Как найти базис евклидова пространства

Оглавление — Линейная алгебра


Ортогональный и ортонормированный базисы евклидова пространства

Так как евклидово пространство является линейным, на него переносятся все понятия и свойства, относящиеся к линейному пространству, в частности, понятия базиса и размерности.

Базис [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math] евклидова пространства называется ортогональным, если все образующие его векторы попарно ортогональны, т.е.

[math]langle mathbf{e}_i,mathbf{e}_jrangle=0[/math] при [math]ine j,~~ i=1,2,ldots,n,~~ j=1,2,ldots,n.[/math]

Базис [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math] евклидова пространства называется ортонормированным, если его векторы попарно ортогональны и длина каждого из них равна единице:

[math]langle mathbf{e}_i,mathbf{e}_jrangle= begin{cases}1,&i=j,\ 0,&ine j end{cases}i=1,2,ldots,n,~~ j=1,2,ldots,n.[/math]

(8.31)

Теорема 8.5. В конечномерном евклидовом пространстве любую систему ортогональных (ортонормированных) векторов можно дополнить до ортогонального (ортонормированного) базиса.

В самом деле, по теореме 8.2 любую систему линейно независимых векторов, в частности, ортогональную (ортонормированную), можно дополнить до базиса. Применяя к этому базису процесс ортогонализации, получаем ортогональный базис. Нормируя векторы этого базиса (см. пункт 4 замечаний 8.11), получаем ортонормированный базис.


Выражение скалярного произведения через координаты сомножителей

Пусть [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math] — базис евклидова пространства, в котором векторы [math]mathbf{x}[/math] и [math]mathbf{y}[/math] имеют координаты [math]x_1,x_2,ldots,x_n[/math] и [math]y_1,y_2,ldots,y_n[/math] соответственно, т.е.

[math]mathbf{x}= x_1 mathbf{e}_1+x_2 mathbf{e}_2+ldots+ x_n mathbf{e}_n,qquad mathbf{y}= y_1 mathbf{e}_1+y_2 mathbf{e}_2+ldots+ y_n mathbf{e}_n.[/math]

Выразим скалярное произведение, используя следствие 3 из аксиом скалярного произведения:

[math]langle mathbf{x},mathbf{y}rangle= langle x_1 mathbf{e}_1+x_2 mathbf{e}_2+ldots+ x_n mathbf{e}_n,, y_1 mathbf{e}_1+y_2 mathbf{e}_2+ldots+ y_n mathbf{e}_n rangle= sum_{i=1}^{n}sum_{i=1}^{n}x_iy_jlangle mathbf{e}_i,mathbf{e}_jrangle.[/math]

Преобразуем это выражение, используя операции с матрицами:

[math]langle mathbf{x},mathbf{y}rangle= x^Tcdot G(mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_n)cdot y,[/math]

(8.32)

где [math]x=begin{pmatrix}x_1&cdots x_nend{pmatrix}^T,~ y=begin{pmatrix} y_1&cdots& y_n end{pmatrix}^T[/math] — координатные столбцы векторов [math]mathbf{x}[/math] и [math]mathbf{y}[/math], a [math]G(mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_n)[/math] — квадратная симметрическая матрица, составленная из скалярных произведений

[math]G(mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_n)= begin{pmatrix} langle mathbf{e}_1,mathbf{e}_1rangle& langle mathbf{e}_1,mathbf{e}_2rangle &cdots&langle mathbf{e}_1, mathbf{e}_nrangle\ langle mathbf{e}_2,mathbf{e}_1rangle& langle mathbf{e}_2, mathbf{e}_2rangle &cdots&langle mathbf{e}_2,mathbf{e}_nrangle\ vdots&vdots&ddots&vdots\ langle mathbf{e}_n,mathbf{e}_1rangle& langle mathbf{e}_n,mathbf{e}_2rangle &cdots&langle mathbf{e}_n,mathbf{e}_nrangle end{pmatrix}!.[/math]

(8.33)

которая называется матрицей Грама системы векторов [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math].


Преимущества ортонормированного базиса

Для ортонормированного базиса [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math] формула (8.32) упрощается, так как из условия (8.31) следует, что матрица Грама [math]G(mathbf{e}_1, mathbf{e}_2,ldots,mathbf{e}_n)[/math] ортонормированной системы [math]mathbf{e}_1, mathbf{e}_2,ldots, mathbf{e}_n[/math] равна единичной матрице: [math]G(mathbf{e}_1, mathbf{e}_2,ldots,mathbf{e}_n)=E[/math].

1. В ортонормированном базисе [math]mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_n[/math] скалярное произведение векторов [math]mathbf{x}[/math] и [math]mathbf{y}[/math] находится по формуле: [math]langle mathbf{x},mathbf{y}rangle= x_1y_1+x_2y_2+ldots+x_ny_n[/math], где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf{x}[/math], а [math]y_1,ldots,y_n[/math] — координаты вектора [math]mathbf{y}[/math].

2. В ортонормированном базисе [math]mathbf{e}_1,mathbf{e}_2,ldots, mathbf{e}_n[/math] длина вектора [math]mathbf{x}[/math] вычисляется по формуле [math]|mathbf{x}|= sqrt{x_1^2+x_2^2+ldots+x_n^2}[/math], где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf{x}[/math].

3. Координаты [math]x_1,ldots,x_n[/math] вектора [math]mathbf{x}[/math] относительно ортонормированного базиса [math]mathbf{e}_1,mathbf{e}_2,ldots,mathbf{e}_n[/math] находятся при помощи скалярного произведения по формулам: [math]x_1=langle mathbf{x},mathbf{e}_1rangle,ldots, x_n=langle mathbf{x},mathbf{e}_nrangle[/math].

В самом деле, умножая обе части равенства [math]mathbf{x}= x_1 mathbf{e}_1+ldots+x_n mathbf{e}_n[/math] на [math]mathbf{e}_1[/math], получаем

[math]langle mathbf{x},mathbf{e}_1rangle= x_1underbrace{langlemathbf{e}_1, mathbf{e}_1 rangle}_{1}+ x_2underbrace{langle mathbf{e}_1,mathbf{e}_2 rangle}_{0}+ldots+ x_nunderbrace{langle mathbf{e}_n, mathbf{e}_n rangle}_{0}quad Leftrightarrowquad x_1=langle mathbf{x},mathbf{e}_1rangle.[/math]

Аналогично доказываются остальные формулы.


Изменение матрицы Грама при переходе от одного базиса к другому

Пусть [math](mathbf{e})=(mathbf{e}_1,ldots,mathbf{e}_n)[/math] и [math](mathbf{f})= (mathbf{f}_1,ldots,mathbf{f}_n)[/math] — два базиса евклидова пространства [math]mathbb{E}[/math], a [math]S[/math] — матрица перехода от базиса [math](mathbf{e})[/math] к базису [math](mathbf{f})colon, (mathbf{f})=(mathbf{e})S[/math]. Требуется найти связь матриц Грама систем векторов [math](mathbf{e})[/math] и [math](mathbf{f})[/math]

По формуле (8.32) вычислим скалярное произведение векторов [math]mathbf{x}[/math] и [math]mathbf{y}[/math] в разных базисах:

[math]langle mathbf{x},mathbf{y}rangle= {mathop{x}limits_{(mathbf{e})}}^Tcdot, G(mathbf{e}_1,ldots,mathbf{e}_n)cdot mathop{mathbf{y}}limits_{(mathbf{e})}= {mathop{x}limits_{(mathbf{f})}}^Tcdot, G(mathbf{f}_1,ldots,mathbf{f}_n)cdot mathop{mathbf{y}}limits_{(mathbf{f})},[/math]

где [math]mathop{x}limits_{(mathbf{e})},, mathop{x}limits_{(mathbf{f})}[/math] и [math]mathop{y}limits_{(mathbf{e})},, mathop{y}limits_{(mathbf{f})}[/math] — координатные столбцы векторов [math]mathbf{x}[/math] и [math]mathbf{y}[/math] в соответствующих базисах. Подставляя в последнее равенство связи [math]mathop{x}limits_{(mathbf{e})}= S mathop{x}limits_{(mathbf{f})},[/math] [math]mathop{y}limits_{(mathbf{e})}= S mathop{y}limits_{(mathbf{f})}[/math], получаем тождество

[math]{mathop{x}limits_{(mathbf{f})}}^Tcdot S^Tcdot, G(mathbf{e}_1,ldots,mathbf{e}_n)cdot Scdot mathop{mathbf{y}}limits_{(mathbf{f})}= {mathop{x}limits_{(mathbf{f})}}^Tcdot, G(mathbf{f}_1,ldots,mathbf{f}_n)cdot mathop{mathbf{y}}limits_{(mathbf{f})}.[/math]

Отсюда следует формула изменения матрицы Грама при переходе от одного базиса к другому:

[math]G(mathbf{f}_1,ldots,mathbf{f}_n)= S^Tcdot G(mathbf{e}_1,ldots,mathbf{e}_n)cdot S.[/math]

Записав это равенство для ортонормированных базисов [math](mathbf{e})[/math] и [math](mathbf{f})[/math], получаем [math]E=S^TES[/math], так как матрицы Грама ортонормированных базисов единичные: [math]G(mathbf{e}_1,ldots,mathbf{e}_n)= G(mathbf{f}_1,ldots,mathbf{f}_n)=E[/math]. Поэтому матрица [math]S[/math] перехода от одного ортонормированного базиса к другому является ортогональной: [math]S^{-1}=S^T[/math].


Свойства определителя Грама

Определитель матрицы (8.33) называется определителем Грама. Рассмотрим свойства этого определителя.

1. Критерий Грама линейной зависимости векторов: система векторов [math]mathbf{v}_1,mathbf{v}_2, ldots, mathbf{v}_k[/math] линейно зависима тогда и только тогда, когда определитель Грама этой системы равен нулю.

Действительно, если система [math]mathbf{v}_1, mathbf{v}_2, ldots,mathbf{v}_k[/math] линейно зависима, то существуют такие числа [math]x_1,x_2,ldots,x_k[/math], не равные нулю одновременно, что

[math]x_1cdot mathbf{v}_1+x_2cdot mathbf{v}_2+ldots+ x_kcdot mathbf{v}_k= mathbf{o}.[/math]

Умножая это равенство скалярно на [math]mathbf{v}_1[/math], затем на [math]mathbf{v}_2[/math] и т.д. на [math]mathbf{v}_k[/math], получаем однородную систему уравнений [math]G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k)x=o[/math], которая имеет нетривиальное решение [math]x=begin{pmatrix}x_1&cdots&x_k end{pmatrix}^T[/math]. Следовательно, ее определитель равен нулю. Необходимость доказана. Достаточность доказывается, проводя рассуждения в обратном порядке.

Следствие. Если какой-либо главный минор матрицы Грама равен нулю, то и определитель Грама равен нулю.

Главный минор матрицы Грама системы [math]mathbf{v}_1, mathbf{v}_2,ldots,mathbf{v}_k[/math] представляет собой определитель Грама подсистемы векторов. Если подсистема линейно зависима, то и вся система линейно зависима.

2. Определитель Грама [math]det{G (mathbf{v}_1,mathbf{v}_2, ldots, mathbf{v}_k)}[/math] не изменяется в процессе ортогонализации системы векторов [math]mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k[/math]. Другими словами, если в процессе ортогонализации векторов [math]mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k[/math] получены векторы [math]mathbf{w}_1,mathbf{w}_2,ldots,mathbf{w}_k[/math], то

[math]det G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k)= det G(mathbf{w}_1, mathbf{w}_2, ldots,mathbf{w}_k)= langle mathbf{w}_1,mathbf{w}_1ranglecdot langle mathbf{w}_2,mathbf{w}_2ranglecdot ldotscdot langle mathbf{w}_k,mathbf{w}_krangle.[/math]

Действительно, в процессе ортогонализации по векторам [math]mathbf{v}_1,mathbf{v}_2, ldots,mathbf{v}_k[/math] последовательно строятся векторы

[math]mathbf{w}_1=mathbf{v}_1,quad mathbf{w}_2= mathbf{v}_2- alpha_{21} mathbf{w}_1,quad ldots,quad mathbf{w}_k= mathbf{v}_k- sum_{j=1}^{k-1}alpha_{kj} mathbf{w}_j.[/math]

После первого шага определитель Грама не изменяется

[math]det G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k)= det G(mathbf{w}_1, mathbf{v}_2, ldots,mathbf{v}_k).[/math]

Выполним с определителем [math]det G(mathbf{w}_1, mathbf{v}_2, ldots,mathbf{v}_k)[/math] следующие преобразования. Прибавим ко второй строке первую, умноженную на число [math](-alpha_{21})[/math], а затем ко второму столбцу прибавим первый, умноженный на [math](-alpha_{21})[/math]. Получим определитель

[math]det G(mathbf{w}_1,mathbf{v}_2-alpha_{21}mathbf{w}_1,ldots,mathbf{v}_k)= det G(mathbf{w}_1,mathbf{w}_2, mathbf{v}_3, ldots,mathbf{v}_k).[/math]

Так как при этих преобразованиях определитель не изменяется, то

[math]det G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k)= det G(mathbf{w}_1, mathbf{v}_2,ldots,mathbf{v}_k)= det G(mathbf{w}_1, mathbf{w}_2,mathbf{v}_3, ldots,mathbf{v}_k).[/math]

