Как найти асимптоты гиперболы 8 класс

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Асимптоты графика функции. График дробно-линейной функции

Асимптоты графика функции. График дробно-линейной функции.

В этой статье мы рассмотрим, что такое асимптота графика функции,  и как ее находить.

Асимптота – это прямая, к которой бесконечно близко приближается график функции.

Асимптоты бывают горизонтальные, вертикальные и наклонные.

Если мы посмотрим на хорошо известный нам график функции y=1/x, то увидим, что график этой функции бесконечно близко приближается к прямой x=0 (ось ОY) – это вертикальная асимптота, и к прямой y=0 (ось ОХ) – это горизонтальная асимптота:

Асимптоты графика функции. График дробно-линейной функции

В общем случае горизонтальная асимптота  – это прямая, параллельная оси OX. Уравнение горизонтальной асимптоты имеет вид y=b, где b – число, к которому стремятся значения функции y=f(x), когда x стремится к infty.

То есть b=lim{x{right}{infty}}{f(x)}.

Вертикальная асимптота – это прямая, параллельная оси OY. Уравнение вертикальной асимптоты имеет вид x=a. Здесь a – значение переменной x,  при котором функция y=f(x) не определена. Как правило, это ноль знаменателя. Если значение x стремится к точке, в которой знаменатель равен нулю, то абсолютное значение дроби при этом неограниченно возрастает.

В некоторых случаях для построения графика функции бывает достаточно найти асимптоты графика.

Рассмотрим дробно-линейную функцию. В общем виде уравнение дробно-линейной функции имеет вид: y={ax+b}/{cx+d}.

График дробно-линейной функции – это гипербола. Как мы знаем, гипербола имеет две асимптоты: горизонтальную и вертикальную.

Заметим, что при x=-d/c знаменатель равен нулю, в этой точке функция  y={ax+b}/{cx+d} не определена. Поэтому прямая x=-d/c  – вертикальная асимптота.

Степень x в числителе дроби  {ax+b}/{cx+d}  равна степени x в знаменателе. Поэтому при x{right}{infty} числитель и знаменатель растут с одинаковой скоростью, и

lim{x{right}{infty}}{{ax+b}/{cx+d}}=a/c и  уравнение горизонтальной асимптоты имеет вид y=a/c.

График дробно-линейной функции y={ax+b}/{cx+d}  – это гипербола, симметричная относительно точки пересечения асимптот графика. Поэтому, чтобы построить график, нам остается только выяснить его расположение относительно этой точки.

Для этого достаточно найти точки пересечения графика с осями координат.

Точка пересечения с осью OX (y=o): x=-b/a.

Точка пересечения с осью OY (x=0): y=b/d.

Построим график функции y={x+1}/{3x+2}. Это дробно-линейная функция и ее график  – гипербола.

Найдем горизонтальную и вертикальную асимптоты.

Уравнение горизонтальной асимптоты: y=1/3;

уравнение вертикальной асимптоты (ноль знаменателя): x=-2/3

Асимптоты графика функции. График дробно-линейной функции

Найдем точки пересечения с осями координат:

С осью ОХ: x+1=0; x=-1

с осью OY(x=0): y=1/2.

Асимптоты графика функции. График дробно-линейной функции

То есть график функции y={x+1}/{3x+2} выглядит как-то так:

И, наконец, наклонная асимптота. Наклонная асимптота – это к прямая, к кторой стремится график функции на бесконечности.

Уравнение наклонной асимптоты имеет вид y=kx+b.

Коэффициенты k и b вычисляются следующим образом:

k=lim{x{right}{infty}}{{f(x)}/x}

b=lim{x{right}{infty}}{({f(x)}-kx)}

Найдем асимптоты графика функции y={3-x^2}/{x+2}

1. Начнем с области определения функции. Функция y={3-x^2}/{x+2} не определена в точке x=-2, следовательно прямая x=-2 является вертикальной асимптотой.

2. Степень числителя дроби {3-x^2}/{x+2} на единицу больше степени знаменателя, поэтому предел этого отношения при x{right}{infty} отношения равен бесконечности. Следовательно, график функции y={3-x^2}/{x+2} не имеет горизонтальной асимптоты.

