Как найти базис поля

Функция, заданная
на области
M
аффинного пространства

называется полем.
Конечно, точки MÎM
могут быть представлены своими декартовыми

или криволинейными

координатами. Значениями данной функции
могут быть скаляры (скалярное поле),
векторы (векторное поле), тензоры из

(тензорное поле).

Операции над
тензорными полями одного ранга (только
скалярными, только векторными, и т. д.)
и композиции тензорных полей, заданные
на одной и той же области аффинного
пространства выполняются поточечно.
Все, что в предыдущих главах относилось
к тензорам, естественным образом
переносится на тензорные поля и имеет
место в тензорном пространстве значений
поля в каждой точке аффинного пространства.

В теории упругости
механики сплошной среды для каждой
точки деформируемого тела, занимающего
область трехмерного аффинного
пространства, определены тензоры
напряжений и деформаций, а также тензорная
функция, их связывающая.

В частном случае
векторного
поля в векторном пространстве значений
поля можно определить особый базис,
связанный с системой координат в аффинном
пространстве и зависящий от точки поля
(т.е. локальный). Введем этот базис.

Рассмотрим
координатные линии некоторой криволинейной
системы координат, проходящие через
некоторую точку M
с координатами

.
Согласно (7.13¢)
уравнение координатной линии

имеет вид

.

Требование (7.6)
позволяет нам взять производную от этой
векторной функции по

в точке M
(векторы репера

от

не зависят), что даст в результате вектор

,
касательный к координатной линии

(рис. 7.4).

Рис. 7.4. Смысл
вектора локального базиса

Для произвольной
координатной линии


(7.14)

В декартовой
системе координат

,

и выражение (7.14) принимает вид


. (7.15)

Условимся считать
в выражениях вида

индекс j
нижним. В рамках данного соглашения
иногда пользуются краткой записью

.
Это соглашение эквивалентно определению
(7.14), согласно которому векторы

считаются векторами основного базиса,
а компоненты

— компонентами разложения

в базисе

,

.

Векторы

являются линейно независимыми. Это
следует из того, что определитель,
составленный из компонент разложения

по базису

в (7.14) всегда отличен от нуля (условие
(7.7)). Следовательно, векторы

образуют базис в

.
Этот базис, состоящий из векторов

,
касательных к координатным линиям в
данной точке пространства

,
называется
локальным базисом
.

Для произвольной
системы координат векторы локального
базиса различны в различных точках
пространства

.
Исключением является декартова система
координат, в которой все локальные
базисы совпадают с реперными векторами.
Существование такой системы координат
в аффинном пространстве делает возможным
отождествить векторные пространства
значений векторного поля в различных
точках M
Í
.

Если векторы
локального базиса в какой-либо точке
области образуют правую тройку, то и в
других точках этой области тройка
локальных базисных векторов всегда
будет правой (предлагаем убедиться в
этом), и такую систему координат можно
назвать правой. Конечно, подобный вывод
справедлив и для левой системы координат.

Рассмотрим закон
преобразования векторов локального
базиса при преобразовании систем
координат. Пусть имеются две системы
координат — “старая”

и “новая”

.
Соответствующие векторы локального
базиса определяются выражениями


. (7.16)

Тогда связь между

и

может быть установлена соотношениями


(7.17)

матрицы преобразования

и

в (7.17) являются невырожденными и взаимно
обратными, что следует из (7.7).

Кроме алгебраических
операций, в предположении достаточной
гладкости тензорного поля над ним
определяется операция ковариантного
дифференцирования. Рассмотрим сначала
векторное поле


. (7.18)

Явная запись
аргументов в (7.18) подчеркивает, что
значение векторного поля t
в данной точке

задано компонентами в локальном
базисе ei.
Полагая поле (7.18) дважды дифференцируемым,
рассмотрим производную


. (7.19)

Производная
базисного вектора по криволинейным
координатам

,
найденная в каждой точке области
аффинного пространства, есть векторное
поле. В каждой рассматриваемой точке
разложим эту производную по векторам
локального базиса


(7.20)

(желательно
запомнить закономерность в расположении
индексов справа и слева).

Компоненты
разложения вектора

в локальном базисе ei
называются
символами
Кристоффеля II рода
.
Подставляя (7.20) в (7.19) получим


. (7.21)

Выражение в скобках
называют
ковариантной производной
контравариантных
компонент вектора. Кроме частной
производной данных компонент в
ковариантную производную входят
компоненты частных производных векторов
локального базиса.

В аффинном
пространстве ранее введенный локальный
базис следует считать основным базисом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Алгебраическое числовое поле, поле алгебраических чисел (или просто числовое поле) — это конечное (а следовательно — алгебраическое) расширение поля рациональных чисел mathbb {Q} . Таким образом, числовое поле — это поле, содержащее mathbb {Q} и являющееся конечномерным векторным пространством над ним. При этом некоторые авторы называют числовым полем любое подполе комплексных чисел — например, М. М. Постников в «Теории Галуа».

Числовые поля и, более общо, алгебраические расширения поля рациональных чисел являются основным объектом изучения алгебраической теории чисел.

Примеры[править | править код]

  • Наименьшее и базовое числовое поле — поле рациональных чисел mathbb {Q} .
  • Гауссовы рациональные числа, обозначаемые {mathbb  Q}(i) — первый нетривиальный пример числового поля. Его элементы — выражения вида
a+bi
где a и b рациональные числа, i — мнимая единица. Такие выражения можно складывать и перемножать по обычным правилам действий с комплексными числами, и у каждого ненулевого элемента существует обратный, как это видно из равенства

(a+bi)left({frac  {a}{a^{2}+b^{2}}}-{frac  {b}{a^{2}+b^{2}}}iright)={frac  {(a+bi)(a-bi)}{a^{2}+b^{2}}}=1.
Из этого следует, что рациональные гауссовы числа образуют поле, являющееся двумерным пространством над mathbb {Q} (то есть квадратичным полем).

Кольцо целых числового поля[править | править код]

Поскольку числовое поле является алгебраическим расширением поля mathbb {Q} , любой его элемент является корнем некоторого многочлена с рациональными коэффициентами (то есть является алгебраическим). Более того, каждый элемент является корнем многочлена с целыми коэффициентами, так как можно домножить все рациональные коэффициенты на произведение знаменателей. Если же данный элемент является корнем некоторого унитарного многочлена с целыми коэффициентами, он называется целым элементом (или алгебраическим целым числом). Не все элементы числового поля целые: например, легко показать что единственные целые элементы mathbb {Q}  — это обычные целые числа.

Можно доказать, что сумма и произведение двух алгебраических целых чисел — снова алгебраическое целое число, поэтому целые элементы образуют подкольцо числового поля K, называемое кольцом целых поля K и обозначаемое {mathcal  O}_{K}. Поле не содержит делителей нуля и это свойство наследуется при переходе к подкольцу, поэтому кольцо целых целостно; поле частных кольца {mathcal  O}_{K} — это само поле K. Кольцо целых любого числового поля обладает следующими тремя свойствами: оно целозамкнуто, нётерово и одномерно. Коммутативное кольцо с такими свойствами называется дедекиндовым в честь Рихарда Дедекинда.