Значит, после второго шага в процессе ортогонализации определитель не изменяется. Продолжая аналогично, получаем после [math]k[/math] шагов:

[math]det G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k)= det G(mathbf{w}_1, mathbf{w}_2, ldots,mathbf{w}_k).[/math]

Вычислим правую часть этого равенства. Матрица [math]G(mathbf{w}_1,mathbf{w}_2,ldots, mathbf{w}_k)[/math] Грама ортогональной системы [math]mathbf{v}_1,mathbf{v}_2, ldots,mathbf{v}_k[/math] векторов является диагональной, так как [math]langle mathbf{w}_i,mathbf{w}_jrangle=0[/math] при [math]ine j[/math]. Поэтому ее определитель равен произведению элементов, стоящих на главной диагонали:

[math]det G(mathbf{w}_1,mathbf{w}_2,ldots,mathbf{w}_k)= langle mathbf{w}_1, mathbf{w}_1ranglecdot langle mathbf{w}_2,mathbf{w}_2ranglecdot ldots langle mathbf{w}_k, mathbf{w}_krangle.[/math]

3. Определитель Грама любой системы [math]mathbf{v}_1,mathbf{v}_2,ldots, mathbf{v}_k[/math] векторов удовлетворяет двойному неравенству

[math]0leqslant det G(mathbf{v}_1,mathbf{v}_2,ldots,mathbf{v}_k) leqslant langle mathbf{v}_1, mathbf{v}_1ranglecdot langle mathbf{v}_2,mathbf{v}_2ranglecdot ldots langle mathbf{v}_k, mathbf{v}_krangle.[/math]

Докажем неотрицательность определителя Грама. Если система [math]mathbf{v}_1,mathbf{v}_2, ldots, mathbf{v}_k[/math] линейно зависима, то определитель равен нулю (по свойству 1). Если же система [math]mathbf{v}_1,mathbf{v}_2,ldots, mathbf{v}_k[/math] линейно независима, то, выполнив процесс ортогонализации, получим ненулевые векторы [math]mathbf{w}_1,mathbf{w}_2, ldots, mathbf{w}_k[/math], для которых по свойству 2:

[math]det G(mathbf{v}_1,mathbf{v}_2,ldots, mathbf{v}_k)= det G(mathbf{w}_1, mathbf{w}_2, ldots, mathbf{w}_k)= |mathbf{w}_1|^2cdot |mathbf{w}_2|^2cdot ldotscdot |mathbf{w}_k|^2>0.[/math]

Оценим теперь скалярный квадрат [math]langle mathbf{v}_j,mathbf{w}_jrangle[/math]. Выполняя процесс ортого-1нализации, имеем [math]mathbf{v}_j= mathbf{w}_j+ alpha_{j,1}mathbf{w}_1+ ldots+ alpha_{j,j-1}mathbf{w}_{j-1}[/math]. Отсюда

[math]langle mathbf{v}_j,mathbf{w}_jrangle= langle mathbf{w}_j,mathbf{w}_jrangle+ sum_{i=1}^{j-1}alpha_{i,i}^2 langle mathbf{w}_j,mathbf{w}_jrangle geqslant langle mathbf{w}_j, mathbf{w}_jrangle.[/math]

Следовательно, по свойству 2 имеем

[math]langle mathbf{v}_1,mathbf{v}_1ranglecdot langle mathbf{v}_2,mathbf{v}_2 ranglecdot ldotscdot langle mathbf{v}_k,mathbf{v}_kranglegeqslant langle mathbf{w}_1, mathbf{w}_1ranglecdot langle mathbf{w}_2,mathbf{w}_2ranglecdot ldotscdot langle mathbf{w}_k, mathbf{w}_krangle= det G(mathbf{w}_1,mathbf{w}_2,ldots,mathbf{w}_k).[/math]


Замечания 8.12

1. Матрица Грама любой системы векторов является неотрицательно определенной, так как все ее главные миноры также являются определителями Грама соответствующих подсистем векторов и неотрицательны в силу свойства 3.

2. Матрица Грама любой линейно независимой системы векторов является положительно определенной, так как все ее угловые миноры положительны (в силу свойств 1,3), поскольку являются определителями Грама линейно независимых подсистем векторов.

3. Определитель квадратной матрицы [math]A[/math] (n-го порядка) удовлетворяет неравенству Адамара:

[math](det{A})^2leqslant prod_{i=1}^{n}Bigl(a_{i,1}^2+ a_{i,2}^2+ldots+ a_{i,n}^2Bigr).[/math]

Действительно, обозначив [math]a_1,a_2,ldots,a_n[/math] столбцы матрицы [math]A[/math], элементы матрицы [math]A^TA[/math] можно представить как скалярные произведения (8.27): [math]langle a_i,a_jrangle= (a_i)^Ta_j[/math]. Тогда [math]A^TA=G(a_1,a_2,ldots,a_n)[/math] — матрица Грама системы [math]a_1,a_2,ldots,a_n[/math] векторов пространства [math]mathbb{R}^n[/math]. По свойству 3, теореме 2.2 и свойству 1 определителя получаем доказываемое неравенство:

[math]begin{aligned} (det{A})^2&= det{A}cdotdet{A}= det{A^T}cdotdet{A}= det(A^TA)= det G(a_1,a_2,ldots,a_n)leqslant\[2pt] &leqslant |a_1|^2cdot |a_2|^2cdot ldotscdot |a_n|^2= prod_{i=1}^{n}Bigl(a_{i,1}^2+ a_{i,2}^2+ldots+ a_{i,n}^2Bigr). end{aligned}[/math]

4. Если [math]A[/math] — невырожденная квадратная матрица, то любой главный минор матрицы [math]A^TA[/math] положителен. Это следует из пункта 2, учитывая представление произведения [math]A^TA=G(a_1,ldots,a_n)[/math] как матрицы Грама системы линейно независимых векторов [math]a_1,ldots,a_n[/math] — столбцов матрицы [math]A[/math] (см. пункт 3).


Изоморфизм евклидовых пространств

Два евклидовых пространства [math]mathbb{E}[/math] и [math]mathbb{E}'[/math] называются изоморфными [math](mathbb{E}leftrightarrow mathbb{E}’)[/math], если они изоморфны как линейные пространства и скалярные произведения соответствующих векторов равны:

[math]left.{begin{matrix}mathbf{u}leftrightarrow mathbf{u}’\ mathbf{v}leftrightarrow mathbf{v}’end{matrix}}right}quad Rightarrowquad langle mathbf{u},mathbf{v}rangle= langle mathbf{u}’,mathbf{v}’rangle’.[/math]

где [math](cdot,cdot)[/math] и [math](cdot,cdot)'[/math] — скалярные произведения в пространствах [math]mathbb{E}[/math] и [math]mathbb{E}'[/math] соответственно.

Напомним, что для изоморфизма конечномерных линейных пространств необходимо и достаточно, чтобы их размерности совпадали (см. теорему 8.3). Покажем, что это условие достаточно для изоморфизма евклидовых пространств (необходимость следует из определения). Как и при доказательстве теоремы 8.3, установим изоморфизм n-мерного евклидова пространства [math]mathbb{E}[/math] с вещественным арифметическим пространством [math]mathbb{R}^n[/math] со скалярным произведением (8.27). В самом деле, взяв в пространстве [math]mathbb{E}[/math] какой-нибудь ортонормированный базис [math](mathbf{e})=(mathbf{e}_1,ldots,mathbf{e}_n)[/math], поставим в соответствие каждому вектору [math]mathbf{x}in mathbb{E}[/math] его координатный столбец [math]xin mathbb{R}^n~ (mathbf{x}leftrightarrow x)[/math]. Это взаимно однозначное соответствие устанавливает изоморфизм линейных пространств: [math]mathbb{E}leftrightarrow mathbb{R}^n[/math]. В ортонормированном базисе скалярное произведение векторов [math]mathbf{x}[/math] и [math]mathbf{y}[/math] пространства [math]mathbb{E}[/math] находится по формуле

[math]langle mathbf{x},mathbf{y}rangle= x_1cdot y_1+x_2cdot y_2+ldots+x_ncdot y_n[/math]

(см. пункт 1 преимуществ ортонормированного базиса). Такое же выражение дает скалярное произведение (8.27) координатных столбцов [math]x[/math] и [math]y[/math], т.е. скалярные произведения соответствующих элементов равны

[math]langle mathbf{x},mathbf{y}rangle= x_1cdot y_1+x_2cdot y_2+ldots+x_ncdot y_n=x^Tcdot y.[/math]

Следовательно, евклидовы пространства [math]mathbb{E}[/math] и [math]mathbb{R}^n[/math] изоморфны.

Таким образом, изучение конечномерных евклидовых пространств может быть сведено к исследованию вещественного арифметического пространства [math]mathbb{R}^n[/math] со стандартным скалярным произведением (8.27).

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Пусть V
– конечномерное
евклидово пространство, e
= (
e1
, … , en)
конечная
система векторов в V.
Система
e
называется ортогональной,
если (ei
,
ej)
= 0
при i

j.
Если в
дополнение к этому длины всех векторов
системы e
равны 1,
то она называется ортонормированной.

Замечание.
Если n = 1,
то условие ортогональности не требует
ничего, а для ортонормированности
необходимо и достаточно, чтобы |e1|
= 1.

Примеры:
1.
Пусть V
=
R3
– стандартное
евклидово пространство. Тогда система
векторов ((1;
–1; 0), (1; 1; 0), (0; 0; 1))

является ортогональным, но не
ортонормированным базисом,
а система
векторов

((; –; 0),
(;; 0),
(0; 0;
1))

является
ортонормированным базисом пространства
V.

2.
Стандартный базис стандартного евклидова
пространства ортонормирован.

Замечание.
Если базис
e
= (
e1
, … ,
en
)
векторного пространства
V
ортогонален,
то система векторов
f
=
{fi
=
ei
| 1

i

n } является ортонормированным базисом
.

В самом деле,
система f
=
(f1
, … ,
fn)
эквивалентна системе
e
(т.к.
каждый её вектор получен умножением
соответствующего вектора системы e
на ненулевой скаляр). Поэтому f
– базис. Кроме того,

(fi
,
fj)
= (
ei
,
ej
) =
(ei
,
ej
) =
.

Таким образом,
система f
ортогональна и |fi|
= 1 (1

i

n),
что и
требовалось.

Теорема (об
ортонормированном базисе).

Ненулевое конечномерное евклидово
пространство обладает ортонормированным
базисом.

Доказательство.
Пусть V
– ненулевое
n-мерное
евклидово пространство с базисом e
= (
e1
, … ,
en).
Проведем
индукцию по числу n.

Если n
= 1,
то f
= () – искомый
ортонормированный базис.

Предположим, что
евклидово пространство с базисом (e2
, … ,
en)
и тем же
скалярным произведением, что и V,
обладает ортонормированным базисом
(f2
, … ,
fn).
Найдём
ортонормированный базис для V.
Для этого
рассмотрим вектор g
= e1
– (
e1
,
f2)f2
– … – (
e1
,
fn)fn
.
Тогда

(g
,
fi
)
= (
e1

,
fi
)
= (
e1
,
fi)


=

= (e1
, fi
)–(e1
,
fi
) =
0
,

т.к. (fk
,
fi
) =
ki
символ
Кронекера (величина, равная 0
при k

i
и 1 – при
k
=
i).
Итак, система векторов (g
, f2
, … , fn)
ортогональна
и эквивалентна системе (e1
,
f2
, … ,
fn)
– базису
пространства V
(?!),
т.е. является
ортогональным базисом V.
Осталось
заменить g
на f1
=
.

Теорема доказана.

Пример.
Найти ортонормированный базис
пространства, порожденного в R4
векторами e1
= (0; 1; 0; –1),

e2
= (1; –1; 1; 0),
e3
= (1; 0; 0; 1)
(скалярное
произведение в R4
предполагается
стандартным).

Последовательно
строим ортонормированный базис, как
при доказательстве теоремы. Полагаем
f3
=
e3
=
(1,
0, 0, 1)
и g
=
e2
– (
e2
,
f3
)f3
= = (1; –1; 1; 0) –
(1;
0; 0; 1) = (; –1; 1; –)
.
Тогда (g
, f3
) =
0
,
и можно положить f2
=
=
g
=
(; –1; 1; –).
Теперь (f2
,
f3)
– ортонормированная система векторов,
эквивалентная (e2
,
e3).

Точно так же,
полагаем далее

g
=
e1
– (
e1
,
f2
)f2
– (
e1
,
f3
)f3
=

= (0;
1
;
0
;
–1) –


(
;
–1;
1
;

)



(1;
0
;
0
;
1)

=

= (0; 1; 0; –1) +
(; –1; 1; –)
+(1;
0; 0; 1) = (;;; –).

Система (g
, f2
,
f3
)
ортогональна
и, значит, можно взять

f1
=
=
(3;
4; 1; –3).

Ответ:

(3;
4; 1; –3),
(; –1; 1; –),

(1;
0; 0; 1).

Описанный в теореме
процесс построения ортогонального
базиса, проиллюстрированный примером,
называется процессом
ортогонализации

заданной системы векторов.