3. Попробуем найти наклонную асимптоту.

k=lim{x{right}{infty}}{{{3-x^2}/{(x+2)x}}}=-1

(Предел функции равен отношению коэффициентов при максимальных степенях x в числителе и знаменателе дроби).

b=lim{x{right}{infty}}{({{3-x^2}/{x+2}}-(-1)x)}= lim{x{right}{infty}}{{3-x^2+x^2+2x}/{x+2}}= lim{x{right}{infty}}{{3+2x}/{x+2}}=2

Итак, уравнение наклонной асимптоты: y=-x+2

Асимптоты графика функции. График дробно-линейной функции

График функции y={3-x^2}/{x+2}, построенный с помощью специальной программы, показывает, что асимптоты были найдены верно:

Асимптоты графика функции. График дробно-линейной функции

И.В. Фельдман, репетитор по математике.


Загрузить PDF


Загрузить PDF

Асимптоты гиперболы – это прямые, проходящие через центр гиперболы. Гипербола приближается к асимптотам, но никогда не пересекает (и даже не касается) их. Найти уравнения асимптот можно двумя способами, которые помогут понять саму концепцию асимптот.

  1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 1

    1

    Запишите каноническое уравнение гиперболы. Рассмотрим простейший пример – гиперболу, центр которой расположен в начале координат. В этом случае каноническое уравнение гиперболы имеет вид: x2/a2y2/b2 = 1 (когда ветви гиперболы направлены вправо или влево) или y2/b2x2/a2 = 1 (когда ветви гиперболы направлены вверх или вниз).[1]
    Имейте в виду, что в этом уравнении «х» и «у» – это переменные, а «а» и «b» – постоянные (то есть числа).

    • Пример 1: x2/9y2/16 = 1
    • Некоторые преподаватели и авторы учебников меняют местами постоянные «а» и «b».[2]
      Поэтому изучите данное вам уравнение, чтобы понять, что к чему. Не стоит просто запоминать уравнение – в этом случае вы ничего не поймете, если переменные и/или постоянные будут обозначены другими символами.
  2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 2

    2

    Приравняйте каноническое уравнение к нулю (а не к единице). Новое уравнение описывает обе асимптоты, но чтобы получить уравнение каждой асимптоты, придется приложить некоторые усилия.[3]

    • Пример 1: x2/9y2/16 = 0
  3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 3

    3

    Разложите на множители новое уравнение. Разложите на множители левую часть уравнения. Вспомните, как раскладывать на множители квадратное уравнение, и читайте дальше.

    • Конечное уравнение (то есть уравнение, разложенное на множители) будет иметь вид (__ ± __)(__ ± __) = 0.
    • При перемножении первых членов (внутри каждой пары скобок) должен получиться член x2/9, поэтому из этого члена извлеките квадратный корень, и результат запишите вместо первого пробела внутри каждой пары скобок:(x/3 ± __)(x/3 ± __) = 0
    • Аналогично извлеките квадратный корень из члена y2/16, и результат запишите вместо второго пробела внутри каждой пары скобок: (x/3 ± y/4)(x/3 ± y/4) = 0
    • Вы нашли все члены уравнения, поэтому внутри одной пары скобок между членами напишите знак плюс, а внутри второй – знак минус, чтобы при перемножении соответствующие члены сокращались: (x/3 + y/4)(x/3y/4) = 0
  4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 4

    4

    Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y». Так вы найдете два уравнения, которые описывают каждую асимптоту.

    • Пример 1: Так как (x/3 + y/4)(x/3y/4) = 0, то x/3 + y/4 = 0 и x/3y/4 = 0
    • Перепишите уравнение следующим образом: x/3 + y/4 = 0y/4 = – x/3y = – 4x/3
    • Перепишите уравнение следующим образом: x/3y/4 = 0y/4 = – x/3y = 4x/3
  5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 5

    5

    Выполните описанные действия с гиперболой, уравнение которой отличается от канонического. В предыдущем шаге вы нашли уравнения асимптот гиперболы с центром в начале координат. Если центр гиперболы находится в точке с координатами (h,k), то она описывается следующим уравнением: (x – h)2/a2(y – k)2/b2 = 1 или (y – k)2/b2(x – h)2/a2 = 1. Это уравнение также можно разложить на множители. Но в этом случае не трогайте двучлены (x – h) и (y – k) до тех пор, пока не придете к последнему шагу.

