Как найти атомный радиус элементов

Илья Илугин

Ученик

(113)


5 лет назад

У каждого элемента имеется свой порядковый номер, именно этот номер и является радиусом!
НАПРИМЕР, порядковый номер хлора (Cl) — 17. Это обозначает, что расстояние от ядра атома хлора до самой далекой его орбиты движения стабильного электрона равно 17 пм.

Илюха ШапиловУченик (214)

4 года назад

https://www.kakprosto.ru/kak-60688-kak-opredelit-radius-atoma
просто списать? а?

Artyom Yusupov НкокововУченик (129)

7 месяцев назад

Ты бы сначала узнал, прежде чем херню писать

Как определить радиус атома

Под радиусом атома понимается расстояние между ядром данного атома и его самой дальней электронной орбитой. На сегодняшний день общепринятой единицей измерения атомного радиуса является пикометр(пм). Определить радиус атома очень легко.

Как определить радиус атома

Вам понадобится

  • Периодическая таблица Менделеева

Инструкция

Первым делом, под рукой должна иметься обычная таблица Менделеева, в которой по порядку расставлены все известные человечеству химические элементы. Найти эту таблицу очень легко в любом справочнике по химии, школьном учебнике, либо же ее можно приобрести отдельно, в ближайшем книжном магазине.

В правом верхнем углу у каждого из химических элементов указан его порядковый номер. Этот номер полностью совпадает с атомным радиусом данного атома.

Например, порядковый номер хлора (Cl) – 17. Это означает, что расстояние от ядра атома хлора до самой дальней его орбиты движения стабильного электрона равно 17 пм. Если требуется найти не только атомный радиус, но и распределение электронов по электронным орбитам, то эти данные можно подчеркнуть из столбика цифр, расположенного справа от названия химического элемента.

Обратите внимание

Благодаря таблице Менделеева, очень легко найти не только атомный радиус, но и атомную массу, молекулярную массу, период и ряд того или иного элемента, а также и распределение электронов по электронным орбитам вместе с количеством орбит.
Наиболее популярной моделью атома является модель, принятая в 1913 году Нильсом Бором. Также она известна как планетарная модель. Связано это с тем, что электроны, подобно планетам Солнечной системы, движутся вокруг Солнца – ядра атома. Орбиты движения электронов постоянны. Разработка данной модели дала толчок к развитию нового направления в теоретической физике – квантовой механике.
Самый первый радиус орбиты движения электрона называется боровским радиусом, а энергия электронов на первой орбите называется энергией ионизации атома.

Полезный совет

Стоит отметить, что радиус любого атома обратно пропорционален количеству протонов в его ядре, а также равен заряду его ядра.

Источники:

  • как изменяется радиус атома

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Изображение атома гелия, где плотность вероятности нахождения электрона представлена серым цветом, более тёмные области соответствуют большей плотности.

Ра́диус а́тома — расстояние между атомным ядром и самой дальней из стабильных орбит электронов в электронной оболочке этого атома. Поскольку, согласно квантовой механике, атомы не имеют четких границ, а вероятность найти электрон, связанный с ядром данного атома, на определённом расстоянии от этого ядра быстро убывает с увеличением расстояния, атому приписывают некоторый определённый радиус, полагая, что в шаре этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов). Существуют различные определения радиуса атома[⇨], три наиболее широко используемых: радиус Ван-дер-Ваальса, ионный радиус и ковалентный радиус.

В зависимости от определения термин «радиус атома» может применяться либо только к изолированным атомам, либо также к атомам в конденсированной среде, ковалентно связанным в молекулах или в ионизированном и возбужденном состояниях; его значение может быть получено путем экспериментальных измерений или вычислено из теоретических моделей. Значение радиуса может зависеть от состояния атома и окружающей среды[1].

Электроны не имеют четко определённых орбит или границ. Скорее, их положения могут быть описаны как распределения вероятностей, которые постепенно сужаются по мере удаления от ядра без резкого сокращения. Кроме того, в конденсированном веществе и молекулах электронные облака атомов обычно в некоторой степени перекрываются, и некоторые из электронов могут перемещаться в области, охватывающей два или более атомов («принадлежать» нескольким атомам одновременно).

Согласно большинству определений, радиусы изолированных нейтральных атомов колеблются в диапазоне от 30 до 300 пм (или от 0,3 до 3 ангстрем), в то время как радиусы атомных ядер находятся пределах от 0,83 до 10 фм[2]. Следовательно, радиус типичного атома примерно в 30 тысяч раз больше радиуса его ядра.