Упражнение.
Проведите процесс ортогонализации
векторов

(1;
2
;
0
;
0), (0
;
2
;
1
;
0), (0
;
0
;
1
;
2),

(0;
0
;
2
;
1)

в стандартном
евклидовом пространстве R4.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Эта статья — о пространстве ℝn со скалярным произведением. О любом пространстве со скалярным произведением см. Предгильбертово пространство.

Евкли́дово простра́нство (также эвкли́дово пространство) в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство mathbb {R} ^{n} с введённым на нём положительно определённым скалярным произведением; либо метрическое пространство, соответствующее такому векторному пространству. Некоторые авторы ставят знак равенства между евклидовым и предгильбертовым пространством. В этой статье за исходное будет взято первое определение.

n-мерное евклидово пространство обычно обозначается {displaystyle mathbb {E} ^{n}};
также часто используется обозначение mathbb {R} ^{n}, когда из контекста ясно, что пространство снабжено естественной евклидовой структурой.

Формальное определение[править | править код]

Чтобы дать определение евклидова пространства, в качестве основы проще всего использовать понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на парах векторов которого задана вещественнозначная функция (cdot ,cdot ), обладающая следующими тремя свойствами:

Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством или просто евклидовым пространством[1].

Пример евклидова пространства — координатное пространство mathbb {R} ^{n}, состоящее из всевозможных наборов вещественных чисел (x_{1},x_{2},ldots ,x_{n}), где скалярное произведение определяется формулой {displaystyle mathbf {(x,y)} =sum _{i=1}^{n}x_{i}y_{i}=x_{1}y_{1}+x_{2}y_{2}+cdots +x_{n}y_{n}.}

Длины и углы[править | править код]

Заданного на евклидовом пространстве скалярного произведения достаточно для того, чтобы ввести геометрические понятия длины и угла. Длина вектора u определяется как {displaystyle {sqrt {mathbf {(u,u)} }}} и обозначается {displaystyle |mathbf {u} |.}[2][3] Положительная определённость скалярного произведения гарантирует, что длина ненулевого вектора ненулевая, а из билинейности следует, что {displaystyle |amathbf {u} |=|a||mathbf {u} |,} то есть длины пропорциональных векторов пропорциональны.

Угол между векторами {mathbf  x} и {mathbf  y} определяется как {displaystyle arccos mathbf {tfrac {(x,y)}{|x||y|}} .} Из теоремы косинусов следует, что для двумерного евклидова пространства (евклидовой плоскости) данное определение угла совпадает с обычным. Ненулевые ортогональные векторы, как и в трёхмерном пространстве, можно определить как векторы под углом {displaystyle {tfrac {pi }{2}},} то есть как векторы с нулевым скалярным произведением.

Замечание[править | править код]

Необходимо уточнить, что, чтобы арккосинус от {displaystyle mathbf {tfrac {(x,y)}{|x||y|}} } был определён, необходимо и достаточно, чтобы выполнялось неравенство {displaystyle left|mathbf {tfrac {(x,y)}{|x||y|}} right|leqslant 1.} Это неравенство действительно выполняется в произвольном евклидовом пространстве: оно называется неравенством Коши — Буняковского. Из него, в свою очередь, следует неравенство треугольника: {displaystyle mathbf {|u+v|leqslant |u|+|v|} .} Неравенство треугольника, вместе с вышеперечисленными свойствами длины, означает, что длина вектора является нормой на евклидовом векторном пространстве, а функция {displaystyle dmathbf {(x,y)} ,} или {displaystyle mathbf {|x-y|} ,} задаёт на евклидовом пространстве структуру метрического пространства (эта функция называется евклидовой метрикой). В частности, расстояние между элементами (точками) {mathbf  x} и {mathbf  y} координатного пространства mathbb {R} ^{n} задаётся формулой d(mathbf {x} ,mathbf {y} )=|mathbf {x} -mathbf {y} |={sqrt {sum _{i=1}^{n}(x_{i}-y_{i})^{2}}}.

Алгебраические свойства[править | править код]

Ортонормированные базисы[править | править код]

Ортонормированный базис в евклидовом (векторном) пространстве — это базис, состоящий из попарно ортогональных векторов единичной нормы. Ортонормированные базисы наиболее удобны для вычислений. Так, например, скалярное произведение векторов с координатами (a_{1},a_{2},ldots ,a_{n}) и (b_{1},b_{2},ldots ,b_{n}) в ортонормированном базисе можно вычислять по формуле (a,b)=a_{1}b_{1}+a_{2}b_{2}+cdots +a_{n}b_{n}. В любом евклидовом пространстве существует ортонормированный базис. Выбрав в двух евклидовых пространствах ортонормированные базисы и переведя один из них в другой линейным отображением, можно доказать, что любые два евклидовых пространства одинаковой размерности изоморфны[4] (в частности, n-мерное евклидово пространство изоморфно mathbb {R} ^{n} со стандартным скалярным произведением).

Ортогональные проекции[править | править код]

Вектор называется ортогональным подпространству, если он ортогонален всем векторам этого подпространства. Ортогональная проекция вектора x на подпространство U — это вектор h, ортогональный U, такой что x представим в виде u+h, где uin U. Расстояние между концами векторов u и x является минимальным расстоянием среди расстояний от конца вектора x до подпространства U. Ортогональная проекция вектора на подпространство всегда существует: для её построения достаточно применить метод ортогонализации Грама — Шмидта к объединению ортонормированного базиса в подпространстве и этого вектора. Ортогональные проекции в пространствах больших размерностей используются, например, в методе наименьших квадратов.

Сопряжённые пространства и операторы[править | править код]

Любой вектор x евклидова пространства задаёт линейный функционал x^{*} на этом пространстве, определяемый как x^{*}(y)=(x,y). Это сопоставление является изоморфизмом между евклидовым пространством и двойственным к нему пространством[5] и позволяет их отождествлять без ущерба для вычислений. В частности, сопряжённые операторы можно рассматривать как действующие на исходном пространстве, а не на двойственном к нему, и определить самосопряжённые операторы как операторы, совпадающие с сопряжёнными к ним. В ортонормированном базисе матрица сопряжённого оператора является транспонированной к матрице исходного оператора, а матрица самосопряжённого оператора является симметричной.

Движения евклидова пространства[править | править код]

Движения евклидова пространства — это преобразования пространства на само себя, сохраняющие метрику (также называются изометриями пространства на само себя). Пример движения — параллельный перенос на вектор {mathbf  v}, переводящий точку {mathbf  p} в точку {displaystyle mathbf {p+v} }. Нетрудно увидеть, что любое движение является композицией параллельного переноса и преобразования, сохраняющего неподвижной одну точку. Выбрав неподвижную точку за начало координат, любое такое движение можно рассматривать как ортогональное преобразование. Ортогональные преобразования n-мерного евклидова пространства образуют группу, обозначаемую O(n). Выбрав в пространстве ортонормированный базис, эту группу можно представить как группу матриц n × n, удовлетворяющих условию {displaystyle Q^{mathsf {T}}Q=E}, где Q^{mathsf {T}} — транспонированная матрица, а E — единичная матрица.

Примеры[править | править код]

Наглядными примерами евклидовых пространств могут служить пространства:

Более абстрактный пример:

Примеры геометрических фигур в многомерном евклидовом пространстве:

  • правильные многомерные многогранники (например, N-мерный куб, N-мерный октаэдр, N-мерный тетраэдр);
  • гиперсфера;
  • гипертор.

Связанные определения[править | править код]

Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.

Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.

Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.

Вариации и обобщения[править | править код]

Если в качестве основного поля использовать не поле вещественных чисел, а поле комплексных, то это даст определение унитарного (или эрмитова) пространства.

Отказ от требования конечномерности даёт определение предгильбертова пространства. Отказ от требования положительной определённости скалярного произведения приводит к определению псевдоевклидова пространства. Требование того, чтобы предгильбертово пространство было полным по метрике, ведёт к определению гильбертова пространства; пространство квадратично-суммируемых последовательностей — гильбертово пространство, которое может рассматриваться как пространство векторов с бесконечным числом координат.

Примечания[править | править код]

  1. Гельфанд, 1998, с. 35.
  2. Гельфанд, 1998, с. 39.
  3. Кострикин, Манин, 1986, с. 118.
  4. Шилов Г. Е. Введение в теорию линейных пространств. — М., Л., Гостехтеориздат, 1952. — с. 182
  5. Данный результат верен также для псевдоевклидовых и унитарных пространств, для гильбертовых пространств он более сложен и называется теоремой Рисса.

Литература[править | править код]

  • Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — М.: Добросвет, МЦНМО, 1998. — 319 с. — ISBN 5-7913-0015-8.
  • Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия. — М.: Наука, 1986. — 304 с.
  • Вулих Б. З. Введение в функциональный анализ. — М.: Физматлит, 1958. — 352 с. — 7500 экз.

Ортогональный и ортонормированный базисы евклидова пространства

Так как евклидово пространство является линейным, на него переносятся все понятия и свойства, относящиеся к линейному пространству, в частности, понятия базиса и размерности.

Базис [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] евклидова пространства называется ортогональным , если все образующие его векторы попарно ортогональны, т.е.

Базис [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] евклидова пространства называется ортонормированным , если его векторы попарно ортогональны и длина каждого из них равна единице:

Теорема 8.5. В конечномерном евклидовом пространстве любую систему ортогональных (ортонормированных) векторов можно дополнить до ортогонального (ортонормированного) базиса.

В самом деле, по теореме 8.2 любую систему линейно независимых векторов, в частности, ортогональную (ортонормированную), можно дополнить до базиса. Применяя к этому базису процесс ортогонализации, получаем ортогональный базис. Нормируя векторы этого базиса (см. пункт 4 замечаний 8.11), получаем ортонормированный базис.

Выражение скалярного произведения через координаты сомножителей

Пусть [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] — базис евклидова пространства, в котором векторы [math]mathbf[/math] и [math]mathbf[/math] имеют координаты [math]x_1,x_2,ldots,x_n[/math] и [math]y_1,y_2,ldots,y_n[/math] соответственно, т.е.

Выразим скалярное произведение, используя следствие 3 из аксиом скалярного произведения:

Преобразуем это выражение, используя операции с матрицами:

y=begin y_1&cdots& y_n end^T[/math] — координатные столбцы векторов [math]mathbf[/math] и [math]mathbf[/math] , a [math]G(mathbf_1,mathbf_2,ldots, mathbf_n)[/math] — квадратная симметрическая матрица, составленная из скалярных произведений

которая называется матрицей Грама системы векторов [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] .

Преимущества ортонормированного базиса

Для ортонормированного базиса [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] формула (8.32) упрощается, так как из условия (8.31) следует, что матрица Грама [math]G(mathbf_1, mathbf_2,ldots,mathbf_n)[/math] ортонормированной системы [math]mathbf_1, mathbf_2,ldots, mathbf_n[/math] равна единичной матрице: [math]G(mathbf_1, mathbf_2,ldots,mathbf_n)=E[/math] .

1. В ортонормированном базисе [math]mathbf_1,mathbf_2,ldots, mathbf_n[/math] скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] находится по формуле: [math]langle mathbf,mathbfrangle= x_1y_1+x_2y_2+ldots+x_ny_n[/math] , где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf[/math] , а [math]y_1,ldots,y_n[/math] — координаты вектора [math]mathbf[/math] .

2. В ортонормированном базисе [math]mathbf_1,mathbf_2,ldots, mathbf_n[/math] длина вектора [math]mathbf[/math] вычисляется по формуле [math]|mathbf|= sqrt[/math] , где [math]x_1,ldots,x_n[/math] — координаты вектора [math]mathbf[/math] .

3. Координаты [math]x_1,ldots,x_n[/math] вектора [math]mathbf[/math] относительно ортонормированного базиса [math]mathbf_1,mathbf_2,ldots,mathbf_n[/math] находятся при помощи скалярного произведения по формулам: [math]x_1=langle mathbf,mathbf_1rangle,ldots, x_n=langle mathbf,mathbf_nrangle[/math] .

В самом деле, умножая обе части равенства [math]mathbf= x_1 mathbf_1+ldots+x_n mathbf_n[/math] на [math]mathbf_1[/math] , получаем

Аналогично доказываются остальные формулы.

Изменение матрицы Грама при переходе от одного базиса к другому

Пусть [math](mathbf)=(mathbf_1,ldots,mathbf_n)[/math] и [math](mathbf)= (mathbf_1,ldots,mathbf_n)[/math] — два базиса евклидова пространства [math]mathbb[/math] , a [math]S[/math] — матрица перехода от базиса [math](mathbf)[/math] к базису [math](mathbf)colon, (mathbf)=(mathbf)S[/math] . Требуется найти связь матриц Грама систем векторов [math](mathbf)[/math] и [math](mathbf)[/math]

По формуле (8.32) вычислим скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] в разных базисах:

где [math]mathoplimits_<(mathbf)>,, mathoplimits_<(mathbf)>[/math] и [math]mathoplimits_<(mathbf)>,, mathoplimits_<(mathbf)>[/math] — координатные столбцы векторов [math]mathbf[/math] и [math]mathbf[/math] в соответствующих базисах. Подставляя в последнее равенство связи [math]mathoplimits_<(mathbf)>= S mathoplimits_<(mathbf)>,[/math] [math]mathoplimits_<(mathbf)>= S mathoplimits_<(mathbf)>[/math] , получаем тождество

Отсюда следует формула изменения матрицы Грама при переходе от одного базиса к другому :

Записав это равенство для ортонормированных базисов [math](mathbf)[/math] и [math](mathbf)[/math] , получаем [math]E=S^TES[/math] , так как матрицы Грама ортонормированных базисов единичные: [math]G(mathbf_1,ldots,mathbf_n)= G(mathbf_1,ldots,mathbf_n)=E[/math] . Поэтому матрица [math]S[/math] перехода от одного ортонормированного базиса к другому является ортогональной: [math]S^<-1>=S^T[/math] .