    • Пример 2: (x – 3)2/4(y + 1)2/25 = 1
    • Приравняйте это уравнение к 0 и разложите его на множители:
    • ((x – 3)/2 + (y + 1)/5)((x – 3)/2(y + 1)/5) = 0
    • Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y», чтобы найти уравнения асимптот:
    • (x – 3)/2 + (y + 1)/5 = 0 → y = –5/2x + 13/2
    • ((x – 3)/2(y + 1)/5) = 0 → y = 5/2x – 17/2

    Реклама

  1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 6

    1

    Обособьте член y2 на левой стороне уравнения гиперболы. Применяйте этот метод в том случае, когда уравнение гиперболы дано в квадратичной форме. Даже если дано каноническое уравнение гиперболы, этот метод позволит лучше понять концепцию асимптот. Обособьте y2 или (y – k)2 на левой стороне уравнения.

    • Пример 3: (y + 2)2/16(x + 3)2/4 = 1
    • К обеим частям уравнения прибавьте «х», а затем умножьте обе части на 16:
    • (y + 2)2 = 16(1 + (x + 3)2/4)
    • Упростите полученное уравнение:
    • (y + 2)2 = 16 + 4(x + 3)2
  2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 7

    2

    Извлеките квадратный корень из каждой части уравнения. При этом не упрощайте правую часть уравнения, так как при извлечении квадратного корня получаются два результата – положительный и отрицательный (например, -2 * -2 = 4, поэтому √4 = 2 и √4 = -2). Чтобы привести оба результата, используйте символ ±.

    • √((y + 2)2) = √(16 + 4(x + 3)2)
    • (y+2) = ± √(16 + 4(x + 3)2)
  3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 8

    3

    Уясните понятие асимптоты. Сделайте это до того, как перейти к следующему шагу. Асимптота – это прямая, к которой приближается гипербола с ростом значений «х». Гипербола никогда не пересечет асимптоту, но с увеличением «х» гипербола приблизится к асимптоте на бесконечно малое расстояние.

  4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 9

    4

    Преобразуйте уравнение с учетом больших значений «х». Как правило, при работе с уравнениями асимптот учитываются только большие значения «х» (то есть такие значения, которые стремятся к бесконечности). Поэтому в уравнении можно пренебречь определенными константами, так как по сравнению с «х» их вклад невелик. Например, если переменная «х» равна нескольким миллиардам, то прибавление числа (константы) 3 окажет мизерное влияние на значение «х».

    • В уравнении (y+2) = ± √(16 + 4(x + 3)2) при стремлении «x» к бесконечности постоянной 16 можно пренебречь.
    • При больших значениях «х» (y+2) ≈ ± √(4(x + 3)2)
  5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 10

    5

    Вычислите «у», чтобы найти уравнения асимптот. Избавившись от констант, можно упростить подкоренное выражение. Помните, что в ответе нужно записать два уравнения – одно со знаком плюс, а второе со знаком минус.

    • y + 2 = ±√(4(x+3)^2)
    • y + 2 = ±2(x+3)
    • y + 2 = 2x + 6 и y + 2 = -2x – 6
    • y = 2x + 4 и y = -2x – 8

    Реклама

Советы

  • Помните, что уравнение гиперболы и уравнения ее асимптот всегда включают постоянные (константы).
  • Равносторонняя гипербола – это гипербола, в уравнении которой а = b = с (константа).
  • Если дано уравнение равносторонней гиперболы, сначала преобразуйте его в каноническую форму, а затем найдите уравнения асимптот.

Реклама

Предупреждения

  • Помните, что ответ не всегда записывается в канонической форме.

Реклама

Об этой статье

Эту страницу просматривали 91 599 раз.

Была ли эта статья полезной?

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.

Пример №2:
$$y=frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color <frac<1>>) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.


5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) – 4(y^2) = 20.

    Приведем данное уравнение к каноническому виду (x^2)/(a^2) – (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 – 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 – (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 – 8(y^2)/20 = 1.

