство, покажем, что sin π 2 – a r c cos a = a . Для этого используем формулу приведения и свойство косинуса от арккосинуса.
sin π 2 – a r c cos a = cos a r c cos a = a
Таким образом, доказано, что сумма арксинуса и арккосинуса равна π 2 . По такому же принципу проводится доказательство для суммы арктангенса и арккотангенса.
Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.
Пример 2. Сумма арксинуса и арккосинуса
Известно, что a r c sin 6 – 2 2 = π 12 . Найдем арккосинус этого числа.
a r c sin 6 – 2 2 + a r c cos 6 – 2 2 = π 2 a r c cos 6 – 2 2 = π 2 – a r c sin 6 – 2 2 a r c cos 6 – 2 2 = π 2 – π 12 = 5 π 12
Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса
Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса
- a r c sin ( sin α ) = α , – π 2 ≤ α ≤ π 2 ;
- a r c cos ( cos α ) = α , 0 ≤ α ≤ π ;
- a r c t g ( t g α ) = α , – π 2 ≤ α ≤ π 2 ;
- a r c c t g ( c t g α ) = α , 0 ≤ α ≤ π .
Данные равенства и неравенства являются прямым следствием определений арксинуса, арккосинуса, арктангенса и арккотангенса. Покажем это, доказав, что a r c sin ( sin α ) = α при – π 2 ≤ α ≤ π 2 .
Обозначим sin α через a . a – число, лежащее в интервале от – 1 до + 1 . Тогда равенство a r c sin ( sin α ) = α можно переписать в виде a r c sin a = α . Данное равенство, при заданных условиях, аналогично определению синуса. Таким образом, мы доказали, что a r c sin ( sin α ) = α при – π 2 ≤ α ≤ π 2 .
Выражение a r c sin ( sin α ) имеет смысл не только при α , лежащем в пределах от – π 2 до π 2 . Однако, равенство a r c sin ( sin α ) = α выполняется только при соблюдении условия – π 2 ≤ α ≤ π 2 .
Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.
Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.
Обратная тригонометрическая функция: Арктангенс (arctg)
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :
Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg -1 1 = 45° = π/4 рад
График арктангенса
Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Наконец, решениями ур-ния
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
[spoiler title=”источники:”]
http://100urokov.ru/predmety/urok-4-prostejshaya-trigonometriya
[/spoiler]