Свойства определителя Грама

Определитель матрицы (8.33) называется определителем Грама. Рассмотрим свойства этого определителя.

1. Критерий Грама линейной зависимости векторов: система векторов [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] линейно зависима тогда и только тогда, когда определитель Грама этой системы равен нулю.

Действительно, если система [math]mathbf_1, mathbf_2, ldots,mathbf_k[/math] линейно зависима, то существуют такие числа [math]x_1,x_2,ldots,x_k[/math] , не равные нулю одновременно, что

Умножая это равенство скалярно на [math]mathbf_1[/math] , затем на [math]mathbf_2[/math] и т.д. на [math]mathbf_k[/math] , получаем однородную систему уравнений [math]G(mathbf_1,mathbf_2,ldots,mathbf_k)x=o[/math] , которая имеет нетривиальное решение [math]x=beginx_1&cdots&x_k end^T[/math] . Следовательно, ее определитель равен нулю. Необходимость доказана. Достаточность доказывается, проводя рассуждения в обратном порядке.

Следствие. Если какой-либо главный минор матрицы Грама равен нулю, то и определитель Грама равен нулю.

Главный минор матрицы Грама системы [math]mathbf_1, mathbf_2,ldots,mathbf_k[/math] представляет собой определитель Грама подсистемы векторов. Если подсистема линейно зависима, то и вся система линейно зависима.

2. Определитель Грама [math]det_1,mathbf_2, ldots, mathbf_k)>[/math] не изменяется в процессе ортогонализации системы векторов [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] . Другими словами, если в процессе ортогонализации векторов [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] получены векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , то

Действительно, в процессе ортогонализации по векторам [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] последовательно строятся векторы

После первого шага определитель Грама не изменяется

Выполним с определителем [math]det G(mathbf_1, mathbf_2, ldots,mathbf_k)[/math] следующие преобразования. Прибавим ко второй строке первую, умноженную на число [math](-alpha_<21>)[/math] , а затем ко второму столбцу прибавим первый, умноженный на [math](-alpha_<21>)[/math] . Получим определитель

Так как при этих преобразованиях определитель не изменяется, то

Значит, после второго шага в процессе ортогонализации определитель не изменяется. Продолжая аналогично, получаем после [math]k[/math] шагов:

Вычислим правую часть этого равенства. Матрица [math]G(mathbf_1,mathbf_2,ldots, mathbf_k)[/math] Грама ортогональной системы [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] векторов является диагональной, так как [math]langle mathbf_i,mathbf_jrangle=0[/math] при [math]ine j[/math] . Поэтому ее определитель равен произведению элементов, стоящих на главной диагонали:

3. Определитель Грама любой системы [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] векторов удовлетворяет двойному неравенству

Докажем неотрицательность определителя Грама. Если система [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] линейно зависима, то определитель равен нулю (по свойству 1). Если же система [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] линейно независима, то, выполнив процесс ортогонализации, получим ненулевые векторы [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] , для которых по свойству 2:

Оценим теперь скалярный квадрат [math]langle mathbf_j,mathbf_jrangle[/math] . Выполняя процесс ортого-1нализации, имеем [math]mathbf_j= mathbf_j+ alpha_mathbf_1+ ldots+ alpha_mathbf_[/math] . Отсюда

Следовательно, по свойству 2 имеем

1. Матрица Грама любой системы векторов является неотрицательно определенной, так как все ее главные миноры также являются определителями Грама соответствующих подсистем векторов и неотрицательны в силу свойства 3.

2. Матрица Грама любой линейно независимой системы векторов является положительно определенной, так как все ее угловые миноры положительны (в силу свойств 1,3), поскольку являются определителями Грама линейно независимых подсистем векторов.

3. Определитель квадратной матрицы [math]A[/math] (n-го порядка) удовлетворяет неравенству Адамара :

Действительно, обозначив [math]a_1,a_2,ldots,a_n[/math] столбцы матрицы [math]A[/math] , элементы матрицы [math]A^TA[/math] можно представить как скалярные произведения (8.27): [math]langle a_i,a_jrangle= (a_i)^Ta_j[/math] . Тогда [math]A^TA=G(a_1,a_2,ldots,a_n)[/math] — матрица Грама системы [math]a_1,a_2,ldots,a_n[/math] векторов пространства [math]mathbb^n[/math] . По свойству 3, теореме 2.2 и свойству 1 определителя получаем доказываемое неравенство:

4. Если [math]A[/math] — невырожденная квадратная матрица, то любой главный минор матрицы [math]A^TA[/math] положителен. Это следует из пункта 2, учитывая представление произведения [math]A^TA=G(a_1,ldots,a_n)[/math] как матрицы Грама системы линейно независимых векторов [math]a_1,ldots,a_n[/math] — столбцов матрицы [math]A[/math] (см. пункт 3).

Изоморфизм евклидовых пространств

Два евклидовых пространства [math]mathbb[/math] и [math]mathbb'[/math] называются изоморфными [math](mathbbleftrightarrow mathbb’)[/math] , если они изоморфны как линейные пространства и скалярные произведения соответствующих векторов равны:

где [math](cdot,cdot)[/math] и [math](cdot,cdot)'[/math] — скалярные произведения в пространствах [math]mathbb[/math] и [math]mathbb'[/math] соответственно.

Напомним, что для изоморфизма конечномерных линейных пространств необходимо и достаточно, чтобы их размерности совпадали (см. теорему 8.3). Покажем, что это условие достаточно для изоморфизма евклидовых пространств (необходимость следует из определения). Как и при доказательстве теоремы 8.3, установим изоморфизм n-мерного евклидова пространства [math]mathbb[/math] с вещественным арифметическим пространством [math]mathbb^n[/math] со скалярным произведением (8.27). В самом деле, взяв в пространстве [math]mathbb[/math] какой-нибудь ортонормированный базис [math](mathbf)=(mathbf_1,ldots,mathbf_n)[/math] , поставим в соответствие каждому вектору [math]mathbfin mathbb[/math] его координатный столбец [math]xin mathbb^n

(mathbfleftrightarrow x)[/math] . Это взаимно однозначное соответствие устанавливает изоморфизм линейных пространств: [math]mathbbleftrightarrow mathbb^n[/math] . В ортонормированном базисе скалярное произведение векторов [math]mathbf[/math] и [math]mathbf[/math] пространства [math]mathbb[/math] находится по формуле

(см. пункт 1 преимуществ ортонормированного базиса). Такое же выражение дает скалярное произведение (8.27) координатных столбцов [math]x[/math] и [math]y[/math] , т.е. скалярные произведения соответствующих элементов равны

Следовательно, евклидовы пространства [math]mathbb[/math] и [math]mathbb^n[/math] изоморфны.

Таким образом, изучение конечномерных евклидовых пространств может быть сведено к исследованию вещественного арифметического пространства [math]mathbb^n[/math] со стандартным скалярным произведением (8.27).

Ортогональные векторы и условие ортогональности

В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.

Ортогональные векторы: определение и условие

Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .

Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.

Примеры решения задач на ортогональность векторов

Плоские задачи на ортогональность векторов

Если дана плоская задача, то ортогональность для векторов a ¯ = < a x × a y >и b ¯ = < b x × b y >записывают следующим образом:

a ¯ × b ¯ = a x × b x + a y × b y = 0

Задача 1. Докажем, что векторы a ¯ = < 1 ; 2 >и b ¯ = < 2 ; – 1 >ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( – 1 ) = 2 – 2 = 0

Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.

Задача 2. Докажем, что векторы a ¯ = < 3 ; – 1 >и b ¯ = < 7 ; 5 >ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 3 × 7 + ( – 1 ) × 5 = 21 – 5 = 16

Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.

Задача 3. Найдем значение числа n , при котором векторы a ¯ = < 2 ; 4 >и b ¯ = < n ; 1 >будут ортогональными.

Как решить?

Найдем скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = – 4 n = – 2

Ответ: векторы являются ортогональными при значении n = 2 .

Примеры пространственных задач на ортогональность векторов

При решении пространственной задачи на ортогональность векторов a ¯ = < 1 ; 2 ; 0 >и b ¯ = < 2 ; – 1 ; 10 >условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .

Задача 4. Докажем, что векторы a ¯ = < 1 ; 2 ; 0 >и b ¯ = < 2 ; – 1 ; 10 >являются ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( – 1 ) + 0 × 10 = 2 – 2 = 0

Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.

Задача 5. Найдем значение числа n , при котором векторы a ¯ = < 2 ; 4 ; 1 >и b ¯ = < n ; 1 ; – 8 >будут являться ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( – 8 ) = 2 n + 4 – 8 = 2 n – 4 2 n – 4 = 0 2 n = 4 n = 2

Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .

Векторные пространства

При проведении научных и прикладных исследование часто создаются модели, в которых рассматриваются точки и/или векторы определенных пространств. Например, в моделях шифров на эллиптических кривых используются аффинные и проективные пространства. К проективным прибегают тогда, когда необходимо ускорить вычисления, так как в формулах манипулирования с точками эллиптической кривой выводимых в рамках проективного пространства отсутствует операция деления на координату, которую в случае аффинного пространства обойти не удается.

Операция деления как раз одна из самых «дорогих» операций. Дело в том, что в алгебраических полях, а соответственно и в группах операция деления вообще отсутствует и выход из положения (когда не делить нельзя) состоит в том, что операцию деления заменяют умножением, но умножают не на саму координату, а на обращенное ее значение. Из этого следует, что предварительно надо привлекать расширенный алгоритм Евклида НОД и кое что еще. Одним словом, не все так просто как изображают авторы большинства публикаций о ЕСС. Почти все, что по этой теме опубликовано и не только в Интернете мне знакомо. Мало того, что авторы не компетентны и занимаются профанацией, оценщики этих публикаций плюсуют авторов в комментариях, т. е. не видят ни пробелов, ни явных ошибок. Про нормальную же статью пишут, что она уже 100500-я и от нее нулевой эффект. Так все пока на Хабре устроено, анализ публикаций делается огромный, но не качества содержания. Здесь возразить нечего — реклама двигатель бизнеса.

Линейное векторное пространство

Изучение и описание явлений окружающего мира с необходимостью приводит нас к введению и использованию ряда понятий таких как точки, числа, пространства, прямые линии, плоскости, системы координат, векторы, множества и др.

Пусть r = вектор трехмерного пространства, задает положение одной частицы (точки) относительно начала координат. Если рассматривать N элементов, то описание их положения требует задания 3∙N координат, которые можно рассматривать как координаты некоторого вектора в 3N-мерном пространстве. Если рассматривать непрерывные функции и их совокупности, то приходим к пространствам, размерность которых равна бесконечности. На практике часто ограничиваются использованием лишь подпространства такого бесконечномерного пространства функции координат, обладающего конечным числом измерений.

Пример 1. Ряд Фурье — пример использования пространства функций. Рассмотрим разложение произвольной функции в ряд Фурье

Его можно трактовать как разложение «вектора» f(x) по бесконечному набору «ортогональных» базисных векторов sinпх

Это пример абстрагирования и распространения понятия вектора на бесконечное число измерений. Действительно, известно, что при -π≤x≤π

Существо дальнейшего рассмотрения не пострадает, если мы отвлечемся от размерности абстрактного векторного пространства – будь — то 3, 3N или бесконечность, хотя для практических приложений больший интерес представляет конечномерные поля и векторные пространства.

Набор векторов r1, r2,… будем называть линейным векторным пространством L, если сумма любых двух его элементов тоже находится в этом наборе и если результат умножения элемента на число С также входит в этот набор. Оговоримся сразу, что значения числа С могут быть выбраны из вполне определенного числового множества Fр – поля вычетов по модулю простого числа р, которое считается присоединенным к L.

Пример 2. Набор из 8 векторов, составленных из n =5 -разрядных двоичных чисел
r0 = 00000, r1 = 10101, r2 = 01111, r3 = 11010, r4 = 00101, r5 = 10110, r6 = 01001, r7 = 11100 образует векторное пространство L, если числа С є <0,1>. Этот небольшой пример позволяет убедиться в проявлении свойств векторного пространства, включенных в его определение.

Суммирование этих векторов выполняется поразрядно по модулю два, т. е. без переноса единиц в старший разряд. Отметим, что если все С действительные (в общем случае С принадлежат полю комплексных чисел), то векторное пространство называют действительным.

