Как найти асимптоту функции гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама


Загрузить PDF


Загрузить PDF

Асимптоты гиперболы – это прямые, проходящие через центр гиперболы. Гипербола приближается к асимптотам, но никогда не пересекает (и даже не касается) их. Найти уравнения асимптот можно двумя способами, которые помогут понять саму концепцию асимптот.

  1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 1

    1

    Запишите каноническое уравнение гиперболы. Рассмотрим простейший пример – гиперболу, центр которой расположен в начале координат. В этом случае каноническое уравнение гиперболы имеет вид: x2/a2y2/b2 = 1 (когда ветви гиперболы направлены вправо или влево) или y2/b2x2/a2 = 1 (когда ветви гиперболы направлены вверх или вниз).[1]
    Имейте в виду, что в этом уравнении «х» и «у» – это переменные, а «а» и «b» – постоянные (то есть числа).

    • Пример 1: x2/9y2/16 = 1
    • Некоторые преподаватели и авторы учебников меняют местами постоянные «а» и «b».[2]
      Поэтому изучите данное вам уравнение, чтобы понять, что к чему. Не стоит просто запоминать уравнение – в этом случае вы ничего не поймете, если переменные и/или постоянные будут обозначены другими символами.
  2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 2

    2

    Приравняйте каноническое уравнение к нулю (а не к единице). Новое уравнение описывает обе асимптоты, но чтобы получить уравнение каждой асимптоты, придется приложить некоторые усилия.[3]

    • Пример 1: x2/9y2/16 = 0
  3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 3

    3

    Разложите на множители новое уравнение. Разложите на множители левую часть уравнения. Вспомните, как раскладывать на множители квадратное уравнение, и читайте дальше.

    • Конечное уравнение (то есть уравнение, разложенное на множители) будет иметь вид (__ ± __)(__ ± __) = 0.
    • При перемножении первых членов (внутри каждой пары скобок) должен получиться член x2/9, поэтому из этого члена извлеките квадратный корень, и результат запишите вместо первого пробела внутри каждой пары скобок:(x/3 ± __)(x/3 ± __) = 0
    • Аналогично извлеките квадратный корень из члена y2/16, и результат запишите вместо второго пробела внутри каждой пары скобок: (x/3 ± y/4)(x/3 ± y/4) = 0
    • Вы нашли все члены уравнения, поэтому внутри одной пары скобок между членами напишите знак плюс, а внутри второй – знак минус, чтобы при перемножении соответствующие члены сокращались: (x/3 + y/4)(x/3y/4) = 0
  4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 4

    4

    Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y». Так вы найдете два уравнения, которые описывают каждую асимптоту.

    • Пример 1: Так как (x/3 + y/4)(x/3y/4) = 0, то x/3 + y/4 = 0 и x/3y/4 = 0
    • Перепишите уравнение следующим образом: x/3 + y/4 = 0y/4 = – x/3y = – 4x/3
    • Перепишите уравнение следующим образом: x/3y/4 = 0y/4 = – x/3y = 4x/3
  5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 5

    5

    Выполните описанные действия с гиперболой, уравнение которой отличается от канонического. В предыдущем шаге вы нашли уравнения асимптот гиперболы с центром в начале координат. Если центр гиперболы находится в точке с координатами (h,k), то она описывается следующим уравнением: (x – h)2/a2(y – k)2/b2 = 1 или (y – k)2/b2(x – h)2/a2 = 1. Это уравнение также можно разложить на множители. Но в этом случае не трогайте двучлены (x – h) и (y – k) до тех пор, пока не придете к последнему шагу.

    • Пример 2: (x – 3)2/4(y + 1)2/25 = 1
    • Приравняйте это уравнение к 0 и разложите его на множители:
    • ((x – 3)/2 + (y + 1)/5)((x – 3)/2(y + 1)/5) = 0
    • Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y», чтобы найти уравнения асимптот:
    • (x – 3)/2 + (y + 1)/5 = 0 → y = –5/2x + 13/2
    • ((x – 3)/2(y + 1)/5) = 0 → y = 5/2x – 17/2

    Реклама

  1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 6

    1

    Обособьте член y2 на левой стороне уравнения гиперболы. Применяйте этот метод в том случае, когда уравнение гиперболы дано в квадратичной форме. Даже если дано каноническое уравнение гиперболы, этот метод позволит лучше понять концепцию асимптот. Обособьте y2 или (y – k)2 на левой стороне уравнения.

    • Пример 3: (y + 2)2/16(x + 3)2/4 = 1
    • К обеим частям уравнения прибавьте «х», а затем умножьте обе части на 16:
    • (y + 2)2 = 16(1 + (x + 3)2/4)
    • Упростите полученное уравнение:
    • (y + 2)2 = 16 + 4(x + 3)2
  2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 7

    2

    Извлеките квадратный корень из каждой части уравнения. При этом не упрощайте правую часть уравнения, так как при извлечении квадратного корня получаются два результата – положительный и отрицательный (например, -2 * -2 = 4, поэтому √4 = 2 и √4 = -2). Чтобы привести оба результата, используйте символ ±.