Во многих случаях форма атома может быть аппроксимирована сферой. Это лишь грубое приближение, но оно может дать количественные представления и выступить в качестве базовой модели для описания для многих явлений, таких как плотность жидкостей и твердых веществ, диффузия жидкостей через молекулярные сита, расположение атомов и ионов в кристаллах, а также размер и форма молекул.

Радиусы атомов изменяются, подчиняясь определённым закономерностям периодической таблицы химических элементов. Например, радиусы атомов обычно уменьшаются при перемещении слева направо вдоль каждого периода (строки) таблицы, от щелочных металлов до благородных газов, и возрастают по мере продвижения сверху вниз в каждой группе (столбце). Радиусы атомов резко возрастают при переходе между благородным газом в конце каждого периода и щелочным металлом в начале следующего периода. Эти тенденции изменения радиусов атомов (наряду с другими химическими и физическими свойствами элементов) могут быть объяснены с точки зрения теории электронной оболочки атома, а также представляют доказательства подтверждения квантовой теории. Радиусы атомов уменьшаются в периодической таблице, потому что с увеличением атомного номера увеличивается число протонов в атоме, а дополнительные электроны добавляются в одну и ту же квантовую оболочку. Следовательно, эффективный заряд атомного ядра по отношению к внешним электронам увеличивается, притягивая внешние электроны. В результате электронное облако сжимается и атомный радиус уменьшается.

История[править | править код]

В 1920 году, вскоре после того, как стало возможным определять размеры атомов с помощью рентгеноструктурного анализа, было высказано предположение, что все атомы одного и того же элемента имеют одинаковые радиусы[3]. Однако в 1923 году, когда было получено больше данных о кристаллах, было обнаружено, что аппроксимация атома сферой не всегда корректна при сравнении атомов одного и того же элемента в разных кристаллических структурах[4].

Определения[править | править код]

Широко используемые определения радиуса атома включают:

  • Радиус Ван-дер-Ваальса, Вандерваальсовы радиусы[5] — эта величина соответствует половине межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой химической связью и принадлежащими разным молекулам (например, в молекулярных кристаллах).[6].
  • Ионный радиус: номинальный радиус ионов элемента в определённом состоянии ионизации, выведенный из расстояния между атомными ядрами в кристаллических солях, которые включают эти ионы. В принципе, расстояние между двумя соседними противоположно заряженными ионами (длина ионной связи между ними) должно равняться сумме их ионных радиусов[6].
  • Ковалентный радиус: номинальный радиус атомов элемента, когда они ковалентно связаны с другими атомами, выводится из расстояния между атомными ядрами в молекулах. В принципе, расстояние между двумя атомами, которые связаны друг с другом в молекуле (длина этой ковалентной связи), должно равняться сумме их ковалентных радиусов[6].
  • Металлический радиус: номинальный радиус атомов элемента, когда они соединены с другими атомами металлическими связями.
  • Боровский радиус: радиус орбиты электрона с наименьшей энергией, предсказанный Боровской моделью атома (1913)[7][8]. Он применим только к атомам и ионам с одним электроном, таким как водород, однократно ионизованный гелий и позитроний. Хотя сама модель в настоящее время устарела, радиус Бора для атома водорода считается одной из фундаментальных физических постоянных.

Измерение радиуса атома опытным путём[править | править код]

В таблице приведены измеренные опытным путём ковалентные радиусы для элементов, опубликованные американским химиком Д.Слейтером в 1964 году[9]. Значения приведены в пикометрах (пм или 1 × 10-12 м) с точностью около 5 пм. Оттенки цвета ячеек варьируются от красного до жёлтого по мере увеличения радиуса; серый цвет — отсутствие данных.

Группы
(столбцы)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Периоды
(строки)
1 H
25
He
 31
2 Li
145
Be
105
B
85
C
70
N
65
O
60
F
50
Ne
 38
3 Na
180
Mg
150
Al
125
Si
110
P
100
S
100
Cl
100
Ar
 71
4 K
220
Ca
180
Sc
160
Ti
140
V
135
Cr
140
Mn
140
Fe
140
Co
135
Ni
135
Cu
135
Zn
135
Ga
130
Ge
125
As
115
Se
115
Br
115
Kr
 
5 Rb
235
Sr
200
Y
180
Zr
155
Nb
145
Mo
145
Tc
135
Ru
130
Rh
135
Pd
140
Ag
160
Cd
155
In
155
Sn
145
Sb
145
Te
140
I
140
Xe
 