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) – (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) – (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 – a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 – a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 – y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 – a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    [spoiler title=”источники:”]

    http://tutomath.ru/8-klass/kak-postroit-giperbolu.html

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola

    [/spoiler]

    Асимптоты гиперболы

    Пусть Г – какая-нибудь
    линия, М – переменная точка на ней, а –
    некоторая прямая. Если возможно такое
    движение точки М по линии Г, что:

    1. точка М уходит в
      бесконечность;

    2. при этом расстояние
      от точки М до прямой а стремится к нулю,

    то говорят, что линия
    Г ассимптотически приближается к прямой
    а. Прямая а в таком случае называется
    асимптотой линии Г.

    Асимптотами гиперболы
    называются прямые, имеющие уравнения:

    и
    .
    (3)

    Эти прямые являются
    диагоналями основного прямоугольника.
    Построим гиперболу
    и
    рассмотрим какую-нибудь точку М(х;у),
    лежащую на гиперболе в первом квадранте.

    Выясним, как в первом
    квадранте по мере возрастания х будет
    изменяться расстояние от точки М
    гиперболы до асимптоты
    .
    Обозначим через N точку асимптоты с
    абсциссой х: N(x;Y), где Y=.
    Тогда

    (4)

    Так как а 
    х, то в скобках первое слагаемое всегда
    больше второго, следовательно, Y-y>0, а
    это означает, что при одной и той же
    абсциссе точка гиперболы лежит под
    соответствующей точкой асимптоты.

    Преобразовав неравенство
    (4):

    ,
    (5)

    убеждаемся, что длина
    отрезка MN по мере возрастания х
    уменьшается, и когда х неограниченно
    растет, MN стремится к нулю. Так как MN
    больше расстояния МК от точки M до
    асимптоты, то при этом МК и подавно
    стремится к нулю.

    Аналогичное рассуждение
    можно провести в любом квадранте.

    Итак, прямые
    в
    смысле определения асимптот к графику
    функции являются асимптотами гиперболы

    .

    При построении гиперболы
    обычно строят основной прямоугольник
    и проводят асимптоты, так как они
    позволяют точнее вычерчивать гиперболу.

    Равнобочная гипербола

    Возьмем каноническое
    уравнение гиперболы

    .

    В случае, когда а=b,
    уравнение гиперболы имеет вид

    или

    х2
    – у2
    = а2.
    (6)

    Гипербола, у которой
    полуоси а и b равны, называется равнобочной
    гиперболой
    .
    Уравнение (6) называется уравнением
    равнобочной гиперболы. Так как основной
    прямоугольник этой гиперболы является
    квадратом, то асимптоты равнобочной
    гиперболы будут перпендикулярны друг
    другу. (Рис. 5)

    Рис. 5

    Сопряженная гипербола

    Рассмотрим уравнение

    .
    (7)

    Представим уравнение
    (7) в следующем виде:

    .
    (8)

    Очевидно, что уравнение
    (8) представляет собой уравнение гиперболы,
    у которой действительной осью является
    ось ординат, а мнимой – ось абсцисс.

    Построим основной
    прямоугольник, проведем асимптоты и
    построим гиперболу (7). Далее в той же
    системе координат построим (пунктиром)
    (Рис. 6) гиперболу

    Рис. 6

    Очевидно, что гиперболы
    и
    имеют
    общие асимптоты. Такие гиперболы
    называются сопряженными.

    Выведем теперь уравнение
    гиперболы, асимптотами которой служат
    оси координат. Возьмем уравнение
    равнобочной гиперболы х2
    – у2
    = а2
    и рассмотрим уравнение этой гиперболы
    в новой системе координат Х`OY`, полученной
    из старой поворотом осей координат на
    угол =(Рис.
    2).

    Используя для этого
    формулы поворота осей координат:

    х = х`cos
    – y`sin;

    y = x`sin
    + y`cos,

    подставим значения х,
    у в уравнение гиперболы:

    х2
    – у2
    = а2.

    Получим:

    .
    (9)

    Обозначая
    ,
    получим х`y`=c.

    Уравнение равнобочной
    гиперболы, для которой координатные
    оси ОХ и OY являются асимптотами, будет
    иметь вид:

    ху = с

    или

    .

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #

    Добавить комментарий