    • √((y + 2)2) = √(16 + 4(x + 3)2)
    • (y+2) = ± √(16 + 4(x + 3)2)
  3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 8

    3

    Уясните понятие асимптоты. Сделайте это до того, как перейти к следующему шагу. Асимптота – это прямая, к которой приближается гипербола с ростом значений «х». Гипербола никогда не пересечет асимптоту, но с увеличением «х» гипербола приблизится к асимптоте на бесконечно малое расстояние.

  4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 9

    4

    Преобразуйте уравнение с учетом больших значений «х». Как правило, при работе с уравнениями асимптот учитываются только большие значения «х» (то есть такие значения, которые стремятся к бесконечности). Поэтому в уравнении можно пренебречь определенными константами, так как по сравнению с «х» их вклад невелик. Например, если переменная «х» равна нескольким миллиардам, то прибавление числа (константы) 3 окажет мизерное влияние на значение «х».

    • В уравнении (y+2) = ± √(16 + 4(x + 3)2) при стремлении «x» к бесконечности постоянной 16 можно пренебречь.
    • При больших значениях «х» (y+2) ≈ ± √(4(x + 3)2)
  5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 10

    5

    Вычислите «у», чтобы найти уравнения асимптот. Избавившись от констант, можно упростить подкоренное выражение. Помните, что в ответе нужно записать два уравнения – одно со знаком плюс, а второе со знаком минус.

    • y + 2 = ±√(4(x+3)^2)
    • y + 2 = ±2(x+3)
    • y + 2 = 2x + 6 и y + 2 = -2x – 6
    • y = 2x + 4 и y = -2x – 8

    Реклама

Советы

  • Помните, что уравнение гиперболы и уравнения ее асимптот всегда включают постоянные (константы).
  • Равносторонняя гипербола – это гипербола, в уравнении которой а = b = с (константа).
  • Если дано уравнение равносторонней гиперболы, сначала преобразуйте его в каноническую форму, а затем найдите уравнения асимптот.

Реклама

Предупреждения

  • Помните, что ответ не всегда записывается в канонической форме.

Реклама

Об этой статье

Эту страницу просматривали 91 599 раз.

Была ли эта статья полезной?

Для гиперболы {displaystyle y={frac {1}{x}}} асимптотами являются оси абсцисс и ординат. Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от неё

Асимпто́та, или аси́мптота[1] (от др.-греч. ἀσύμπτωτος — несовпадающая, не касающаяся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность[2]. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед[3].

Затухающие колебания. {displaystyle y=e^{-0.1x}sin(x)}. Кривая может бесконечное множество раз пересекать асимптоту

Пример асимптоты для кривой в пространстве. Спираль бесконечно приближается к прямой

Виды асимптот графиков[править | править код]

Вертикальная[править | править код]

Прямая вида x=a является вертикальной асимптотой при выполнении хотя бы одного из равенств:

  1. {displaystyle lim _{xto a^{-}}f(x)=pm infty }
  2. {displaystyle lim _{xto a^{+}}f(x)=pm infty }.

Вертикальных асимптот может быть любое количество.

Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке a. Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Горизонтальная и наклонная[править | править код]

На графике функции x+1/x, ось y (x = 0) и линия y=x являются асимптотами.

Наклонная асимптота — прямая вида y=kx+b, если выполняется хотя бы одно из равенств:

  1. {displaystyle lim _{xto +infty }(f(x)-kx)=b}
  2. {displaystyle lim _{xto -infty }(f(x)-kx)=b}.

При этом, если выполняется первое условие, то говорят, что эта прямая является асимптотой при x to + infty, а если второе, то асимптотой при x to - infty[4].

Если k=0, то асимптота также называется горизонтальной.

Замечание 1: Число наклонных асимптот у функции не может быть больше двух: одна при x to + infty и одна при x to - infty, но она может быть одна или их вовсе может не быть.

Замечание 2: Некоторые источники включают требование, чтобы кривая не пересекала эту прямую в окрестности бесконечности[5].

Замечание 3: В некоторых случаях, таких как алгебраическая геометрия, асимптота определена, как прямая, которая является «касательной» к кривой на бесконечности[5].

Функция y=arctgx с двумя горизонтальными асимптотами

Нахождение асимптот[править | править код]

Порядок нахождения асимптот[править | править код]

  1. Нахождение точек разрыва, выбор точек, в которых есть вертикальная асимптота (прямой проверкой, что предел в этой точке есть бесконечность).
  2. Проверка, не являются ли конечными пределы {displaystyle lim _{xto +infty }f(x)=b} и{displaystyle lim _{xto -infty }f(x)=b}. Если да, то существует горизонтальная асимптота {displaystyle y=b} при {displaystyle +infty } и {displaystyle -infty } соответственно.
  3. Нахождение двух пределов lim_{x to  pm infty}frac{f(x)}{x}=k
  4. Нахождение двух пределов lim_{x to  pm infty}(f(x)-kx)=b, если хотя бы один из пределов в пункте 3 или 4 не существует (или равен pminfty), то наклонной асимптоты при x to + infty (или x to - infty) не существует.

Наклонная асимптота — выделение целой части[править | править код]

Нахождение наклонной асимптоты графика функции путём выделения целой части

Также наклонную асимптоту можно найти, выделив целую часть. Например:

Дана функция {displaystyle f(x)={frac {2x^{3}+5x^{2}+1}{x^{2}+1}}}.

Разделив нацело числитель на знаменатель, получим: {displaystyle f(x)=2x+5+{frac {-2x-4}{x^{2}+1}}=2x+5+(-2)cdot {frac {x+2}{x^{2}+1}}}.

При {displaystyle xto pm infty }, frac{x+2}{x^2+1} to 0,

и {displaystyle y=2x+5} является искомым уравнением наклонной асимптоты, причем с обеих сторон.

Свойства[править | править код]

  • Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости[6]. Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.

См. также[править | править код]

  • Асимптотическая кривая

Примечания[править | править код]

  1. Двойное ударение указано в Советском энциклопедическом словаре. В словарях XIX и первой половины XX века (например, в кн.: Словарь иностранных слов / Под ред. И. В. Лёхина и проф. Ф. Н. Петрова. — М.: Гос. изд-во иностр. и нац. словарей, 1955. — С. 77. — 856 с.) указывался единственный вариант ударения «асимпто́та».
  2. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1. Архивная копия от 13 ноября 2013 на Wayback Machine
  3. Математический энциклопедический словарь Архивная копия от 1 августа 2013 на Wayback Machine — М.: Советская энциклопедия, 1988. — 847 с.
  4. Кудрявцев Л. Д. Курс математического анализа. — 5-е изд. — М.: «Дрофа», 2003. — Т. 1. — С. 374-375. — 704 с. — ISBN 5-7107-4119-1.
  5. 1 2 «Asymptotes» by Louis A. Talman
  6. Taylor C. Geometrical Conics; Including Anharmonic Ratio and Projection, With Numerous Examples. — Cambridge: Macmillan, 1863. — С. 170.

Литература[править | править код]

  • Рашевский П. К. Курс дифференциальной геометрии, 4-е изд. М., 1956.
  • Графики функций: Справочник / Вирченко Н. А., Ляшко И. И., Швецов К. И. — Киев: Наук. думка, 1979, — 320 с.

Ссылки[править | править код]

  • Асимптота // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Асимптота / Э. Г. Позняк // Ангола — Барзас. — М. : Советская энциклопедия, 1970. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 2).

Асимптоты гиперболы

Пусть Г – какая-нибудь
линия, М – переменная точка на ней, а –
некоторая прямая. Если возможно такое
движение точки М по линии Г, что:

  1. точка М уходит в
    бесконечность;

  2. при этом расстояние
    от точки М до прямой а стремится к нулю,

то говорят, что линия
Г ассимптотически приближается к прямой
а. Прямая а в таком случае называется
асимптотой линии Г.

Асимптотами гиперболы
называются прямые, имеющие уравнения:

и
.
(3)

Эти прямые являются
диагоналями основного прямоугольника.
Построим гиперболу
и
рассмотрим какую-нибудь точку М(х;у),
лежащую на гиперболе в первом квадранте.

Выясним, как в первом
квадранте по мере возрастания х будет
изменяться расстояние от точки М
гиперболы до асимптоты
.
Обозначим через N точку асимптоты с
абсциссой х: N(x;Y), где Y=.
Тогда

(4)

Так как а 
х, то в скобках первое слагаемое всегда
больше второго, следовательно, Y-y>0, а
это означает, что при одной и той же
абсциссе точка гиперболы лежит под
соответствующей точкой асимптоты.

Преобразовав неравенство
(4):

,
(5)

убеждаемся, что длина
отрезка MN по мере возрастания х
уменьшается, и когда х неограниченно
растет, MN стремится к нулю. Так как MN
больше расстояния МК от точки M до
асимптоты, то при этом МК и подавно
стремится к нулю.

Аналогичное рассуждение
можно провести в любом квадранте.

Итак, прямые
в
смысле определения асимптот к графику
функции являются асимптотами гиперболы

.

При построении гиперболы
обычно строят основной прямоугольник
и проводят асимптоты, так как они
позволяют точнее вычерчивать гиперболу.

Равнобочная гипербола

Возьмем каноническое
уравнение гиперболы

.

В случае, когда а=b,
уравнение гиперболы имеет вид

или

х2
– у2
= а2.
(6)

Гипербола, у которой
полуоси а и b равны, называется равнобочной
гиперболой
.
Уравнение (6) называется уравнением
равнобочной гиперболы. Так как основной
прямоугольник этой гиперболы является
квадратом, то асимптоты равнобочной
гиперболы будут перпендикулярны друг
другу. (Рис. 5)

Рис. 5

Сопряженная гипербола

Рассмотрим уравнение

.
(7)

Представим уравнение
(7) в следующем виде:

.
(8)

Очевидно, что уравнение
(8) представляет собой уравнение гиперболы,
у которой действительной осью является
ось ординат, а мнимой – ось абсцисс.

Построим основной
прямоугольник, проведем асимптоты и
построим гиперболу (7). Далее в той же
системе координат построим (пунктиром)
(Рис. 6) гиперболу

Рис. 6

Очевидно, что гиперболы
и
имеют
общие асимптоты. Такие гиперболы
называются сопряженными.

Выведем теперь уравнение
гиперболы, асимптотами которой служат
оси координат. Возьмем уравнение
равнобочной гиперболы х2
– у2
= а2
и рассмотрим уравнение этой гиперболы
в новой системе координат Х`OY`, полученной
из старой поворотом осей координат на
угол =(Рис.
2).

Используя для этого
формулы поворота осей координат:

х = х`cos
– y`sin;

y = x`sin
+ y`cos,

подставим значения х,
у в уравнение гиперболы:

х2
– у2
= а2.

Получим:

.
(9)

Обозначая
,
получим х`y`=c.

Уравнение равнобочной
гиперболы, для которой координатные
оси ОХ и OY являются асимптотами, будет
иметь вид:

ху = с

или

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

как найти асимптоты функции

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

асимптоты функции

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три… и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ – это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ infty $, тогда наклонной асимптоты нет. А если $ k = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Пример 1
Найти все асимптоты графика функции $$ f(x) = frac{5x}{3x+2} $$
Решение

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 neq 0; 3x neq -2; x neq -frac{2}{3} $. Получили точку разрыва $ x = -frac{2}{3} $. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -frac{2}{3} $.

$$ limlimits_{{x rightarrow -frac{2}{3}}} frac{5x}{3x+2} = (-frac{10}{infty}) = -infty $$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty} frac{5}{3x+2}=frac{5}{infty}=0 $$

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

$$ b = limlimits_{x rightarrow infty} [f(x)-kx] = limlimits_{x rightarrow infty} frac{5x}{3x+2} = frac{infty}{infty} =frac{5}{3} $$

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = frac{5}{3} $ – горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y = frac{5}{3} $$
Пример 2
Найти все асимптоты графика функции $ f(x) = frac{1}{1-x} $
Решение

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x neq 0; x neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ limlimits_{x rightarrow 1} frac{1}{1-x} = frac{1}{0} = infty $$

Приступим к поиску наклонных асимптот.

$$ k = limlimits_{x rightarrow infty}frac{f(x)}{x}=limlimits_{x rightarrow infty}frac{1}{x(1-x)} = frac{1}{infty}=0 $$

$$ b =limlimits_{x rightarrow infty}[f(x)-kx]=limlimits_{x rightarrow infty}frac{1}{1-x} = frac{1}{infty}=0 $$

Итого, $ y=0 $ – горизонтальная асимптота.

Ответ
$$ y=0 $$
Пример 3
Найти все асимптоты графика функции $ f(x) = frac{x^3}{3x^2+5} $
Решение

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty}frac{x^2}{3x^2+5} =limlimits_{x rightarrow infty} frac{2x}{6x} = frac{1}{3} $$

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$$ b =limlimits_{x rightarrow infty} [f(x)-kx] =limlimits_{x rightarrow infty} [frac{x^3}{3x^2+5}-frac{x}{3}] =limlimits_{x rightarrow infty} -frac{5x}{3(3x^2+5)}= $$ $$ = -frac{5}{3}limlimits_{x rightarrow infty} frac{x}{3x^2+5} =-frac{5}{3}limlimits_{x rightarrow infty} frac{1}{6x} =-frac{5}{3}frac{1}{infty} = 0 $$

$ y =frac{1}{3}x $ – наклонная асимптота к функции с углом наклона одна третья.

Ответ
$$ y =frac{1}{3}x $$
Пример 4
Найти асимптоты $ f(x) = xe^{-x} $
Решение

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$$ k=limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$$ b=limlimits_{x rightarrow infty} frac{x}{e^x} =limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$ y = 0 $ – горизонтальная асимптота

Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Добавить комментарий