6 Cs
260
Ba
215
*
 
Hf
155
Ta
145
W
135
Re
135
Os
130
Ir
135
Pt
135
Au
135
Hg
150
Tl
190
Pb
180
Bi
160
Po
190
At
 
Rn
 
7 Fr
 
Ra
215
**
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 
Лантаноиды *
 
La
195
Ce
185
Pr
185
Nd
185
Pm
185
Sm
185
Eu
185
Gd
180
Tb
175
Dy
175
Ho
175
Er
175
Tm
175
Yb
175
Lu
175
Актиноиды **
 
Ac
195
Th
180
Pa
180
U
175
Np
175
Pu
175
Am
175
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 
Lr
 

Объяснение общих тенденций[править | править код]

Изменение радиуса атома с увеличением зарядового числа можно объяснить расположением электронов в оболочках с постоянной ёмкостью. Оболочки обычно заполнены в порядке увеличения радиуса, поскольку отрицательно заряженные электроны притягиваются положительно заряженными протонами атомного ядра. Поскольку зарядовое число увеличивается вдоль каждой строки периодической таблицы, дополнительные электроны входят в ту же самую внешнюю оболочку, а её радиус постепенно сжимается из-за увеличения заряда ядра. В атомах инертных газов внешняя оболочка полностью заполнена; следовательно, дополнительный электрон следующего элемента — щелочного металла — перейдет в следующую внешнюю оболочку, что объясняет внезапное увеличение атомного радиуса.

Увеличивающийся заряд ядра частично уравновешивается ростом числа электронов, это явление известно как экранирование[en]; он объясняет, почему размер атомов обычно увеличивается в каждом столбце периодической таблицы. Из этой закономерности есть важное исключение, известное как лантаноидное сжатие: меньшие, по сравнению с ожидаемыми, величины ионных радиусов химических элементов, входящих в группу лантаноидов (атомный номер 58—71), которое происходит из-за недостаточного экранирования заряда ядра электронами 4f-орбитали.

По существу, атомный радиус уменьшается на протяжении периодов из-за увеличения количества протонов в ядре. Соответственно, большее количество протонов создает более сильный заряд и сильнее притягивает электроны, уменьшая размер радиуса атома. При движении сверху вниз по столбцам (группам) периодической таблицы атомный радиус увеличивается, поскольку есть больше энергетических уровней и, следовательно, больше расстояние между протонами и электронами. Кроме того, электронное экранирование ослабляет притяжение протонов, поэтому оставшиеся электроны могут удаляться от положительно заряженного ядра. Таким образом, размер (радиус атома) увеличивается.

В следующей таблице приведены основные факторы, влияющие радиус атома:

Фактор Закон Возрастает с… как правило Влияние на радиус атома
Электронные оболочки Квантовая механика Главным и азимутальным квантовым числом Увеличивает радиус атома Возрастает сверху вниз в каждой колонке
Атомный заряд Притяжение электронов протонами ядра атома Зарядовым числом Сокращает радиус атома Сокращается в течение всего периода
Экранирование Отталкивание внешних электронов внутренними электронами Количеством электронов во внутренних оболочках Увеличивает радиус атома Снижает эффект второго фактора

Лантаноидное сжатие[править | править код]

У химических элементов группы лантаноидов электроны в 4f-подоболочке, которая постепенно заполняется от церия (Z = 58) до лютеция (Z = 71), не особенно эффективны для экранирования увеличивающегося заряда ядра. Элементы, следующие непосредственно за лантаноидами, имеют радиусы атомов, которые меньше, чем можно было бы ожидать, и которые почти идентичны атомным радиусам элементов, находящихся непосредственно над ними[10]. Следовательно, гафний имеет практически тот же атомный радиус (и химические свойства), что и цирконий, а тантал имеет радиус атома, как у ниобия, и так далее. Эффект лантаноидного сжатия заметен вплоть до платины (Z = 78), после чего он нивелируется релятивистским эффектом, известным как эффект инертной пары[en].

Лантаноидное сжатие даёт 5 следующих эффектов:

  1. Размер ионов Ln3 + регулярно уменьшается с атомным номером. Согласно правилам Фаянса[en], уменьшение размера ионов Ln3+ увеличивает ковалентную связь и уменьшает основную связь между ионами Ln3+ и OH в Ln(OH)3 до такой степени, что Yb(OH)3 и Lu(OH)3 с трудом растворяются в горячем концентрированном NaOH. Отсюда порядок размера ионов Ln3+:
    La3+ > Ce3+ > …, … > Lu3+.
  2. Наблюдается регулярное уменьшение ионных радиусов.
  3. Наблюдается регулярное снижение способности ионов действовать в качестве восстановителя с увеличением атомного номера.
  4. Второй и третий ряды переходных элементов d-блока довольно близки по свойствам.
  5. Эти элементы встречаются вместе в природных минералах и их трудно разделить.

d-сжатие[править | править код]

d-сжатие[en] менее выражено, чем лантаноидное сжатие, но возникает по той же причине. В этом случае плохая экранирующая способность 3d-электронов влияет на атомные радиусы и химические свойства элементов, следующих непосредственно за первым рядом переходных металлов, от галлия (Z = 30) до брома (Z = 35)[10].