Разложение на простые и группа классов[править | править код]

В произвольном дедекиндовом кольце существует и единственно разложение ненулевых идеалов в произведение простых. Однако не любое кольцо целых удовлетворяет свойству факториальности: уже для кольца целых квадратичного поля
{mathcal  O}_{{{mathbb  Q}({sqrt  {-5}})}}={mathbb  Z}[{sqrt  {-5}}] разложение не единственно:

6=2cdot 3=(1+{sqrt  {-5}})(1-{sqrt  {-5}})

Введя на этом кольце норму, можно показать, что эти разложения действительно различны, то есть одно нельзя получить из другого умножением на обратимый элемент.

Степень нарушения свойства факториальности измеряют при помощи группы классов идеалов, эта группа для кольца целых всегда конечна и её порядок называют числом классов.

Базисы числового поля[править | править код]

Целый базис[править | править код]

Целый базис числового поля F степени n — это множество

B = {b1, …, bn}

из n элементов кольца целых поля F, такое что любой элемент кольца целых OF поля F можно единственным способом записать как Z-линейную комбинацию элементов B; то есть для любого x из OF существует и единственно разложение

x = m1b1 + … + mnbn,

где mi — обычные целые числа. В этом случае любой элемент F можно записать как

m1b1 + … + mnbn,

где mi — рациональные числа. После это целые элементы F выделяются тем свойством, что это в точности те элементы, для которых все mi целые.

Используя такие инструменты как локализация и эндоморфизм Фробениуса, можно построить такой базис для любого числового поля. Его построение является встроенной функцией во многих системах компьютерной алгебры.

Степенной базис[править | править код]

Пусть F — числовое поле степени n. Среди всех возможных базисов F (как Q-векторного пространства), существуют степенные базисы, то есть базисы вида

Bx = {1, x, x2, …, xn−1}

для некоторого xF. Согласно теореме о примитивном элементе, такой x всегда существует, его называют примитивным элементом данного расширения.

Норма и след[править | править код]

Алгебраическое числовое поле является конечномерным векторным пространством над mathbb {Q} (обозначим его размерность за n), и умножение на произвольный элемент поля является линейным преобразованием этого пространства. Пусть e_{1},e_{2},ldots e_{n} — какой-нибудь базис F, тогда преобразованию xmapsto alpha x соответствует матрица A=(a_{{ij}}), определяемая условием

alpha e_{i}=sum _{{j=1}}^{n}a_{{ij}}e_{j},quad a_{{ij}}in {mathbf  {Q}}.

Элементы этой матрицы зависят от выбора базиса, однако от него не зависят все инварианты матрицы, такие как определитель и след. В контексте алгебраических расширений, определитель матрицы умножения на элемент называется нормой этого элемента (обозначается N(x)); след матрицы — следом элемента (обозначается {text{Tr}}(x)).

След элемента является линейным функционалом на F:

{text{Tr}}(x+y)={text{Tr}}(x)+{text{Tr}}(y) и {text{Tr}}(lambda x)=lambda {text{Tr}}(x),lambda in {mathbb  Q}.

Норма является мультипликативной и однородной функцией:

N(xy)=N(x)cdot N(y) и N(lambda x)=lambda ^{n}N(x),lambda in {mathbb  Q}.

В качестве исходного базиса можно выбрать целый базис[⇨], умножению на целое алгебраическое число (то есть на элемент кольца целых[⇨]) в этом базисе будет соответствовать матрица с целыми элементами. Следовательно, след и норма любого элемента кольца целых являются целыми числами.

Пример использования нормы[править | править код]

Пусть d — натуральное число, свободное от квадратов, тогда {mathbb  Q}({sqrt  d}) — квадратичное поле (в частности, являющееся числовым полем). Выберем в этом поле целый базис (1,{sqrt  d}) ({sqrt  d} — целый элемент, так как он является корнем приведенного многочлена x^{2}-d). В этом базисе умножению на a+b{sqrt  d} соответствует матрица

{begin{pmatrix}a&db\b&aend{pmatrix}}

Следовательно, N(a+b{sqrt  d})=a^{2}-db^{2}. На элементах кольца {mathbb  Z}[{sqrt  d}] эта норма принимает целые значения. Норма является гомоморфизмом мультипликативной группы {mathbb  Z}[{sqrt  d}] на мультипликативную группу mathbb {Z} , поэтому норма обратимых элементов кольца может быть равна только 1 или -1. Для того, чтобы решить уравнение Пелля a^{2}-db^{2}=1, достаточно найти все обратимые элементы кольца целых (также называемые единицами кольца) и выделить среди них имеющие норму 1. Согласно теореме Дирихле о единицах, все обратимые элементы данного кольца являются степенями одного элемента (с точностью до умножения на -1), поэтому для нахождения всех решений уравнения Пелля достаточно найти одно фундаментальное решение.

См. также[править | править код]

  • Теория Куммера

Литература[править | править код]

  • Х. Кох. Алгебраическая теория чисел. — М.: ВИНИТИ, 1990. — Т. 62. — 301 с. — (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».).
  • Чеботарев Н.Г. Основы теории Галуа. Часть 2. — М.: Едиториал УРСС, 2004.
  • Вейль Г. Алгебраическая теория чисел. Пер. с англ.. — М.: Едиториал УРСС, 2011.
  • Serge Lang, Algebraic Number Theory, second edition, Springer, 2000

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 – 2 1 – 1 1 2 – 2 A = 3 – 2 1 2 1 2 3 – 1 – 2 = 3 · 1 · ( – 2 ) + ( – 2 ) · 2 · 3 + 1 · 2 · ( – 1 ) – 1 · 1 · 3 – ( – 2 ) · 2 · ( – 2 ) – 3 · 2 · ( – 1 ) = = – 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , – 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , – 1 , – 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 – 1 1 0 1 – 2 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 – 2 – 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , – 1 , – 2 ) a ( 2 ) = ( 0 , 2 , 1 , – 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства – e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n – некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 – x 1 ) · e ( 1 ) + ( x

2 – x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 – x 2 ) , . . . , ( x

n – x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , – 1 , 1 ) e ( 2 ) = ( 3 , 2 , – 5 ) e ( 3 ) = ( 2 , 1 , – 3 ) x = ( 6 , 2 , – 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 – 1 1 3 2 – 5 2 1 – 3

1 – 1 1 0 5 – 8 0 3 – 5

1 – 1 1 0 5 – 8 0 0 – 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 – 1 2 1 1 – 5 – 3 = – 1 ∆ x

1 = 6 3 2 2 2 1 – 7 – 5 – 3 = – 1 , x

1 ∆ = – 1 – 1 = 1 ∆ x

2 = 1 6 2 – 1 2 1 1 – 7 – 3 = – 1 , x

2 ∆ = – 1 – 1 = 1 ∆ x

3 = 1 3 6 – 1 2 2 1 – 5 – 7 = – 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) – координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

Векторные пространства

При проведении научных и прикладных исследование часто создаются модели, в которых рассматриваются точки и/или векторы определенных пространств. Например, в моделях шифров на эллиптических кривых используются аффинные и проективные пространства. К проективным прибегают тогда, когда необходимо ускорить вычисления, так как в формулах манипулирования с точками эллиптической кривой выводимых в рамках проективного пространства отсутствует операция деления на координату, которую в случае аффинного пространства обойти не удается.