Формально аксиомы векторного пространства и записываются так:
r1 + r2 = r2 + r1 = r3; r1, r2, r3 є L – коммутативность сложения и замкнутость;
(r1 + r2) + r3 = r1 + (r2 + r3) = r1 + r2 + r3 – ассоциативность сложения;
ri + r0 = r0 + ri = ri; ∀i, ri, r0 є L–существование нейтрального элемента;
ri +(- ri) = r0, для ∀i существует противоположный вектор (-ri) є L;
1∙ ri = ri ∙1 = ri существование единицы для умножения;
α (β∙ri) = (α∙β)∙ri; α, β, 1, 0 – элементы числового поля F, ri є L; умножение на скаляры ассоциативно; результат умножения принадлежит L;
(α + β) ri = α∙ri + β∙ri; для ∀i, ri є L, α, β – скаляры;
а (ri + rj) = ari + arj для всех а, ri, rj є L;
a∙0 = 0, 0∙ri = 0; (-1) ∙ ri = – ri.

Размерность и базис векторного пространства

При изучении векторных пространств представляет интерес выяснение таких вопросов, как число векторов, образующих все пространство; какова размерность пространства; какой наименьший набор векторов путем применения к нему операции суммирования и умножения на число позволяет сформировать все векторы пространства? Эти вопросы основополагающие и их нельзя обойти стороной, так как без ответов на них утрачивается ясность восприятия всего остального, что составляет теорию векторных пространств.

Оказалось, что размерность пространства самым тесным образом связана с линейной зависимостью векторов, и с числом линейно независимых векторов, которые можно выбирать в изучаемом пространстве многими способами.

Линейная независимость векторов

Набор векторов r1, r2, r3 … rр из L называют линейно независимым, если для них соотношение

выполняется только при условии одновременного равенства .
Все , k = 1(1)p, принадлежат числовому полю вычетов по модулю два
F = <0, 1>.
Если в некотором векторном пространстве L можно подобрать набор из р векторов, для которых соотношение выполняется, при условии, что не все одновременно, т.е. в поле вычетов оказалось возможным выбрать набор , k =1(1)р, среди которых есть ненулевые, то такие векторы называются линейно зависимыми.

Пример 3. На плоскости два вектора = T и = T являются линейно независимыми, так как в соотношении (T-транспонирование)

невозможно подобрать никакой пары чисел коэффициентов не равных нулю одновременно, чтобы соотношение было выполнено.
Три вектора = T , = T , = T образуют систему линейно зависимых векторов, так как в соотношении

равенство может быть обеспечено выбором коэффициентов , не равных нулю одновременно. Более того, вектор является функцией и (их суммой), что указывает на зависимость от и . Доказательство общего случая состоит в следующем.

Пусть хотя бы одно из значений , k = 1(1)р, например, , а соотношение выполнено. Это означает, что векторы , k = 1(1)р, линейно зависимы

Выделим явным образом из суммы вектор rр

Говорят, что вектор rр является л и н е й н о й комбинацией векторов или rр через остальные векторы выражается линейным образом, т.е. rр линейно зависит от остальных. Он является их функцией.

На плоскости двух измерений любые три вектора линейно зависимы, но любые два неколлинеарных вектора являются независимыми. В трехмерном пространстве любые три некомпланарных вектора линейно независимы, но любые четыре вектора всегда линейно зависимы.

Зависимость/независимость совокупности <> векторов часто определяют, вычисляя определитель матрицы Грама (ее строки скалярные произведения наших векторов). Если определитель равен нулю, среди векторов имеются зависимые, если определитель отличен от нуля — векторы в матрице независимы.

Определителем Грама (грамианом) системы векторов

в евклидовом пространстве называется определитель матрицы Грама этой системы:

где — скалярное произведение векторов
и .

Размерность и базис векторного пространства

Размерность s = d (L) пространства L определяется как наибольшее число векторов в L, образующих линейно независимый набор. Размерность – это не число векторов в L, которое может быть бесконечным и не число компонентов вектора.

Пространства, имеющие конечную размерность s ≠ ∞, называются конечномерными, если
s = ∞, – бесконечномерными.

Ответом на вопрос о минимальном числе и составе векторов, которые обеспечивают порождение всех векторов линейного векторного пространства является следующее утверждение.

Любой набор s линейно независимых векторов в пространстве L образует его б а з и с. Это следует из того, что любой вектор линейного s-мерного векторного пространства L может быть представлен единственным способом в виде линейной комбинации векторов базиса.

Зафиксируем и обозначим символом , i = 1(1)s, один из наборов, образующих базис пространства L. Тогда

Числа rki, i = 1(1)s называются координатами вектора в базисе , i = 1(1)s, причем rki = (, ).
Покажем единственность представления . Очевидно, что набор , является зависимым, так как , i = 1(1)s – базис. Другими словами, существуют такие не равные одновременно нулю, что .
При этом пусть , ибо если , то хоть одно из , было бы отлично от нуля и тогда векторы , i = 1(1)s, были бы линейно зависимы, что невозможно, так как это базис. Следовательно,

, будем иметь
Используя прием доказательства «от противного», допустим, что записанное представление не единственное в этом базисе и существует другое

Тогда запишем отличие представлений, что, естественно, выражается как

Очевидно, что правая и левая части равны, но левая представляет разность вектора с самим собой, т. е. равна нулю. Следовательно, и правая часть равна нулю. Векторы , i = 1(1)s линейно независимы, поэтому все коэффициенты при них могут быть только нулевыми. Отсюда получаем, что

а это возможно только при

Выбор базиса. Ортонормированность

Векторы называют нормированными, если длина каждого из них равна единице. Этого можно достичь, применяя к произвольным векторам процедуру нормировки.

Векторы называют ортогональными, если они перпендикулярны друг другу. Такие векторы могут быть получены применением к каждому из них процедуры ортогонализации. Если для совокупности векторов выполняются оба свойства, то векторы называются ортонормированными.

Необходимость рассмотрения ортонормированных базисов вызвана потребностями использования быстрых преобразований как одно –, так и многомерных функций. Задачи такой обработки возникают при исследовании кодов, кодирующих информационные сообщения в сетях связи различного назначения, при исследовании изображений, получаемых
посредством автоматических и автоматизированных устройств, в ряде других областей, использующих цифровые представления информации.

Определение. Совокупность n линейно независимых векторов n-мерного векторного
пространства V называется его базисом.

Теорема. Каждый вектор х линейного n-мерного векторного пространства V можно представить, притом единственным образом, в виде линейной комбинации векторов базиса. Векторное пространство V над полем F обладает следующими свойствами:
0·х = 0 (0 в левой части равенства – нейтральный элемент аддитивной группы поля F; 0 в правой части равенства – элемент пространства V, являющийся нейтральным единичным элементом аддитивной группы V, называемый нулевым вектором);
(– 1)·х = –х; –1є F; x є V; –x є V;
Если α·х = 0єV, то при х ≠ 0 всегда α = 0.
Пусть Vn(F) – множество всех последовательностей (х1, х2, …, хn) длины n с компонентами из поля F, т.е. Vn(F) = i =1(1)n >.

Сложение и умножение на скаляр определяются следующим образом:
x + y =(x1 + y1, x2 + y2, …, xn + yn);
α·х = (α·х1, α·х2,…, α·хn), где у = (у1, у2,…, уn),
тогда Vn(F) является векторным пространством над полем F.

Пример 4. В векторном пространстве rо = 00000, r1 = 10101, r2 = 11010, r3 = 10101 над полем F2 = <0,1>определить его размерность и базис.
Решение. Сформируем таблицу сложения векторов линейного векторного пространства

В этом векторном пространстве V= каждый вектор в качестве противоположного имеет самого себя. Любые два вектора, исключая rо, являются линейно независимыми, в чем легко убедиться
c1·r1 + c2·r2 = 0; c1·r1 + c3·r3 = 0; c2·r2 + c3·r3 = 0;

Каждое из трех соотношений справедливо только при одновременных нулевых значениях пар коэффициентов сi, сj є <0,1>.

При одновременном рассмотрении трех ненулевых векторов один из них всегда является суммой двух других или равен самому себе, а r1+r2+r3=rо.

Таким образом, размерность рассматриваемого линейного векторного пространства равна двум s = 2, d(L) = s = 2, хотя каждый из векторов имеет пять компонентов. Базисом пространства является набор (r1, r2). Можно в качестве базиса использовать пару (r1, r3).

Важным в теоретическом и практическом отношении является вопрос описания векторного пространства. Оказывается, любое множество базисных векторов можно рассматривать как строки некоторой матрицы G, называемой порождающей матрицей векторного пространства. Любой вектор этого пространства может быть представлен как линейная комбинация строк матрицы G ( как, например, здесь).

Если размерность векторного пространства равна k и равна числу строк матрицы G, рангу матрицы G, то очевидно, существует k коэффициентов с q различными значениями для порождения всех возможных линейных комбинаций строк матрицы. При этом векторное пространство L содержит q k векторов.

Множество всех векторов из ℤpn с операциями сложения векторов и умножения вектора на скаляр из ℤp есть линейное векторное пространство.

Определение. Подмножество W векторного пространства V, удовлетворяющее условиям:
Если w1, w2 є W, то w1+ w2 є W,
Для любых α є F и w є W элемент αw є W,
само является векторным пространством над полем F и называется подпространством векторного пространства V.

Пусть V есть векторное пространство над полем F и множество W ⊆ V. Множество W есть подпространство пространства V, если W по отношению к линейным операциям, определенным в V, есть линейное векторное пространство.

Таблица. Характеристики векторных пространств

Компактность матричного представления векторного пространства очевидна. Например, задание L векторов двоичных 50-разрядных чисел, среди которых 30 векторов образуют базис векторного пространства, требует формирования матрицы G[30,50], а описываемое количество векторов превышает 10 9 , что в поэлементной записи представляется неразумным.

Все базисы любого пространства L разбиваются подгруппой Р невырожденных матриц с det G > 0 на два класса. Один из них (произвольно) называют классом с положительно ориентированными базисами (правыми), другой класс содержит левые базисы.

В этом случае говорят, что в пространстве задана ориентация. После этого любой базис представляет собой упорядоченный набор векторов.

Если нумерацию двух векторов изменить в правом базисе, то базис станет левым. Это связано с тем, что в матрице G поменяются местами две строки, следовательно, определитель detG изменит знак.

Норма и скалярное произведение векторов

После того как решены вопросы о нахождении базиса линейного векторного пространства, о порождении всех элементов этого пространства и о представлении любого элемента и самого векторного пространства через базисные векторы, можно поставить задачу об измерении в этом пространстве расстояний между элементами, углов между векторами, значений компонентов векторов, длины самих векторов.

Действительное или комплексное векторное пространство L называется нормированным векторным пространством, если каждый вектор r в нем может быть сопоставлен действительному числу || r || – модулю вектора, норме. Единичный вектор – это вектор, норма которого равна единице. Нулевой вектор имеет компонентами нули.

Определение. Векторное пространство называется унитарным, если в нем определена бинарная операция, ставящая каждой паре ri, rj векторов из L в соответствие скаляр. В круглых скобках (ri, rj) записывается (обозначается) скалярное или внутреннее произведение ri и rj, причем
1. (ri, rj) = ri ∙ rj;
2. (ri, rj) = (rj ∙ ri)*, где * указывает на комплексное сопряжение или эрмитову симметрию;
3. (сri, rj) = с(ri ∙ rj) – ассоциативный закон;
4. (ri + rj, rk) = (ri ∙ rk)+ (rj ∙ rk)– дистрибутивный закон;
5. (ri, rk) ≥ 0 и из (ri, rj ) = 0 следует ri = 0.

Определение. Положительное значение квадратного корня называют нормой (или длиной, модулем) вектора ri. Если = 1, то вектор ri называют нормированным.

Два вектора ri, rj унитарного векторного пространства L взаимно ортогональны, если их скалярное произведение равно нулю, т.е. (ri, rj) = 0.

При s = 3 в линейном векторном пространстве в качестве базиса удобно выбирать три взаимно перпендикулярных вектора. Такой выбор существенно упрощает ряд зависимостей и вычислений. Этот же принцип ортогональности используется при выборе базиса в пространствах и других размерностей s > 3. Использование введенной операции скалярного произведения векторов обеспечивает возможность такого выбора.

Еще большие преимущества достигаются при выборе в качестве базиса векторного пространства ортогональных нормированных векторов – ортонормированного базиса. Если не оговорено специально, то далее всегда будем считать, что базис еi, i = 1(1)s выбран именно таким образом, т.е.

, где ij — символ Кронекера (1823 — 1891).

В унитарных векторных пространствах такой выбор всегда реализуем. Покажем реализуемость такого выбора.

Определение. Пусть S = есть конечное подмножество векторного пространства V над полем F.
Линейная комбинация векторов из S есть выражение вида а1∙v1 + а2∙v2 +…+ аn∙vn, где каждое аi ∊ F.

Оболочка для множества S (обозначение ) есть множество всех линейных комбинаций векторов из S. Оболочка для S есть подпространство пространства V.

Если U есть пространство в V, то U натянуто на S (S стягивает U), если =U.
Множество векторов S линейно зависимо над F, если в F существуют скаляры а1, а2,…, аn, не все нули, для которых а1∙v1+ а2∙v2 +…+ аn∙vn = 0. Если таких скаляров не существует, то множество векторов S линейно независимо над F.

Если векторное пространство V натянуто на линейно независимую систему векторов S (или система S стягивает пространство V), то система S называется базисом для V.

Приведение произвольного базиса к ортонормированному виду

Известно следующее утверждение [11]. Если ē i, i = 1(1)s – произвольная конечная или счетная система линейно независимых векторов в унитарном векторном пространстве, то существует ортонормированная система ē i, i = 1(1)s, порождающая то же самое линейное пространство (многообразие).

В основу процедуры приведения базиса к ортонормированному виду положен процесс ортогонализации Грама — Шмидта, который в свою очередь, реализуется рекуррентными формулами

В развернутом виде алгоритм ортогонализации и нормирования базиса содержит следующие условия:

Делим вектор ē 1, на его норму; получим нормированный вектор ē i1/(||ē 1 ||);
Формируем V2 = ē 2 — (ē 1, ē 2)e 1 и нормируем его, получим е 2. Ясно, что тогда
(е1, е2)

(е1, е2) – (е1, ē 2)( е1, е1) = 0;
Построив V3 = ē 3– (e1, ē 3)e1 – (e2, ē 3) e2 и нормируя его, получим е3.

Для него имеем сразу же (е1, е3) = (е2, е3) = 0.
Продолжая такой процесс, получим ортонормированный набор ē i, i = 1(1)s. Этот набор содержит линейно независимые векторы, поскольку все они взаимно ортогональны.
Убедимся в этом. Пусть выполняется соотношение

Если набор ē i, i = 1(1)s зависимый, то хотя бы один сj коэффициент не равен нулю сj ≠ 0.

Умножив обе части соотношения на еj, получаем
(ej, c1∙e1 ) + (ej, c2∙e2 )+ . + ( ej, cj∙ej ) +…+ ( ej, cs∙rs ) = 0.
Каждое слагаемое в сумме равно нулю как скалярное произведение ортогональных векторов, кроме (ej ,cj∙ej), которое равно нулю по условию. Но в этом слагаемом
(ej, ej) = 1 ≠ 0, следовательно, нулем может быть только cj.
Таким образом, допущение о том, что cj ≠ 0 неверно и набор является линейно независимым.

Пример 5. Задан базис 3-х мерного векторного пространства:
< , , >.
Скалярное произведение определено соотношением:
( , ) = x1∙y1+x2∙y2+x3∙y3+x4∙y4.
Процедурой ортогонализации Грама — Шмидта получаем систему векторов:
а1 = ; a2 = -4 /7= /7;
a3 = +½ — /5 = /10.
(a1,a2)= (1+4+9+0) = 14;
a1 E =a1/√14;
a2-(a1 E ,a2)∙a1 E =a2-(8/√14)(a1/√14)=a2 — 4∙a1/7;
Третий вектор читателю предлагается обработать самостоятельно.

Нормированные векторы получают вид:
a1 E =a1/√14;
a2 E = /√70;
a3 E = /√70;

Ниже в примере 6 дается подробный развернутый процесс вычислений получения ортонормированного базиса из простого (взятого наугад).

Пример 6. Привести заданный базис линейного векторного пространства к ортонормированному виду.
Дано: векторы базиса

Подпространства векторных пространств

Структура векторного пространства

Представление объектов (тел) в многомерных пространствах весьма непростая задача. Так, четырехмерный куб в качестве своих граней имеет обычные трехмерные кубы, и в трехмерном пространстве может быть построена развертка четырехмерного куба. В некоторой степени «образность» и наглядность объекта или его частей способствует более успешному его изучению.

Сказанное позволяет предположить, что векторные пространства можно некоторым образом расчленять, выделять в них части, называемые подпространствами. Очевидно, что рассмотрение многомерных и тем более бесконечномерных пространств и объектов в них лишает нас наглядности представлений, что весьма затрудняет исследование объектов в таких
пространствах. Даже, казалось бы, такие простые вопросы, как количественные характеристики элементов многогранников (число вершин, ребер, граней, и т. п.) в этих пространствах решены далеко не полностью.

Конструктивный путь изучения подобных объектов состоит в выделении их элементов (например, ребер, граней) и описании их в пространствах меньшей размерности. Так четырехмерный куб в качестве своих граней имеет обычные трехмерные кубы и в трехмерном пространстве может быть построена развертка четырехмерного куба. В некоторой степени
«образность» и наглядность объекта или его частей способствует более успешному их изучению.

Если L – расширение поля К, то L можно рассматривать как векторное (или линейное) пространство над полем К. Элементы поля L (т. е. векторы) образуют по сложению абелеву группу. Кроме того, каждый «вектор» а є L может быть умножен на «скаляр» r є K, и при этом произведение ra снова принадлежит L (здесь ra – просто произведение в смысле операции поля L элементов r и а этого поля). Выполняются также законы
r∙(a+b) = r∙a+r∙b, (r+s)∙a = r∙a + r∙s, (r∙s)∙a = r∙(s∙a) и 1∙а = а, где r,s є K, a,b є L.

Сказанное позволяет предположить, что векторные пространства можно некоторым образом расчленять, выделять в них части, называемые подпространствами. Очевидно, что основным результатом при таком подходе является сокращение размерности выделяемых подпространств. Пусть в векторном линейном пространстве L выделены подпространства L1 и L2. В качестве базиса L1 выбирается меньший набор еi, i = 1(1)s1, s1 n – 1 способами. Следующий вектор v2 ≠ 0 не может быть выражен линейно через v1, т.е. может быть выбран q n – q способами и т.д.

Последний вектор vk ≠ 0 также линейно не выражается через предыдущие выбранные векторы v1,v2,…,vk и, следовательно, может быть выбран q n – q k – 1 способами. Общее число способов для выбора совокупности векторов v1,v2,…,vk, таким образом, определится как произведение числа выборов отдельных векторов, что и дает формулу (1). Для случая, когда k = п, имеем wп = wn, n и из формулы (I) получаем формулу (2).

Важные обобщающие результаты о размерностях подпространств.
Совокупность всех наборов длины n, ортогональных подпространству V1 наборов длины n, образует подпространство V2 наборов длины n. Это подпространство V2 называется нулевым пространством для V1.
Если вектор ортогонален каждому из векторов, порождающих подпространство V1, то этот вектор принадлежит нулевому пространству для V1.
Примером (V1) может служить множество 7-разрядных векторов порождающей матрицы (7,4)-кода Хемминга, с нулевым подпространством (V2) 7-разрядных векторов, образующих проверочную матрицу этого кода.

Если размерность подпространства (V1) наборов длины n равна k, то размерность нулевого подпространства (V2) равна n — k.

Если V2 — подпространство наборов длины n и V1 — нулевое пространство для V2, то (V2) — нулевое пространство для V1.

Пусть U∩V обозначает совокупность векторов, принадлежащих одновременно U и V, тогда U∩V является подпространством.

Пусть U⊕V обозначает подпространство, состоящее из совокупности всех линейных комбинаций вида au +bv, где u є U, v є V, a b — числа.

Сумма размерностей подпространств U∩V и U⊕V равна сумме размерностей подпространств U и V.

Пусть U2 — нулевое подпространство для U1, а V2 -нулевое пространство для V1. Тогда U2∩V2 является нулевым пространством для U1⊕V1.

Заключение

В работе рассмотрены основные понятия векторных пространств, которые часто используются при построении моделей анализа систем шифрования, кодирования и стеганографических, процессов, протекающих в них. Так в новом американском стандарте шифрования использованы пространства аффинные, а в цифровых подписях на эллиптических кривых и аффинные и
проективные (для ускорения обработки точек кривой).

Об этих пространствах в работе речь не идет (нельзя валить все в одну кучу, да и объем публикации я ограничиваю), но упоминания об этом сделаны не зря. Авторы, пишущие о средствах защиты, об алгоритмах шифров наивно полагают, что понимают детали описываемых явлений, но понимание евклидовых пространств и их свойств без всяких оговорок переносится в другие пространства, с другими свойствами и законами. Читающая аудитория вводится в заблуждение относительно простоты и доступности материала.

Создается ложная картина действительности в области информационной безопасности и специальной техники (технологий и математики).

В общем почин мною сделан, насколько удачно судить читателям.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/ortogonalnye-vektory-i-uslovie-ortogonalnosti/

http://habr.com/ru/post/514806/

[/spoiler]

Евклидово пространство — это вещественное линейное пространство, в котором зафиксирована симметричная положительно определенная билинейная форма. Значение билинейной формы на паре элементов называется скалярным произведением этих векторов.

Линейные и евклидовы пространства

Определение линейного пространства

Определение:

Множество V элементов х, у, z,… называется линейным пространством (действительным или комплексным), если по некоторому правилу

I. любым двум элементам х и у из V поставлен в соответствие элемент из V, обозначаемый х + у и называемый суммой элементов х и у;

II. любому элементу х из V и каждому числу а (вещественному или комплексному) поставлен в соответствие элемент из V, обозначаемый ах и называемый произведением элемента х на число а, и эти правила сложения и умножения на число удовлетворяют следующим аксиомам:

  1. (х + у) + z = х + (у + z) (ассоциативность);
  2. х + у = у + х (коммутативность)-,
  3. во множестве V существует элемент θ такой, что для любого элемента х из V выполняется равенство х + θ = х;
  4. для любого элемента х из V во множестве V существует элемент (-х) такой, что х + (-х) = θ;
  5. а(х + у) = ах + ау;
  6. (а + β)х = ах + βх;
  7. а( β х) = (а β )х;
  8. 1х = х.

Элемент θ называется нулевым элементом, а элемент (-х) — противоположным элементу х.
Элементы х, у, z,… линейного пространства часто называют векторами. Поэтому линейное пространство называют также векторным пространством.

Примеры линейных пространств

  1. Совокупность свободных геометрических векторов V3 в пространстве с введенными операциями сложения векторов и умножения вектора на число (рис. 1).

Этим же свойством обладают: совокупность V1 векторов на прямой и совокупность V2 векторов на плоскости.

Линейные и евклидовы пространства

2, Совокупность упорядоченных наборов (Линейные и евклидовы пространства) из n действительных чисел.

Операции — сложение и умножение на действительное число — вводятся так:

а) сложение —

Линейные и евклидовы пространства

б) умножение на число —

Линейные и евклидовы пространства

Обозначение: Rn (n -мерное вещественное координатное пространство).

Линейные и евклидовы пространства

3. Совокупность всевозможных матриц Rmxn размера m х n с введенными правилами сложения матриц,

Линейные и евклидовы пространства

и умножения матрицы на число,

Линейные и евклидовы пространства

В частности, совокупность n-строк, R1xn и совокупность столбцов высоты m, Rmx1, являются линейными пространствами.

4. Множество С(-1, 1) вещественных функций, непрерывных на интервале (-1, I), с естественными операциями сложения функций и умножения функции на число.

Во всех приведенных примерах требования 1-8 проверяются непосредственно.

Простейшие свойства линейных пространств

  1. Нулевой элемент θ определен однозначно.

Пусть θ1 и θ2 — нулевые элементы пространства V. Рассмотрим их сумму θ1 + θ2. Вследствие того, что θ2 — нулевой элемент, из аксиомы 3 получаем, что θ1+ θ2 = θ1, а так как элемент θ1 — также нулевой, то θ1 + θ2 = θ2 + θ1 = θ2 , т. е. θ1 = θ2 .

2. Для любого элемента х противоположный ему элемент (—х) определен однозначно.

Пусть x и х_ — элементы, противоположные элементу х. Покажем, что они равны.

Рассмотрим сумму х_ + х + x . Пользуясь аксиомой 1 и тем, что элемент x противоположен элементу х, получаем:

Линейные и евклидовы пространства

Аналогично убеждаемся в том, что

Линейные и евклидовы пространства

Нетрудно убедится также в справедливости следующих свойств:

  1. Для любого элемента х выполняется равенство 0х = θ.
  2. Для любого элемента х выполняется равенство —х = (- 1)х.
  3. Для любого числа а выполняется равенство аθ = θ.
  4. Из того, что ах = θ, следует, что либо а = 0, либо х = θ.

Линейные подпространства

Непустое подмножество W линейного пространства V называется линейным подпространством пространства V, если для любых элементов х и у из W и любого числа а выполняются следующие условия:

Линейные и евклидовы пространства

Иногда говорят: «множество W замкнуто относительно указанных операций».

Примеры линейных подпространств

1.Множество векторов на плоскости V2 является линейным подпространством линейного пространства V3.

2. Совокупность решений однородной системы m линейных уравнений с n неизвестными

Линейные и евклидовы пространства

образует линейное подпространство линейного пространства Rnx1. В самом деле, сумма решений однородной системы () является решением этой же системы и произведение решения системы (*) на число также является ее решением.

3. Совокупность всех вещественнозначных функций, непрерывных на интервале (-1, 1) и обращающихся в нуль при t = 0, образует линейное подпространство линейного пространства С(— 1,1).

Сумма f(t) + g(t) функций f(t) и g(t), обращающихся в нуль при t = 0, t(0) = f(0) = 0, и произведение af(t) функции f(t), обращающейся в нуль при t = 0, f(0) = 0, на число а равны нулю при t = 0.

Свойства линейного подпространства

  1. Если x1, …, хq — элементы линейного подпространства W, то любая их линейная комбинация Линейные и евклидовы пространства также лежит в W.
  2. Линейное подпространство W само является линейным пространством.

Достаточно убедиться лишь в том, что нулевой элемент 0 и элемент, противоположный произвольному элементу из W, лежат в W. Указанные векторы получаются умножением произвольного элемента х ∈ W на 0 и на -1: θ = 0х, -х = (- 1)х.

Сумма и пересечение линейных подпространств

Пусть V — линейное пространство, W1 w W2 — его линейные подпространства. Суммой W1 + W2 линейных подпространств W1 и W2 называется совокупность всевозможных элементов х пространства V, которые можно представить в следующем виде

Линейные и евклидовы пространства

где x1 лежит в W1, а х2 — в W2. Коротко это можно записать так:

Линейные и евклидовы пространства

Сумма линейных подпространств W1 и W2 нaзывается прямой, если для каждого элемента х этой суммы разложение (1) единственно (рис. 3).

Линейные и евклидовы пространства

Обозначение: W1⊕W2

Пересечением W1 ∩ W2 линейных подпространств W1 и W2 линейного пространства V называется совокупность элементов, которые принадлежат одновременно и линейному подпространству W1, и линейному подпространству W2.

Свойства пересечения и суммы линейных подпространств

  1. Сумма W1 + W2 является линейным подпространством пространства V.

Возьмем в W1 + W2 два произвольных элемента х и у. По определению суммы подпространств найдутся элементы х1, у1, из W1 и х2, у2, из W2 такие, что

Линейные и евклидовы пространства

Это позволяет записать сумму х + у в следующем виде

Линейные и евклидовы пространства

Так как Линейные и евклидовы пространства то сумма х + у лежит в W1 + W2.

Аналогично доказывается включение ах ∈ W1 + W2.

2. Пересечение W1 ∩ W2 является линейным подпространством пространства V.

3. Если нулевой элемент является единственным общим вектором подпространств W1 й W2 линейного пространства V, то их сумма является прямой — W1 ⊕ W2.

Линейная оболочка

Линейной оболочкой L(X) подмножества X линейного пространства V называется совокупность всевозможных линейных комбинаций элементов из X,

Линейные и евклидовы пространства

Последнее читается так: «линейная оболочка L(X) состоит из всевозможных элементов у, представимых в виде линейных комбинаций элементов множества X».

Основные свойства линейной оболочки

  1. Линейная оболочка L(X) содержит само множество X.
  2. L(X) — линейное подпространство пространства V.

Сумма линейных комбинаций элементов множества X и произведение линейной комбинации элементов на любое число снова являются линейными комбинациями элементов множества X.

3. L(X) — наименьшее линейное подпространство, содержащее множество X.

Это свойство следует понимать так: если линейное подпространство W содержит множество X , то W содержит и его линейную оболочку L(X).

Пусть W — линейное подпространство, содержащее заданное множество X. Тогда произвольная линейная комбинация Линейные и евклидовы пространства элементов множества X — элемент линейной оболочки L(X) — содержится и в подпространстве W.

Пример:

Рассмотрим в линейном пространстве R3 две тройки ξ = (1,1,0) и η = (1,0, I) (рис.4). Множество решений уравнения

Линейные и евклидовы пространства

является линейной оболочкой L(ξ , η) троек ξ и η.
Действительно, тройки (I, 1, 0) и (1, 0, I) образуют фундаментальную систему решений однородного уравнения (2), и значит, любое решение этого уравнения является их линейной комбинацией.

Линейные и евклидовы пространства

Пример:

Рассмотрим в линейном пространстве С(- ∞, ∞) вещественнозначных функций, непрерывных на всей числовой оси, набор X одночленов 1, х,…, хn:

Линейные и евклидовы пространства

Линейная оболочка L(X) представляет собой совокупность многочленов с вещественными коэффициентами, степени которых не превосходят n.

Обозначение: Линейные и евклидовы пространства

Линейная зависимость

Определение. Система элементов х1 . .. , хq линейного пространства V называется линейно зависимой, если найдутся числа a1,… , аq, не все равные нулю и такие, что
(1)

Линейные и евклидовы пространства

Если равенство (1) выполняется только при а1 = … = аq = 0, то система элементов x1,…, хq называется линейно независимой.

Справедливы следующие утверждения.

Теорема:

Система элементов x1,…, хq (q2) линейно зависима в том и только в том случае, если хотя бы один из ее элементов можно представить в виде линейной комбинации остальных.

Предположим сначала, что система элементов x1,…, xq линейно зависима. Будем Считать для определенности, что в равенстве (1) отличен от нуля коэффициент аq. Перенося все слагаемые, кроме последнего, в правую часть, после деления на аq ≠ 0 получим, что элемент хq является линейной комбинацией элементов х1 …, хq:

Линейные и евклидовы пространства

Обратно, если один из элементов равен линейной комбинации остальных,

Линейные и евклидовы пространства

то, перенося его в левую часть, получим линейную комбинацию

Линейные и евклидовы пространства

в которой есть отличные от нуля коэффициенты (-1 ≠ 0). Значит, система элементов x1,…., хq линейно зависима.

Теорема:

Пусть система элементов х1,…,хq линейно независима и y=Линейные и евклидовы пространства. Тогда коэффициенты a1 ,… ,аq определяются по элементу у единственным образом.
Пусть

Линейные и евклидовы пространства

Тогда

Линейные и евклидовы пространства

откуда

Линейные и евклидовы пространства

Из линейной независимости элементов x1…, xq вытекает, что a1 — β1 = … = аq — βq = 0 и, значит, Линейные и евклидовы пространства

Теорема:

Система элементов, содержащая линейно зависимую подсистему, линейно зависима.
Пусть первые q элементов системы х1 … , хq, xq+1… , xm линейно зависимы. Тогда найдется линейная комбинация этих элементов такая, что

Линейные и евклидовы пространства

и не все коэффициенты а1 … ,аq равны нулю. Добавляя элементы xq+1… , xm с нулевыми множителями, получаем, что и в линейной комбинации

Линейные и евклидовы пространства

равны нулю не все коэффициенты.

Пример. Векторы из V2 линейно зависимы тогда и только тогда, когда они компланарны (рис.5).

Линейные и евклидовы пространства

Базис. Размерность

Упорядоченная система элементов e1,…, еn линейного пространства V называется базисом этого линейного пространства, если элементы e1,…, еn линейно независимы и каждый элемент из V можно представить в виде их линейной комбинации. Упорядоченность означает здесь, что каждому элементу приписан определенный (порядковый) номер. Из одной системы п элементов можно построить n! упорядоченных систем.

Линейные и евклидовы пространства

Пример:

Пусть a, b, с — тройка некомпланарных векторов из Vз (рис.6). Тогда упорядоченные тройки а, b, с; b, с, а; с, а, b; b, а, с; а, с, b и с, b, а — различные базисы V3.

Пусть с = (e1 … еn) — базис пространства V.

Тогда для любого элемента х из V найдется набор чисел Линейные и евклидовы пространстватакой, что

Линейные и евклидовы пространства

В силу теоремы 2 числа Линейные и евклидовы пространства координаты элемента х в базисе с — определены однозначно.

Посмотрим, что происходит с координатами элементов при простейших действиях с ними.

Линейные и евклидовы пространства

Линейные и евклидовы пространства

и для любого числа а

Линейные и евклидовы пространства

Таким образом, при сложении элементов их соответствующие координаты складываются, а при умножении элемента на число все его координаты умножаются на это число.

Координаты элемента часто удобно записывать в виде столбца. Например,

Линейные и евклидовы пространства

— координатный столбец элемента Линейные и евклидовы пространствав базисе e.

Разложим произвольную систему элементов x1,…, хq по базису e,

Линейные и евклидовы пространства

ли рассмотрим координатные столбцы элементов ч1,…, хq в этом базисе:

Линейные и евклидовы пространства

Теорема:

Система элементов х1,… ,хq линейно зависима тогда и только тогда, когда линейно зависима система их координатных столбцов в каком-нибудь базисе.

Пусть

Линейные и евклидовы пространства

причем хотя бы один из коэффициентов λk отличен от нуля. Запишем это подробнее

Линейные и евклидовы пространства

Отсюда в силу единственности разложения элемента по базису вытекает, что

Линейные и евклидовы пространства

или, что тоже,

Линейные и евклидовы пространства

Таким образом, линейная комбинация координатных столбцов элементов x1,…, xq равна нулевому столбцу (с теми же коэффициентами λ1,…, λg). Это и означает, что система координатных столбцов линейно зависима.

Если же выполняется равенство (2), то, проводя рассуждения в обратном порядке, получаем формулу (1).

Тем самым, обращение в нуль некоторой нетривиальной (хотя бы один из коэффициентов отличен от нуля) линейной комбинации элементов линейного пространства равносильно тому, что нетривиальная линейная комбинация их координатных столбцов (с теми же коэффициентами) равна нулевому столбцу.

Теорема:

Пусть базис с линейного пространства V состоит из п элементов. Тогда всякая система из то элементов, где т > п, линейно зависима.

4 В силу теоремы 3 достаточно рассмотреть случай m = п + 1.

Пусть x1,.. . ,хп+1 — произвольные элементы пространства V. Разложим каждый элемент по базису e = (е1 …, еп):

Линейные и евклидовы пространства

и запишем координаты элементов х1 …, xn+1 в виде матрицы, отводя j-й столбец координатам элемента xj, j = 1,…, п + 1. Получим матрицу из п строк и п + 1 столбцов —

Линейные и евклидовы пространства

Ввиду того, что ранг матрицы К не превосходит числа п ее строк, столбцы матрицы К (их п + 1) линейно зависимы. А так как это координатные столбцы элементов x1…..хп+1, то согласно теореме 4 система элементов x1…..хп+1 также линейно зависима.

Следствие:

Все базисы линейного пространства V состоят из одинакового числа элементов.
Пусть базис e состоит из п элементов, а базис e’ из п‘ элементов. В силу только что доказанной теоремы из линейной независимости системы е’1,…, е’n заключаем, что п’ п. Меняя базисы e и e’ местами, в силу этой же теоремы получаем, что пп’.

Тем самым, п = п’.
Размерностью линейного пространства V называется число элементов базиса этого пространства.

Пример:

Базис координатного пространства R» образуют элементы

Линейные и евклидовы пространства

Система элементов e1,e2, …,еп линейно независима: из равенства

Линейные и евклидовы пространства

получаем, что

Линейные и евклидовы пространства

и значит, a1 = … = an = 0.

Кроме того, любой элемент Линейные и евклидовы пространстваиз R» можно записать в виде линейной комбинации элементов e1…..еп: ‘

Линейные и евклидовы пространства

Тем самым, размерность пространства R» равна п.

Пример:

Однородная линейная система

Линейные и евклидовы пространства

имеющая ненулевые решения, обладает фундаментальной системой решений (ФСР). ФСР является базисом линейного пространства решений однородной системы. Размерность этого линейного пространства равна числу элементов ФСР, т.е. п — r, где r — ранг матрицы коэффициентов однородной системы, an — число неизвестных.

Пример:

Размерность линейного пространства Мп многочленов степени не выше п равна п + I.

Так как всякий многочлен P(t) степени не выше п имеет вид

Линейные и евклидовы пространства

то достаточно показать линейную независимость элементов

Линейные и евклидовы пространства

Рассмотрим равенство

Линейные и евклидовы пространства

где t произвольно. Полагая t = 0, получаем, что ао = 0.

Продифференцируем равенство (3) по t:

Линейные и евклидовы пространства

Вновь положив t = 0, получим, что a1 = 0.

Продолжая этот процесс, последовательно убеждаемся в том, что a0 = a1 = … = ап = 0. Это означает, что система элементов e1 = I,… ,en+1 = t» линейно независима. Следовательно, искомая размерность равна n + 1.

Линейное пространство, размерность которого равна п, называется п-мерным.

Обозначение: dim V = п.

Соглашение. Далее в этой главе всюду считается, если не оговорено противное, что размерность линейного пространства V равна п.

Ясно, что если W — подпространство n-мерного линейного пространства V, то dim W ≤ п.

Покажем, что в п-мерном линейном пространстве V есть линейные подпространства любой размерности kп.

Пусть e = (е1 … еn) — базис пространства V. Легко убедиться в том, что линейная оболочка

Линейные и евклидовы пространства

имеет размерность k.

По определению dim{ θ } = 0.

Теорема:

О пополнении базиса. Пусть система элементов а1.. , аk линейного пространства V размерности п линейно независима и к < п. Тогда в пространстве V найдутся элементы Линейные и евклидовы пространства такие, что система а1 … , аk, Линейные и евклидовы пространства — базис V.
Пусть b — произвольный элемент линейного пространства V. Если система а1…. , аk, b линейно зависима, то

Линейные и евклидовы пространства

так как в нетривиальной линейной комбинации

Линейные и евклидовы пространства

коэффициент μ ≠ 0 вследствие линейной независимости системы а1…., аk.

Если бы разложение вида (4) можно было бы написать для любого элемента b пространства V, то исходная система a1…, аk была бы базисом согласно определению. Но в силу условия k < п это невозможно. Поэтому должен существовать элемент Линейные и евклидовы пространстватакой, что пополненная система Линейные и евклидовы пространства будет линейно независимой.

Если k + 1 = п, то эта система — базис пространства V.

Если k + 1 < п, то для системы Линейные и евклидовы пространстваследует повторить предыдущие рассуждения.

Таким способом любую заданную линейно независимую систему элементов можно достроить до базиса всего пространства V.

Пример:

Дополнить систему из двух векторов а1 = (1,2,0,1), а2 = (-1,1.1,0) пространства R4 до базиса этого пространства.

Возьмем в пространстве R4 векторы a3 = (1,0,0,0) и а4 = (0, 1,0,0) и покажем, что система векторов a1,а2,а3,а4 — базис R4.

Ранг матрицы

Линейные и евклидовы пространства

строками которой являются координаты векторов а1, а2, а3, а4, равен четырем. Это означает, что строки матрицы А, а, значит, и векторы а1, а2, а3, а4 линейно независимы.

Подобный подход используется и в общем случае: чтобы дополнить систему k линейно независимых элементов

Линейные и евклидовы пространства

до базиса пространства R» , матрица

Линейные и евклидовы пространства

элементарными преобразованиями строк приводится к трапециевидной форме, а затем дополняется п — k строками вида

(0 … 1 … 0)

так, чтобы ранг получаемой матрицы был равен п. Справедливо следующее утверждение.

Теорема:

Пусть W1 и W2 — линейные подпространства линейного пространства V. Тогда

Линейные и евклидовы пространства

Замена базиса

Пусть e = (e1 … еn) и e’ = (е’1, … е’n) — базисы линейного пространства V. Разложим элементы базиса e’ по базису с. Имеем

Линейные и евклидовы пространства

Эти соотношения удобно записать в матричной форме
(2)

Линейные и евклидовы пространства

Матрица

Линейные и евклидовы пространства

называется матрицей перехода от базиса e к базису e’.

Свойства матрицы перехода

  1. det S ≠ 0.

Доказательство этого свойства проводится от противного.

Из равенства detS = 0 вытекает линейная зависимость столбцов матрицы S. Эти столбцы являются координатными столбцами элементов е’1,…, е’n в базисе e. Поэтому (и вследствие теоремы 4) элементы е’1…..с’n должны быть линейно зависимыми.

Последнее противоречит тому, что e’ — базис. Значит, допущение, что det S = 0, неверно.

2. Если и Линейные и евклидовы пространства— координаты элемента х в базисах e и e’ соответственно, то:
(3)

Линейные и евклидовы пространства

Заменяя в формуле

Линейные и евклидовы пространства

e’j их выражениями (1), получаем, что

Линейные и евклидовы пространства

Отсюда в силу единственности разложения элемента по базису имеем

Линейные и евклидовы пространства

Переходя к матричной записи найденных равенств, убеждаемся в справедливости свойства 2.

3. S -1 — матрица перехода от базиса e’ к базису e.

Свойство 3 доказывается умножением обеих частей матричного равенства (2) на матрицу S-1 справа.

Евклидовы пространства

Вещественное линейное пространство V называется (вещественным) евклидовым пространством, если любым двум элементам х и у из V ставится в соответствие число, обозначаемое через (х,у), такое, что для любых элементов х, y,z и произвольного вещественного числа а выполняются следующие условия:

Линейные и евклидовы пространства

4. (х, х) ≥ 0; причем равенство нулю возможно в том и только в том случае, если х = θ.

Число (х, у) называется скалярным произведением элементов х и у. Примеры евклидовых пространств.

  1. В пространстве свободных векторов К] скалярное произведение векторов а и b определяется так:
Линейные и евклидовы пространства

2. Скалярное произведение произвольных элементов Линейные и евклидовы пространства из координатного пространства R» можно определить формулой

Линейные и евклидовы пространства

3, Линейное подпространство евклидова пространства само является евклидовым пространством.

Пользуясь определением евклидова пространства, нетрудно доказать следующие свойства:

Линейные и евклидовы пространства

Теорема:

Неравенство Коши—Буняковского. Для любых двух элементов х и у евклидова пространства V справедливо неравенство

Линейные и евклидовы пространства

Если (х, х) = θ , то х = θ и неравенство выполняется вследствие того, что ( θ , у) = 0.

Обратимся к случаю (х, х) ≠ 0. Тогда (х, х) > 0. По определению скалярного произведения неравенство

Линейные и евклидовы пространства

справедливо для любых элементов х и у из пространства V и любого вещественного числа t. Запишем неравенство (1) подробнее:

Линейные и евклидовы пространства

Левую часть последнего неравенства можно рассматривать как квадратный трехчлен относительно t. Из того, что знак этого квадратного трехчлена не изменяется при любых t, заключаем, что его дискриминант неположителен,

Линейные и евклидовы пространства

Перенося вычитаемое в правую часть, получаем требуемое неравенство.

Замечание:

Часто доказанное неравенство записывают в равносильной форме,

Линейные и евклидовы пространства

Следует подчеркнуть, что слева в этом неравенстве стоит абсолютная величина (модуль) скалярного произведения, а в правой части — нормы векторов х и у.

Определение:

Длиной (нормой) элемента х называется число |х|, вычисляемое по правилу

Линейные и евклидовы пространства

Ясно, что |х| ≥ 0 для любого х, причем равенство |х| = 0 возможно лишь в случае, если х = θ.

Рассмотрим цепочку равенств:

Линейные и евклидовы пространства

Заменяя второе слагаемое на 2|(х, у)| ≥ 2(х, у) и применяя неравенство Коши—Буняковского |(х,у)| ≤ |х| • |у|, получаем, что

Линейные и евклидовы пространства

После извлечения квадратного корня приходим к неравенству треугольника:
|х + у| ≤ |х| + |у|
(рис.7).

Линейные и евклидовы пространства

Углом между ненулевыми элементами х и у евклидова пространства называется число φ, подчиненное следующим двум условиям:

Линейные и евклидовы пространства

Определение угла корректно, так как согласно теореме 8 имеем

Линейные и евклидовы пространства

для любых ненулевых элементов х и у.

Элементы х и у называются ортогональными, если (х, у) = 0. Для ортогональных элементов из соотношения (2) вытекает равенство

Линейные и евклидовы пространства

являющееся обобщением известной теоремы Пифагора’, квадрат длины суммы ортогональных элементов равен сумме квадратов их длин (рис. 8).

Линейные и евклидовы пространства

Система элементов f1…..f k называется ортогональной, если (fi, fj) =0′ при i ≠ j, и ортонормированной, если

Линейные и евклидовы пространства

Определение:

Символ

Линейные и евклидовы пространства

называют символом Кронекера.

Теорема:

Ортонормированная система элементов линейно независима.

Умножая обе части равенства

Линейные и евклидовы пространства

скалярно на элемент fj, j = 1 ,… ,k, получаем, что

Линейные и евклидовы пространства

И так как (fj, fj) = 1,то aj = 0, j = 1,…, k.

Метод ортогонализации

Покажем, как, пользуясь заданной системой линейно независимых элементов f1,… ,fk евклидова пространства Е, построить в нем ортонормированную систему из к элементов.

Положим g1 = f1.

Для того, чтобы элемент

Линейные и евклидовы пространства

был ортогонален элементу g1, необходимо выполнение следующего равенства:

Линейные и евклидовы пространства

откуда

Линейные и евклидовы пространства

Тем самым, элемент

Линейные и евклидовы пространства

ортогонален элементу g1 (рис. 9 а).

Линейные и евклидовы пространства

Пользуясь построенными элементами g1, g2 и заданным элементом fз, построим элемент

Линейные и евклидовы пространства

ортогональный как элементу g1, так и элементу g2. Для этого коэффициенты β1 и β2 должны удовлетворять следующим условиям:

Линейные и евклидовы пространства

откуда

Линейные и евклидовы пространства

Таким образом, элемент
, (f3,g|) (f3,g2)

Линейные и евклидовы пространства

ортогонален элементам g1 и g2 (рис. 9 6).

Аналогичными рассуждениями можно показать, что элемент

Линейные и евклидовы пространства

ортогонален элементам Линейные и евклидовы пространства

Делением каждого элемента gi (i = 1…..k) на его длину |g<|, получаем ортонормированную систему

Линейные и евклидовы пространства

(рис. 10).

Линейные и евклидовы пространства

Базис e = (e1 … еn) евклидова пространства называется ортонормированным, или ортобазисом, если

Линейные и евклидовы пространства

Суммируя вышеизложенное, получаем следующий результат.

Теорема:

В любом евклидовом пространстве существует о ртонормированный базис.
Пример:

Методом ортогонализации построить ортоиормированный базис евклидова пространства Е по его базису

Линейные и евклидовы пространства

Полагаем b1 = a1 и b2 = а2 — ab1. Для того, чтобы вектор

Линейные и евклидовы пространства

был ортогонален вектору b1, необходимо выполнение неравенства

Линейные и евклидовы пространства

откуда

Линейные и евклидовы пространства

Тем самым,

Линейные и евклидовы пространства

Для того, чтобы вектор

Линейные и евклидовы пространства

был ортогонален векторам b1 и b2, необходимо выполнение равенств

Линейные и евклидовы пространства

откуда

Линейные и евклидовы пространства

Тем самым, вектор

Линейные и евклидовы пространства

Система векторов b1, b2, b3 ортогональна. Поделив каждый вектор на его длину, получим

Линейные и евклидовы пространства

— ортонормированный базис пространства Е.

При помощи ортонормированного базиса скалярное произведение элементов вычисляется особенно просто. Пусть e = (e1 … еn) — ортонормированный базис пространства Е. Вычислим скалярное произведение элементов х и у, предварительно разложив их по базису e

Линейные и евклидовы пространства

Имеем

Линейные и евклидовы пространства

В частности,

Линейные и евклидовы пространства

Откуда

Линейные и евклидовы пространства

Ортогональное дополнение

Пусть W — линейное подпространство евклидова пространства V. Совокупность W⊥ элементов у пространства V, обладающих свойством

(y. х) = 0,

где х — произвольный элемент из W, называется ортогональным дополнением подпространства W. Другими словами, ортогональное дополнение W⊥ состоит из всех элементов у, ортогональных всем элементам подпространства W.

Свойства ортогонального дополнения

  1. W⊥ — линейное подпространство пространства V. Пусть элементы y1, у2 лежат в W⊥ , т. е.
Линейные и евклидовы пространства

для любого элемента х из W. Складывая эти равенства и пользуясь свойствами скалярного произведения, получаем,что

Линейные и евклидовы пространства

для любого элемента х из W. Это означает, что

Линейные и евклидовы пространства

Из того, что (у, х) = 0 для любого элемента х из W, вытекает равенство (ау, х) = а(у, х) и, значит, включение ay ∈ W⊥ .

  1. V = W ⊕ W⊥ .

Свойство 2 означает, что любой элемент х пространства V можно представить, причем единственным образом, в виде суммы элементов из W и W⊥ :

x = y+z. ‘ (*)

Элемент у ∈ W называется ортогональной проекцией элемента х на линейное подпространство W, а элемент z ∈ W⊥его ортогональной составляющей (рис. 11).

Линейные и евклидовы пространства

Покажем, как по заданным элементу х и линейному подпространству W найти его ортогональную проекцию у и ортогональную составляющую г.

Можно считать, что в линейном подпространстве W задан ортонормированный базис e1…..еk. Запишем искомый элемент у в виде линейной комбинации

Линейные и евклидовы пространства

Подставляя это выражение в формулу (*):

Линейные и евклидовы пространства

и умножая обе части полученного равенства последовательно на элементы e1,…, еk, в предположении z ⊥ W приходим к соотношениям

Линейные и евклидовы пространства

Элементы

Линейные и евклидовы пространства

обладают требуемыми свойствами. *

Пример:

Найти ортогональную проекцию вектора х = (4, 2, 3, 5) на линейное подпространство W ⊂ R4, заданное системой уравнений

Линейные и евклидовы пространства

Векторы a1 = (1,0,0,-1) и а2 = (0,1,-1,0) образуют фундаментальную систему решений и, следовательно, базис подпространства W. Кроме того, векторы a1 и а2 ортогональны. Для того, чтобы построить ортонормированный базис подпространства W, достаточно разделить эти векторы на иx длины. В результате получим

Линейные и евклидовы пространства

Вектор

Линейные и евклидовы пространства

является ортогональной проекцией вектора х = (4,2, 3, 5), на подпространство W, а вектор

Линейные и евклидовы пространства

— его ортогональной составляющей.

Унитарные пространства

Унитарным пространством называется линейное комплексное пространство U, в котором каждой упорядоченной паре элементов х и у из U ставится в соответствие число — скалярное произведение (х, у) так, что для любых элементов х, у и z из U и любого комплексного числа а выполняются следующие соотношения:

  1. (у, х) = (х, у) (черта в правой части указывает на операцию комплексного сопряжения);
  2. (x + y,z) = (x,z) + (y,z);
  3. (ах, у) = а(х, у);
  4. (х, х) ≥ 0, причем равенство (х, х) = 0 возможно лишь в случае, если х = θ.

Пример:

В координатном пространстве Сn, элементами которого являются всевозможные упорядоченные наборы п комплексных чисел, скалярное произведение можно ввести так

Линейные и евклидовы пространства

Линейные и евклидовы пространства

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Добавить комментарий