Вычисленные радиусы атомов[править | править код]

В таблице приведены значения радиусов атомов, рассчитанные по теоретическим моделям, опубликованные итальянским химиком Энрико Клементи[en] и другими в 1967 году[11]. Значения даны в пикометрах (пм).

Группы
(столбцы)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Периоды
(строки)
1 H
53
He
31
2 Li
167
Be
122
B
87
C
67
N
56
O
48
F
42
Ne
38
3 Na
190
Mg
145
Al
118
Si
111
P
98
S
88
Cl
79
Ar
71
4 K
243
Ca
194
Sc
184
Ti
176
V
171
Cr
166
Mn
161
Fe
156
Co
152
Ni
149
Cu
145
Zn
142
Ga
136
Ge
125
As
114
Se
103
Br
94
Kr
98
5 Rb
265
Sr
219
Y
212
Zr
206
Nb
198
Mo
190
Tc
183
Ru
178
Rh
173
Pd
169
Ag
165
Cd
161
In
156
Sn
145
Sb
133
Te
123
I
115
Xe
108
6 Cs
298
Ba
253
* Hf
208
Ta
200
W
193
Re
188
Os
185
Ir
180
Pt
177
Au
174
Hg
171
Tl
156
Pb
154
Bi
143
Po
135
At
127
Rn
120
7 Fr
 
Ra
 
** Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 
Лантаноиды * La
226
Ce
210
Pr
247
Nd
206
Pm
205
Sm
238
Eu
231
Gd
233
Tb
225
Dy
228
Ho
226
Er
226
Tm
222
Yb
222
Lu
217
Актиноиды ** Ac
 
Th
 
Pa
 
U
 
Np
 
Pu
 
Am
 
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 
Lr
 

См. также[править | править код]

  • Боровский радиус
  • Ковалентный радиус
  • Радиус Ван-дер-Ваальса
  • Ионный радиус
  • Химическая связь

Примечания[править | править код]


  1. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry (неопр.). — 5th. — Wiley, 1988. — С. 1385. — ISBN 978-0-471-84997-1.

  2. Basdevant, J.-L.; Rich, J.; Spiro, M. Fundamentals in Nuclear Physics (неопр.). — Springer, 2005. — С. 13, fig 1.1. — ISBN 978-0-387-01672-6.

  3. Bragg, W. L. The arrangement of atoms in crystals (англ.) // Philosophical Magazine : journal. — 1920. — Vol. 6, no. 236. — P. 169—189. — doi:10.1080/14786440808636111.

  4. Wyckoff, R. W. G. On the Hypothesis of Constant Atomic Radii (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1923. — Vol. 9, no. 2. — P. 33—38. — doi:10.1073/pnas.9.2.33. — Bibcode: 1923PNAS….9…33W. — PMID 16576657. — PMC 1085234.
  5. Такое написание даёт «Русский орфографический словарь: около 200 000 слов / Российская академия наук. Институт русскоrо языка им. В. В. Виноградова / Под ред. В. В. Лопатина, О. Е. Ивановой. — Изд. 4-е, испр. и доп. — М.: АСТ-ПРЕСС КНИГА, 2013. — 896 с. — (Фундаментальные словари русскою языка). — с. 68. — ISBN 978-5-462-01272-3».
  6. 1 2 3
    L.; Pauling. The Nature of the Chemical Bond (неопр.). — 2nd. — Cornell University Press, 1945.

  7. Bohr, N. On the Constitution of Atoms and Molecules, Part I. – Binding of Electrons by Positive Nuclei (англ.) // Philosophical Magazine : journal. — 1913. — Vol. 26, no. 151. — P. 1—24. — doi:10.1080/14786441308634955.

  8. Bohr, N. On the Constitution of Atoms and Molecules, Part II. – Systems containing only a Single Nucleus (англ.) // Philosophical Magazine : journal. — 1913. — Vol. 26, no. 153. — P. 476—502. — doi:10.1080/14786441308634993.