Операция деления как раз одна из самых «дорогих» операций. Дело в том, что в алгебраических полях, а соответственно и в группах операция деления вообще отсутствует и выход из положения (когда не делить нельзя) состоит в том, что операцию деления заменяют умножением, но умножают не на саму координату, а на обращенное ее значение. Из этого следует, что предварительно надо привлекать расширенный алгоритм Евклида НОД и кое что еще. Одним словом, не все так просто как изображают авторы большинства публикаций о ЕСС. Почти все, что по этой теме опубликовано и не только в Интернете мне знакомо. Мало того, что авторы не компетентны и занимаются профанацией, оценщики этих публикаций плюсуют авторов в комментариях, т. е. не видят ни пробелов, ни явных ошибок. Про нормальную же статью пишут, что она уже 100500-я и от нее нулевой эффект. Так все пока на Хабре устроено, анализ публикаций делается огромный, но не качества содержания. Здесь возразить нечего — реклама двигатель бизнеса.

Линейное векторное пространство

Изучение и описание явлений окружающего мира с необходимостью приводит нас к введению и использованию ряда понятий таких как точки, числа, пространства, прямые линии, плоскости, системы координат, векторы, множества и др.

Пусть r = вектор трехмерного пространства, задает положение одной частицы (точки) относительно начала координат. Если рассматривать N элементов, то описание их положения требует задания 3∙N координат, которые можно рассматривать как координаты некоторого вектора в 3N-мерном пространстве. Если рассматривать непрерывные функции и их совокупности, то приходим к пространствам, размерность которых равна бесконечности. На практике часто ограничиваются использованием лишь подпространства такого бесконечномерного пространства функции координат, обладающего конечным числом измерений.

Пример 1. Ряд Фурье — пример использования пространства функций. Рассмотрим разложение произвольной функции в ряд Фурье

Его можно трактовать как разложение «вектора» f(x) по бесконечному набору «ортогональных» базисных векторов sinпх

Это пример абстрагирования и распространения понятия вектора на бесконечное число измерений. Действительно, известно, что при -π≤x≤π

Существо дальнейшего рассмотрения не пострадает, если мы отвлечемся от размерности абстрактного векторного пространства – будь — то 3, 3N или бесконечность, хотя для практических приложений больший интерес представляет конечномерные поля и векторные пространства.

Набор векторов r1, r2,… будем называть линейным векторным пространством L, если сумма любых двух его элементов тоже находится в этом наборе и если результат умножения элемента на число С также входит в этот набор. Оговоримся сразу, что значения числа С могут быть выбраны из вполне определенного числового множества Fр – поля вычетов по модулю простого числа р, которое считается присоединенным к L.

Пример 2. Набор из 8 векторов, составленных из n =5 -разрядных двоичных чисел
r0 = 00000, r1 = 10101, r2 = 01111, r3 = 11010, r4 = 00101, r5 = 10110, r6 = 01001, r7 = 11100 образует векторное пространство L, если числа С є <0,1>. Этот небольшой пример позволяет убедиться в проявлении свойств векторного пространства, включенных в его определение.

Суммирование этих векторов выполняется поразрядно по модулю два, т. е. без переноса единиц в старший разряд. Отметим, что если все С действительные (в общем случае С принадлежат полю комплексных чисел), то векторное пространство называют действительным.

Формально аксиомы векторного пространства и записываются так:
r1 + r2 = r2 + r1 = r3; r1, r2, r3 є L – коммутативность сложения и замкнутость;
(r1 + r2) + r3 = r1 + (r2 + r3) = r1 + r2 + r3 – ассоциативность сложения;
ri + r0 = r0 + ri = ri; ∀i, ri, r0 є L–существование нейтрального элемента;
ri +(- ri) = r0, для ∀i существует противоположный вектор (-ri) є L;
1∙ ri = ri ∙1 = ri существование единицы для умножения;
α (β∙ri) = (α∙β)∙ri; α, β, 1, 0 – элементы числового поля F, ri є L; умножение на скаляры ассоциативно; результат умножения принадлежит L;
(α + β) ri = α∙ri + β∙ri; для ∀i, ri є L, α, β – скаляры;
а (ri + rj) = ari + arj для всех а, ri, rj є L;
a∙0 = 0, 0∙ri = 0; (-1) ∙ ri = – ri.

Размерность и базис векторного пространства

При изучении векторных пространств представляет интерес выяснение таких вопросов, как число векторов, образующих все пространство; какова размерность пространства; какой наименьший набор векторов путем применения к нему операции суммирования и умножения на число позволяет сформировать все векторы пространства? Эти вопросы основополагающие и их нельзя обойти стороной, так как без ответов на них утрачивается ясность восприятия всего остального, что составляет теорию векторных пространств.

Оказалось, что размерность пространства самым тесным образом связана с линейной зависимостью векторов, и с числом линейно независимых векторов, которые можно выбирать в изучаемом пространстве многими способами.

Линейная независимость векторов

Набор векторов r1, r2, r3 … rр из L называют линейно независимым, если для них соотношение

выполняется только при условии одновременного равенства .
Все , k = 1(1)p, принадлежат числовому полю вычетов по модулю два
F = <0, 1>.
Если в некотором векторном пространстве L можно подобрать набор из р векторов, для которых соотношение выполняется, при условии, что не все одновременно, т.е. в поле вычетов оказалось возможным выбрать набор , k =1(1)р, среди которых есть ненулевые, то такие векторы называются линейно зависимыми.

Пример 3. На плоскости два вектора = T и = T являются линейно независимыми, так как в соотношении (T-транспонирование)

невозможно подобрать никакой пары чисел коэффициентов не равных нулю одновременно, чтобы соотношение было выполнено.
Три вектора = T , = T , = T образуют систему линейно зависимых векторов, так как в соотношении

равенство может быть обеспечено выбором коэффициентов , не равных нулю одновременно. Более того, вектор является функцией и (их суммой), что указывает на зависимость от и . Доказательство общего случая состоит в следующем.

Пусть хотя бы одно из значений , k = 1(1)р, например, , а соотношение выполнено. Это означает, что векторы , k = 1(1)р, линейно зависимы

Выделим явным образом из суммы вектор rр

Говорят, что вектор rр является л и н е й н о й комбинацией векторов или rр через остальные векторы выражается линейным образом, т.е. rр линейно зависит от остальных. Он является их функцией.

На плоскости двух измерений любые три вектора линейно зависимы, но любые два неколлинеарных вектора являются независимыми. В трехмерном пространстве любые три некомпланарных вектора линейно независимы, но любые четыре вектора всегда линейно зависимы.

Зависимость/независимость совокупности <> векторов часто определяют, вычисляя определитель матрицы Грама (ее строки скалярные произведения наших векторов). Если определитель равен нулю, среди векторов имеются зависимые, если определитель отличен от нуля — векторы в матрице независимы.

Определителем Грама (грамианом) системы векторов

в евклидовом пространстве называется определитель матрицы Грама этой системы:

где — скалярное произведение векторов
и .

Размерность и базис векторного пространства

Размерность s = d (L) пространства L определяется как наибольшее число векторов в L, образующих линейно независимый набор. Размерность – это не число векторов в L, которое может быть бесконечным и не число компонентов вектора.

Пространства, имеющие конечную размерность s ≠ ∞, называются конечномерными, если
s = ∞, – бесконечномерными.

Ответом на вопрос о минимальном числе и составе векторов, которые обеспечивают порождение всех векторов линейного векторного пространства является следующее утверждение.

Любой набор s линейно независимых векторов в пространстве L образует его б а з и с. Это следует из того, что любой вектор линейного s-мерного векторного пространства L может быть представлен единственным способом в виде линейной комбинации векторов базиса.

Зафиксируем и обозначим символом , i = 1(1)s, один из наборов, образующих базис пространства L. Тогда

Числа rki, i = 1(1)s называются координатами вектора в базисе , i = 1(1)s, причем rki = (, ).
Покажем единственность представления . Очевидно, что набор , является зависимым, так как , i = 1(1)s – базис. Другими словами, существуют такие не равные одновременно нулю, что .
При этом пусть , ибо если , то хоть одно из , было бы отлично от нуля и тогда векторы , i = 1(1)s, были бы линейно зависимы, что невозможно, так как это базис. Следовательно,

, будем иметь
Используя прием доказательства «от противного», допустим, что записанное представление не единственное в этом базисе и существует другое

Тогда запишем отличие представлений, что, естественно, выражается как

Очевидно, что правая и левая части равны, но левая представляет разность вектора с самим собой, т. е. равна нулю. Следовательно, и правая часть равна нулю. Векторы , i = 1(1)s линейно независимы, поэтому все коэффициенты при них могут быть только нулевыми. Отсюда получаем, что

а это возможно только при

Выбор базиса. Ортонормированность

Векторы называют нормированными, если длина каждого из них равна единице. Этого можно достичь, применяя к произвольным векторам процедуру нормировки.

Векторы называют ортогональными, если они перпендикулярны друг другу. Такие векторы могут быть получены применением к каждому из них процедуры ортогонализации. Если для совокупности векторов выполняются оба свойства, то векторы называются ортонормированными.

Необходимость рассмотрения ортонормированных базисов вызвана потребностями использования быстрых преобразований как одно –, так и многомерных функций. Задачи такой обработки возникают при исследовании кодов, кодирующих информационные сообщения в сетях связи различного назначения, при исследовании изображений, получаемых
посредством автоматических и автоматизированных устройств, в ряде других областей, использующих цифровые представления информации.

Определение. Совокупность n линейно независимых векторов n-мерного векторного
пространства V называется его базисом.

Теорема. Каждый вектор х линейного n-мерного векторного пространства V можно представить, притом единственным образом, в виде линейной комбинации векторов базиса. Векторное пространство V над полем F обладает следующими свойствами:
0·х = 0 (0 в левой части равенства – нейтральный элемент аддитивной группы поля F; 0 в правой части равенства – элемент пространства V, являющийся нейтральным единичным элементом аддитивной группы V, называемый нулевым вектором);
(– 1)·х = –х; –1є F; x є V; –x є V;
Если α·х = 0єV, то при х ≠ 0 всегда α = 0.
Пусть Vn(F) – множество всех последовательностей (х1, х2, …, хn) длины n с компонентами из поля F, т.е. Vn(F) = i =1(1)n >.

Сложение и умножение на скаляр определяются следующим образом:
x + y =(x1 + y1, x2 + y2, …, xn + yn);
α·х = (α·х1, α·х2,…, α·хn), где у = (у1, у2,…, уn),
тогда Vn(F) является векторным пространством над полем F.

Пример 4. В векторном пространстве rо = 00000, r1 = 10101, r2 = 11010, r3 = 10101 над полем F2 = <0,1>определить его размерность и базис.
Решение. Сформируем таблицу сложения векторов линейного векторного пространства

В этом векторном пространстве V= каждый вектор в качестве противоположного имеет самого себя. Любые два вектора, исключая rо, являются линейно независимыми, в чем легко убедиться
c1·r1 + c2·r2 = 0; c1·r1 + c3·r3 = 0; c2·r2 + c3·r3 = 0;

Каждое из трех соотношений справедливо только при одновременных нулевых значениях пар коэффициентов сi, сj є <0,1>.

При одновременном рассмотрении трех ненулевых векторов один из них всегда является суммой двух других или равен самому себе, а r1+r2+r3=rо.

Таким образом, размерность рассматриваемого линейного векторного пространства равна двум s = 2, d(L) = s = 2, хотя каждый из векторов имеет пять компонентов. Базисом пространства является набор (r1, r2). Можно в качестве базиса использовать пару (r1, r3).

Важным в теоретическом и практическом отношении является вопрос описания векторного пространства. Оказывается, любое множество базисных векторов можно рассматривать как строки некоторой матрицы G, называемой порождающей матрицей векторного пространства. Любой вектор этого пространства может быть представлен как линейная комбинация строк матрицы G ( как, например, здесь).

Если размерность векторного пространства равна k и равна числу строк матрицы G, рангу матрицы G, то очевидно, существует k коэффициентов с q различными значениями для порождения всех возможных линейных комбинаций строк матрицы. При этом векторное пространство L содержит q k векторов.

Множество всех векторов из ℤpn с операциями сложения векторов и умножения вектора на скаляр из ℤp есть линейное векторное пространство.

Определение. Подмножество W векторного пространства V, удовлетворяющее условиям:
Если w1, w2 є W, то w1+ w2 є W,
Для любых α є F и w є W элемент αw є W,
само является векторным пространством над полем F и называется подпространством векторного пространства V.

Пусть V есть векторное пространство над полем F и множество W ⊆ V. Множество W есть подпространство пространства V, если W по отношению к линейным операциям, определенным в V, есть линейное векторное пространство.

Таблица. Характеристики векторных пространств

Компактность матричного представления векторного пространства очевидна. Например, задание L векторов двоичных 50-разрядных чисел, среди которых 30 векторов образуют базис векторного пространства, требует формирования матрицы G[30,50], а описываемое количество векторов превышает 10 9 , что в поэлементной записи представляется неразумным.

Все базисы любого пространства L разбиваются подгруппой Р невырожденных матриц с det G > 0 на два класса. Один из них (произвольно) называют классом с положительно ориентированными базисами (правыми), другой класс содержит левые базисы.

В этом случае говорят, что в пространстве задана ориентация. После этого любой базис представляет собой упорядоченный набор векторов.

Если нумерацию двух векторов изменить в правом базисе, то базис станет левым. Это связано с тем, что в матрице G поменяются местами две строки, следовательно, определитель detG изменит знак.

Норма и скалярное произведение векторов

После того как решены вопросы о нахождении базиса линейного векторного пространства, о порождении всех элементов этого пространства и о представлении любого элемента и самого векторного пространства через базисные векторы, можно поставить задачу об измерении в этом пространстве расстояний между элементами, углов между векторами, значений компонентов векторов, длины самих векторов.

Действительное или комплексное векторное пространство L называется нормированным векторным пространством, если каждый вектор r в нем может быть сопоставлен действительному числу || r || – модулю вектора, норме. Единичный вектор – это вектор, норма которого равна единице. Нулевой вектор имеет компонентами нули.

Определение. Векторное пространство называется унитарным, если в нем определена бинарная операция, ставящая каждой паре ri, rj векторов из L в соответствие скаляр. В круглых скобках (ri, rj) записывается (обозначается) скалярное или внутреннее произведение ri и rj, причем
1. (ri, rj) = ri ∙ rj;
2. (ri, rj) = (rj ∙ ri)*, где * указывает на комплексное сопряжение или эрмитову симметрию;
3. (сri, rj) = с(ri ∙ rj) – ассоциативный закон;
4. (ri + rj, rk) = (ri ∙ rk)+ (rj ∙ rk)– дистрибутивный закон;
5. (ri, rk) ≥ 0 и из (ri, rj ) = 0 следует ri = 0.

Определение. Положительное значение квадратного корня называют нормой (или длиной, модулем) вектора ri. Если = 1, то вектор ri называют нормированным.

Два вектора ri, rj унитарного векторного пространства L взаимно ортогональны, если их скалярное произведение равно нулю, т.е. (ri, rj) = 0.

При s = 3 в линейном векторном пространстве в качестве базиса удобно выбирать три взаимно перпендикулярных вектора. Такой выбор существенно упрощает ряд зависимостей и вычислений. Этот же принцип ортогональности используется при выборе базиса в пространствах и других размерностей s > 3. Использование введенной операции скалярного произведения векторов обеспечивает возможность такого выбора.

Еще большие преимущества достигаются при выборе в качестве базиса векторного пространства ортогональных нормированных векторов – ортонормированного базиса. Если не оговорено специально, то далее всегда будем считать, что базис еi, i = 1(1)s выбран именно таким образом, т.е.

, где ij — символ Кронекера (1823 — 1891).

В унитарных векторных пространствах такой выбор всегда реализуем. Покажем реализуемость такого выбора.

Определение. Пусть S = есть конечное подмножество векторного пространства V над полем F.
Линейная комбинация векторов из S есть выражение вида а1∙v1 + а2∙v2 +…+ аn∙vn, где каждое аi ∊ F.

Оболочка для множества S (обозначение ) есть множество всех линейных комбинаций векторов из S. Оболочка для S есть подпространство пространства V.

Если U есть пространство в V, то U натянуто на S (S стягивает U), если =U.
Множество векторов S линейно зависимо над F, если в F существуют скаляры а1, а2,…, аn, не все нули, для которых а1∙v1+ а2∙v2 +…+ аn∙vn = 0. Если таких скаляров не существует, то множество векторов S линейно независимо над F.

Если векторное пространство V натянуто на линейно независимую систему векторов S (или система S стягивает пространство V), то система S называется базисом для V.

Приведение произвольного базиса к ортонормированному виду

Известно следующее утверждение [11]. Если ē i, i = 1(1)s – произвольная конечная или счетная система линейно независимых векторов в унитарном векторном пространстве, то существует ортонормированная система ē i, i = 1(1)s, порождающая то же самое линейное пространство (многообразие).

В основу процедуры приведения базиса к ортонормированному виду положен процесс ортогонализации Грама — Шмидта, который в свою очередь, реализуется рекуррентными формулами

В развернутом виде алгоритм ортогонализации и нормирования базиса содержит следующие условия:

Делим вектор ē 1, на его норму; получим нормированный вектор ē i1/(||ē 1 ||);
Формируем V2 = ē 2 — (ē 1, ē 2)e 1 и нормируем его, получим е 2. Ясно, что тогда
(е1, е2)

(е1, е2) – (е1, ē 2)( е1, е1) = 0;
Построив V3 = ē 3– (e1, ē 3)e1 – (e2, ē 3) e2 и нормируя его, получим е3.

Для него имеем сразу же (е1, е3) = (е2, е3) = 0.
Продолжая такой процесс, получим ортонормированный набор ē i, i = 1(1)s. Этот набор содержит линейно независимые векторы, поскольку все они взаимно ортогональны.
Убедимся в этом. Пусть выполняется соотношение

Если набор ē i, i = 1(1)s зависимый, то хотя бы один сj коэффициент не равен нулю сj ≠ 0.

Умножив обе части соотношения на еj, получаем
(ej, c1∙e1 ) + (ej, c2∙e2 )+ . + ( ej, cj∙ej ) +…+ ( ej, cs∙rs ) = 0.
Каждое слагаемое в сумме равно нулю как скалярное произведение ортогональных векторов, кроме (ej ,cj∙ej), которое равно нулю по условию. Но в этом слагаемом
(ej, ej) = 1 ≠ 0, следовательно, нулем может быть только cj.
Таким образом, допущение о том, что cj ≠ 0 неверно и набор является линейно независимым.

Пример 5. Задан базис 3-х мерного векторного пространства:
< , , >.
Скалярное произведение определено соотношением:
( , ) = x1∙y1+x2∙y2+x3∙y3+x4∙y4.
Процедурой ортогонализации Грама — Шмидта получаем систему векторов:
а1 = ; a2 = -4 /7= /7;
a3 = +½ — /5 = /10.
(a1,a2)= (1+4+9+0) = 14;
a1 E =a1/√14;
a2-(a1 E ,a2)∙a1 E =a2-(8/√14)(a1/√14)=a2 — 4∙a1/7;
Третий вектор читателю предлагается обработать самостоятельно.

Нормированные векторы получают вид:
a1 E =a1/√14;
a2 E = /√70;
a3 E = /√70;

Ниже в примере 6 дается подробный развернутый процесс вычислений получения ортонормированного базиса из простого (взятого наугад).

Пример 6. Привести заданный базис линейного векторного пространства к ортонормированному виду.
Дано: векторы базиса

Подпространства векторных пространств

Структура векторного пространства

Представление объектов (тел) в многомерных пространствах весьма непростая задача. Так, четырехмерный куб в качестве своих граней имеет обычные трехмерные кубы, и в трехмерном пространстве может быть построена развертка четырехмерного куба. В некоторой степени «образность» и наглядность объекта или его частей способствует более успешному его изучению.

Сказанное позволяет предположить, что векторные пространства можно некоторым образом расчленять, выделять в них части, называемые подпространствами. Очевидно, что рассмотрение многомерных и тем более бесконечномерных пространств и объектов в них лишает нас наглядности представлений, что весьма затрудняет исследование объектов в таких
пространствах. Даже, казалось бы, такие простые вопросы, как количественные характеристики элементов многогранников (число вершин, ребер, граней, и т. п.) в этих пространствах решены далеко не полностью.

Конструктивный путь изучения подобных объектов состоит в выделении их элементов (например, ребер, граней) и описании их в пространствах меньшей размерности. Так четырехмерный куб в качестве своих граней имеет обычные трехмерные кубы и в трехмерном пространстве может быть построена развертка четырехмерного куба. В некоторой степени
«образность» и наглядность объекта или его частей способствует более успешному их изучению.

Если L – расширение поля К, то L можно рассматривать как векторное (или линейное) пространство над полем К. Элементы поля L (т. е. векторы) образуют по сложению абелеву группу. Кроме того, каждый «вектор» а є L может быть умножен на «скаляр» r є K, и при этом произведение ra снова принадлежит L (здесь ra – просто произведение в смысле операции поля L элементов r и а этого поля). Выполняются также законы
r∙(a+b) = r∙a+r∙b, (r+s)∙a = r∙a + r∙s, (r∙s)∙a = r∙(s∙a) и 1∙а = а, где r,s є K, a,b є L.

Сказанное позволяет предположить, что векторные пространства можно некоторым образом расчленять, выделять в них части, называемые подпространствами. Очевидно, что основным результатом при таком подходе является сокращение размерности выделяемых подпространств. Пусть в векторном линейном пространстве L выделены подпространства L1 и L2. В качестве базиса L1 выбирается меньший набор еi, i = 1(1)s1, s1 n – 1 способами. Следующий вектор v2 ≠ 0 не может быть выражен линейно через v1, т.е. может быть выбран q n – q способами и т.д.

Последний вектор vk ≠ 0 также линейно не выражается через предыдущие выбранные векторы v1,v2,…,vk и, следовательно, может быть выбран q n – q k – 1 способами. Общее число способов для выбора совокупности векторов v1,v2,…,vk, таким образом, определится как произведение числа выборов отдельных векторов, что и дает формулу (1). Для случая, когда k = п, имеем wп = wn, n и из формулы (I) получаем формулу (2).

Важные обобщающие результаты о размерностях подпространств.
Совокупность всех наборов длины n, ортогональных подпространству V1 наборов длины n, образует подпространство V2 наборов длины n. Это подпространство V2 называется нулевым пространством для V1.
Если вектор ортогонален каждому из векторов, порождающих подпространство V1, то этот вектор принадлежит нулевому пространству для V1.
Примером (V1) может служить множество 7-разрядных векторов порождающей матрицы (7,4)-кода Хемминга, с нулевым подпространством (V2) 7-разрядных векторов, образующих проверочную матрицу этого кода.

Если размерность подпространства (V1) наборов длины n равна k, то размерность нулевого подпространства (V2) равна n — k.

Если V2 — подпространство наборов длины n и V1 — нулевое пространство для V2, то (V2) — нулевое пространство для V1.

Пусть U∩V обозначает совокупность векторов, принадлежащих одновременно U и V, тогда U∩V является подпространством.

Пусть U⊕V обозначает подпространство, состоящее из совокупности всех линейных комбинаций вида au +bv, где u є U, v є V, a b — числа.

Сумма размерностей подпространств U∩V и U⊕V равна сумме размерностей подпространств U и V.

Пусть U2 — нулевое подпространство для U1, а V2 -нулевое пространство для V1. Тогда U2∩V2 является нулевым пространством для U1⊕V1.

Заключение

В работе рассмотрены основные понятия векторных пространств, которые часто используются при построении моделей анализа систем шифрования, кодирования и стеганографических, процессов, протекающих в них. Так в новом американском стандарте шифрования использованы пространства аффинные, а в цифровых подписях на эллиптических кривых и аффинные и
проективные (для ускорения обработки точек кривой).

Об этих пространствах в работе речь не идет (нельзя валить все в одну кучу, да и объем публикации я ограничиваю), но упоминания об этом сделаны не зря. Авторы, пишущие о средствах защиты, об алгоритмах шифров наивно полагают, что понимают детали описываемых явлений, но понимание евклидовых пространств и их свойств без всяких оговорок переносится в другие пространства, с другими свойствами и законами. Читающая аудитория вводится в заблуждение относительно простоты и доступности материала.

Создается ложная картина действительности в области информационной безопасности и специальной техники (технологий и математики).

В общем почин мною сделан, насколько удачно судить читателям.

[spoiler title=”источники:”]

http://habr.com/ru/post/514806/

[/spoiler]

Сообщения без ответов | Активные темы | Избранное

 

Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 13:29 


13/04/18
95

Профиль  

DeBill 

 Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 14:39 

Заслуженный участник


10/01/16
2315

Линейная оболочка 1-мерного подпространства
состоит из q векторов, каждый из которых является базисом.

Нет.

двумерное подпростраство имеет $q(q^2-q)$ базисов.

Нет, да.

N-мерное простраство имеет $q(q^2-q)(q^3-q^2)...(q^n-q^leftlbrace n-1rightrbrace)$$)$

НЕТ-н-нет нет нет….да

— 31.03.2019, 16:40 —

А базис – это упорядоченный набор?

Профиль  

starper 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 15:41 


13/04/18
95

Линейная оболочка 1-мерного подпространства
состоит из q векторов, каждый из которых является базисом.

Нет.

Понял, затупил. Но и базис этого подпространства может быть только с единицей поля тоже необязательно, верно?

Цитата:

А базис – это упорядоченный набор?

Насколько я понял – нет.

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 15:46 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

Но и базис этого подпространства может быть только с единицей поля тоже необязательно, верно?

Что это значит? Элементы поля могут вообще не являться элементами векторного пространства.

Так сколько всё-таки базисов в одномерном пространстве получается?

Профиль  

starper 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 16:22 


13/04/18
95

Но и базис этого подпространства может быть только с единицей поля тоже необязательно, верно?

Что это значит? Элементы поля могут вообще не являться элементами векторного пространства.

Имеется в виду, что если $1e=e$, где 1 – единичный элемент поля, – базисный вектор одномерного пространства, то из аксиом поля, как мне кажется, нельзя опровергнуть, что если вместо единичного элемента поля подставить другой элемент поля, то получившийся вектор
$lambda$e тоже будет базисом, то есть любой из q векторов можно выразить линейной комбинацией $ a=($mu$)$lambda$e
$

Цитата:

Так сколько всё-таки базисов в одномерном пространстве получается?

Собственно, по причине, указанной выше, не могу дать ответа на этот вопрос.

Профиль  

iifat 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 16:35 

Заслуженный участник


16/02/13
3981
Владивосток

вместо единичного элемента поля подставить другой элемент поля

Таки всё ж не любой. Возьмите для начала конкретное поле, скажем, из трёх элементов, и посчитайте.

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 16:38 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

то из аксиом поля, как мне кажется, нельзя опровергнуть, что если вместо единичного элемента поля подставить другой элемент поля, то получившийся вектор
$lambda$e тоже будет базисом

Во-первых, лучше чтобы не путаться, не путать сами векторы с одноэлементными множествами. Базис – это не вектор, а множество векторов.
Пусть ${v}$ – базис нашего одномерного пространства. Тогда любой вектор $u$ можно единственным способом представить в виде $xv$, где $x in mathcal F$. Аналогично, для любого $x$ у нас есть вектор $xv$, причем если $x neq y$, то $xv neq yv$ (почему?).
Таким образом каждому элементу поля у нас сопоставлен вектор. Какому элементу сопоставлены: вектор $v$? нулевой вектор?
При каких $x$ множество ${xv}$ будет базисом?

Профиль  

starper 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 19:10 


13/04/18
95

вместо единичного элемента поля подставить другой элемент поля

Таки всё ж не любой. Возьмите для начала конкретное поле, скажем, из трёх элементов, и посчитайте.

Например, поле вычетов $mathbb{Z}_3$ состоит из $leftlbrace0,1,2rightrbrace$. Векторное пространство над этим полем состоит из 3-х векторов: $0, e, 2e$. Одним из 2-х базисов этого пространства является вектор $2e$: $0=0(2e); 1=2(2e); 2=1(2e)$

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 19:33 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

Ага. А теперь попробуйте подставить остальные два элемента поля.

Профиль  

starper 

 Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 19:38 


13/04/18
95

Аналогично, для любого $x$ у нас есть вектор $xv$, причем если $x neq y$, то $xv neq yv$ (почему?).

В противном случае, $v$ не являлось бы базисом

Цитата:

Таким образом каждому элементу поля у нас сопоставлен вектор. Какому элементу сопоставлены: вектор $v$?

$x=1$

Цитата:

нулевой вектор?

$x=0$

Цитата:

При каких $x$ множество ${xv}$ будет базисом?

Очевидно при $x=1$ множество ${xv}$ будет базисом. Об остальных $x$ ничего не могу сказать, к сожалению.

— 31.03.2019, 19:41 —

Ага. А теперь попробуйте подставить остальные два элемента поля.

При $x=1$: $0=0(1e); 1=1(1e); 2=2(1e)$
При $x=0$ можно получить только нулевой вектор

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 19:54 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

Профиль  

starper 

 Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 20:41 


13/04/18
95

Не замечаете никакой закономерности?

Спасибо, похоже понял, если $leftlbrace vrightrbrace$ базис, то любой вектор вида $leftlbrace xvrightrbrace$, где x$ne$0 тоже базис, так как можно из любого ненулевого элемента $x$ поля получить любой элемент $t$ поля так: $ t=x(x^leftlbrace-1rightrbrace)$t, где $x^leftlbrace-1rightrbrace$t$ тоже элемент поля

— 31.03.2019, 20:59 —

Значит, каждый из $q-1 $ базисов одномерного подпространства можно дополнить до базиса двумерного подпространства $q-1$ способами, и получается в n-мерном пространстве над полем из q элементов $(q-1)^n$ базисов, а если считать базис неупорядоченным набором векторов, то $n!(q-1)^n базисов$, верно?

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 21:03 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

то любой вектор вида $leftlbrace xvrightrbrace$,

Только это не вектор.

Значит, каждый из $q-1 $ базисов одномерного подпространства можно дополнить до базиса двумерного подпространства $q-1$ способами, и получается в n-мерном пространстве над полем из q элементов $(q-1)^n$

А вас не смущает, что у вас базисов меньше чем ненулевых векторов получается?

Профиль  

starper 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 22:06 


13/04/18
95

то любой вектор вида $leftlbrace xvrightrbrace$,

Только это не вектор.

Это линейная комбинация?

Цитата:

А вас не смущает, что у вас базисов меньше чем ненулевых векторов получается?

Не понимаю, в чем противоречие?
Насчет задачи, понял, что ещё нужно рассматривать векторы, которые являются суммами различных векторов из базиса, но там очень много случаев считать надо, искать более простые пути бесполезно?

Профиль  

mihaild 

Re: Число базисов векторного пространства над конечным полем

Сообщение31.03.2019, 22:31 

Заслуженный участник
Аватара пользователя


16/07/14
7063
Цюрих

Это линейная комбинация?

Это множество векторов.

Да не много там случаев. Давайте для начала с двумерным пространством разберемся. Давайте выбирать вектора по одному (и для простоты пока что упорядоченно). Сколькими способами можно выбрать первый вектор? После того, как мы его выбрали – сколько у нас осталось линейно независимых с уже выбранным векторов?

Профиль  

Модераторы: Модераторы Математики, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

В статье о n-мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n-мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n-векторов. Размерность его соответственно равна n. Возьмем систему из n-единичных векторов:

e(1)=(1, 0,…,0)e(2)=(0, 1,…,0)e(n)=(0, 0,…,1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n. Ранг этой матрицы равен n. Следовательно, векторная система e(1), e(2),…, e(n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n, то размерность пространства n-мерных векторов равна n, а единичные векторы e(1), e(2),…, e(n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n-мерных векторов, в которой число векторов меньше n, не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e(2), e(1),…, e(n). Она также будет являться базисом n-мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n. Система e(2), e(1),…, e(n) линейно независима и является базисом n-мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n-мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n-мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A=323-21-112-2A=3-212123-1-2=3·1·(-2)+(-2)·2·3+1·2·(-1)-1·1·3-(-2)·2·(-2)-3·2·(-1)==-25≠0⇒Rank(A)=3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)d=(0, 1, 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a=(3, -2, 1), b=(2, 1, 2), c=(3, -1, -2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a=(1, 2, 3, 3)b=(2, 5, 6, 8)c=(1, 3, 2, 4)d=(2, 5, 4, 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A=1233256813242547

По методу Гаусса определим ранг матрицы:

A=1233256813242547~1233010201-1101-21~~1233010200-1-100-2-1~1233010200-1-10001⇒⇒Rank(A)=4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a(1)=(1, 2, -1, -2)a(2)=(0, 2, 1, -3)a(3)=(1, 0, 0, 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e(1), e(2),…, e(n) являются базисом векторного n-мерного пространства. Добавим к ним некий n-мерный вектор x→: полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n-мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n-мерного векторного пространства – e(1), e(2),…, e(n). Сделаем систему линейно зависимой, добавив к ней n-мерный вектор x→. Этот вектор может быть линейно выражен через исходные векторы e:

x=x1·e(1)+x2·e(2)+…+xn·e(n) , где x1, x2,…, xn – некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x=x~1e(1)+x2~e(2)+…+x~ne(n), где x~1, x~2,…, x~n – некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x=x1·e(1)+x2·e(2)+…+xn·e(n) . Получим:

0=(x~1-x1)·e(1)+(x~2-x2)·e(2)+…(x~n-xn)·e(2)

Система базисных векторов e(1), e(2),…, e(n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x~1-x1), (x~2-x2),…, (x~n-xn) будут равны нулю. Из чего справедливым будет: x1=x~1, x2=x~2,…, xn=x~n. И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x1, x2,…, xn называются координатами вектора x→ в базисе e(1), e(2),…, e(n).

Доказанная теория делает понятным выражение «задан n-мерный вектор x=(x1, x2,…, xn)»: рассматривается вектор x→ n-мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n-мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n-мерного векторного пространства задана система из n линейно независимых векторов

e(1)=(e1(1), e2(1),…, en(1))e(2)=(e1(2), e2(2),…, en(2))⋮e(n)=(e1(n), e2(n),…, en(n))

а также задан вектор x=(x1, x2,…, xn).

Векторы e1(1), e2(2),…, en(n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x→ в базисе e1(1), e2(2),…, en(n), обозначаемые как x~1, x~2,…, x~n.

Вектор x→ будет представлен следующим образом:

x=x~1·e(1)+x~2·e(2)+…+x~n·e(n)

Запишем это выражение в координатной форме:

(x1, x2,…, xn)=x~1·(e(1)1, e(1)2,…, e(1)n)+x~2·(e(2)1, e(2)2,…, e(2)n)+…++x~n·(e(n)1, e(n)2,…, e(n)n)==(x~1e1(1)+x~2e1(2)+…+x~ne1(n), x~1e2(1)+x~2e2(2)++…+x~ne2(n), …, x~1en(1)+x~2en(2)+…+x~nen(n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x~1, x~2,…, x~n:

x1=x~1e11+x~2e12+…+x~ne1nx2=x~1e21+x~2e22+…+x~ne2n⋮xn=x~1en1+x~2en2+…+x~nenn

Матрица этой системы будет иметь следующий вид:

e1(1)e1(2)⋯e1(n)e2(1)e2(2)⋯e2(n)⋮⋮⋮⋮en(1)en(2)⋯en(n)

Пусть это будет матрица A, и ее столбцы – векторы линейно независимой системы векторов e1(1), e2(2),…, en(n). Ранг матрицы – n, и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x~1, x~2,…, x~n вектора x→ в базисе e1(1), e2(2),…, en(n).

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e(1)=(1,-1,1)e(2)=(3, 2, -5)e(3)=(2, 1, -3)x=(6, 2, -7)

Необходимо подтвердить факт, что система векторов e(1), e(2), e(3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e(1), e(2), e(3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A, строки которой – заданные векторы e(1), e(2), e(3).

Используем метод Гаусса:

A=1-1132-521-3~1-1105-803-5~1-1105-800-15

Rank (A) = 3. Таким образом, система векторов e(1), e(2), e(3) линейно независима и является базисом.

Пусть в базисе вектор x→ имеет координаты x~1, x~2, x~3. Связь этих координат определяется уравнением:

x1=x~1e1(1)+x~2e1(2)+x~3e1(3)x2=x~1e2(1)+x~2e2(2)+x~3e2(3)x3=x~1e3(1)+x~2e3(2)+x~3e3(3)

Применим значения согласно условиям задачи:

x~1+3x~2+2x~3=6-x~1+2x~2+x~3=2x~1-5x~2-3×3=-7

Решим систему уравнений методом Крамера:

∆=132-1211-5-3=-1∆x~1=632221-7-5-3=-1,     x~1=∆x~1∆=-1-1=1∆x~2=162-1211-7-3=-1,     x~2=∆x~2∆=-1-1=1∆x~3=136-1221-5-7=-1,     x~3=∆x~3∆=-1-1=1

Так, вектор x→ в базисе e(1), e(2), e(3) имеет координаты x~1=1, x~2=1, x~3=1.

Ответ: x=(1,1,1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c(1)=(c1(1), c2(1),…, cn(1))c(2)=(c1(2), c2(2),…, cn(2))⋮c(n)=(c1(n), e2(n),…, cn(n))

И

e(1)=(e1(1), e2(1),…, en(1))e(2)=(e1(2), e2(2),…, en(2))⋮e(n)=(e1(n), e2(n),…, en(n))

Указанные системы являются также базисами заданного пространства.

Пусть c~1(1), c~2(1),…, c~n(1) – координаты вектора c(1) в базисе e(1), e(2),…, e(3), тогда связь координат будет задаваться системой линейных уравнений:

с1(1)=c~1(1)e1(1)+c~2(1)e1(2)+…+c~n(1)e1(n)с2(1)=c~1(1)e2(1)+c~2(1)e2(2)+…+c~n(1)e2(n)⋮                                                           сn(1)=c~1(1)en(1)+c~2(1)en(2)+…+c~n(1)en(n)

В виде матрицы систему можно отобразить так:

(c1(1), c2(1),…, cn(1))=(c~1(1), c~2(1),…, c~n(1))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

Сделаем по аналогии такую же запись для вектора c(2):

(c1(2), c2(2),…, cn(2))=(c~1(2), c~2(2),…, c~n(2))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

И, далее действуя по тому же принципу, получаем:

(c1(n), c2(n),…, cn(n))=(c~1(n), c~2(n),…, c~n(n))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

Матричные равенства объединим в одно выражение:

c1(1)c2(1)⋯cn(1)c1(2)c2(2)⋯cn(2)⋮⋮⋮⋮c1(n)c2(n)⋯cn(n)=c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)·e1(1)e2(1)⋯en(1)e1(2)e2(2)⋯en(2)⋮⋮⋮⋮e1(n)e2(n)⋯en(n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e(1), e(2),…, e(3) через базис c(1), c(2),…, c(n):

e1(1)e2(1)⋯en(1)e1(2)e2(2)⋯en(2)⋮⋮⋮⋮e1(n)e2(n)⋯en(n)=e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)·c1(1)c2(1)⋯cn(1)c1(2)c2(2)⋯cn(2)⋮⋮⋮⋮c1(n)c2(n)⋯cn(n)

Дадим следующие определения:

Определение 5

Матрица c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n) является матрицей перехода от базиса e(1), e(2),…, e(3)

к базису c(1), c(2),…, c(n).

Определение 6

Матрица e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n) является матрицей перехода от базиса c(1), c(2),…, c(n)

к базису e(1), e(2),…, e(3).

Из этих равенств очевидно, что

c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)·e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)=10⋯001⋯0⋮⋮⋮⋮00⋯1e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)·c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)=10⋯001⋯0⋮⋮⋮⋮00⋯1 

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c(1)=(1, 2, 1)c(2)=(2, 3, 3)c(3)=(3, 7, 1)

к базису

e(1)=(3, 1, 4)e(2)=(5, 2, 1)e(3)=(1, 1, -6)

Также нужно указать связь координат произвольного вектора x→ в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

314521111=T·121233371

Умножим обе части равенства на

121233371-1

и получим:

T=31452111-6·121233371-1

2. Определим матрицу перехода:

T=31452111-6·121233371-1==31452111-6·-18537-2-15-1-1=-2794-712012-4198

3. Определим связь координат вектора x→:

допустим, что в базисе c(1), c(2),…, c(n) вектор x→ имеет координаты x1,x2,x3, тогда:

x=(x1,x2,x3)·121233371,

а в базисе e(1), e(2),…, e(3) имеет координаты x~1,x~2,x~3, тогда:

x=(x~1,x~2,x~3)·31452111-6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x1,x2,x3)·121233371=(x~1,x~2,x~3)·31452111-6

Умножим обе части справа на

121233371-1

и получим:

(x1,x2,x3)=(x~1,x~2,x~3)·31452111-6·121233371-1⇔⇔(x1,x2,x3)=(x~1,x~2,x~3)·T⇔⇔(x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

С другой стороны

(x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198

Последние равенства показывают связь координат вектора x→ в обоих базисах.

Ответ: матрица перехода

-2794-712012-4198

Координаты вектора x→ в заданных базисах связаны соотношением:

(x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

или

(x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198-1

Добавить комментарий