  9. Slater, J. C. Atomic Radii in Crystals (англ.) // Journal of Chemical Physics : journal. — 1964. — Vol. 41, no. 10. — P. 3199—3205. — doi:10.1063/1.1725697. — Bibcode: 1964JChPh..41.3199S.
  10. 1 2
    W. L.; Jolly. Modern Inorganic Chemistry (неопр.). — 2nd. — McGraw-Hill Education, 1991. — С. 22. — ISBN 978-0-07-112651-9.

  11. Clementi, E.; Raimond, D. L.; Reinhardt, W. P. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons (англ.) // Journal of Chemical Physics : journal. — 1967. — Vol. 47, no. 4. — P. 1300—1307. — doi:10.1063/1.1712084. — Bibcode: 1967JChPh..47.1300C.

Литература[править | править код]

  • Рабинович В. А., Хавин З.Я. Краткий химический справочник. Изд. 2-е, испр. и доп. — Л.: Химия, 1978. — 392 с.

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Содержание:

  • Радиус атома в физике
  • Атомный радиус в химии и кристаллографии
    • Какие бывают виды
    • Как зависит от типа химической связи
  • Видео

Радиус атома в физике

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям, определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Как определить радиус атома

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус.

Атомный  радиуса

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х—Х, причем Х — это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х—Х в молекуле Х2, для молекул селена Se и серы S — половине расстояния Х—Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С—С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности, т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов, при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Определение радиуса атома

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример — молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип “плотной упаковки”, когда молекулы, образующие кристалл, входят друг в друга своими “выступами” и “впадинами”. На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Поскольку
квантовая механика запрещает точное
определение координат частицы, понятия
«радиус атома», «радиус иона» условны.
Атомные радиусы подразделяют на радиусы
атомов металлов, ковалентные радиусы
атомов металлов и радиусы атомов
благородных газов. Их определяют как
половину расстояния между слоями атомов
в кристаллая соответствующих простых
в-в. рентгенографическим или
нейтронографичским методами.

В
общем случае радиус атома зависит не
только от природы атомов, но и от характера
химической связи между ними, агрегатного
состояния, температуры и ряда других
факторов. Это обстоятельство лишний
раз указывает на относительность понятия
«радиус атома». Атомы не являются
несжижаемыми, неподвижно застывшими
шариками, они всегда принимают участие
во вращательном и колебательном движении.

Радиусы
атомов благородных газов значительно
больше радиусов атомов неметаллов
соответствующих периодов, поскольку в
кристаллах благородных газов межатомное
взаимодействие очень слабое.

Шкала
ионных радиусов, понятно, не может быть
основана на тех же принципах, что шкала
атомных радиусов (ни одна хар-ка
индивидуального иона не может быть
объективно определена). Современная
шкала ионных радиусов основана на
допущении, что границей между ионами
является точка минимума электронной
плотности на линии, соединяющей центры
ионов.

Периодический
закон ведёт к след. закономерностям в
изменении атомных и ионных радиусов:

1)
в периодах слева направо в целом радиус
атома уменьшается, затем в конце резко
возрастает у атома благородного газа.

2)
в подгруппах сверху вниз происходит
рост радиуса атома: более значительный
в главных подгруппах и менее значительный
– в побочных.

3)
радиус катиона меньше радиуса атома и
уменьшается с ростом заряда катиона.

4)
радиус аниона больше радиуса атома.

5)
в периодах радиусы ионов d-элементов
одинакового заряда плавно уменьшаются,
это так называемое d-сжатие.

6)
аналогичное явление отмечается и для
f-элементов.

7)
Радиусы однотипных ионов (имеющих
сходную электронную «макушку») в
подгруппах плавно возрастают.

8)
Если различные ионы имеют одинаковое
число электронов (изоэлектронные), то
размер таких ионов будет определяться
зарядом ядра иона. Наименьшим будет ион
с большим зарядом ядра. Радиус
изоэлектронных ионов уменьшается с
ростом заряда иона.

Вопрос 9) Относительная сила кислот и оснований (схема Косселя) на примерах … .

Сила
кислородных кислот будет возрастать с
увеличением степени окисления атома
элемента и уменьшается радиуса его
иона. У оснований наоборот.

Сила
бескислородных кислот возрастает с
уменьшением степени окисления атома
элемента и увеличением радиуса его
иона. Сила бескислородных кислот в
растворе будет возрастать в подгруппе,
т.к при одинаковой степени окисления
атома элемента увеличивается радиус
его иона.

Более
сильным электролитам из двух считается
тот, у которого при одинаковой молярной
концентрации больше степень диссоциации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий