Как найти базис систем вектор столбец

Как найти базис системы вектор-столбцов

Перед рассмотрением данного вопроса стоит напомнить, что любая упорядоченная система n линейно независимых векторов пространства R^n называется базисом этого пространства. При этом образующие систему векторы будут считаться линейно независимыми, если любая их нулевая линейная комбинация возможна только за счет равенства нулю всех коэффициентов этой комбинации.

Как найти базис системы вектор-столбцов

Вам понадобится

  • – бумага;
  • – ручка.

Инструкция

Пользуясь только лишь основными определениями проверить линейную независимость системы вектор-столбцов, а соответственно и дать заключение о наличии базиса, весьма затруднительно. Поэтому в данном случае вам может помочь использование некоторых специальных признаков.

Известно, что векторы линейно независимы, если составленный из них определитель не равен нулю.Исходя из этого, можно достаточно объяснить тот факт, что система векторов образует базис. Итак, для того чтобы обосновать, что векторы образуют базис, следует составить из их координат определитель и убедиться, что он не равен нулю.В дальнейшем, для сокращения и упрощения записей, представление вектор-столбца матрицей-столбцом будем заменять транспонированной матрицей-строкой.

Пример 1. Образуют ли базис в R^3 вектор-столбцы (1, 3, 5)^T, (2, 6, 4)^T, (3, 9, 0)^T.Решение. Составьте определитель |A|, строками которого являются элементы заданных столбцов (см. рис.1).Раскрыв этот определитель по правилу треугольников, получится: |A| = 0+90+36-90-36-0=0. Следовательно, эти векторы не могут образовать базис.

Пример. 2. Система векторов состоит из (10, 3, 6)^T, (1, 3, 4)^T, (3, 9, 2)^T. Могут ли они образовать базис?Решение. По аналогии с первым примером составьте определитель (см. рис.2): |A| =60+54+36-54-360-6=270, т.е. не равно нулю. Следовательно, эта система вектор-столбцов пригодна для использования в качестве базиса в R^3.

Теперь со всей очевидностью становится ясно, что для нахождения базиса системы вектор-столбцов вполне достаточно взять любой определитель подходящей размерности отличный от нуля. Элементы его столбцов образуют базисную систему. Мало того, всегда желательно иметь простейший базис. Так как определитель единичной матрицы всегда отличен от нуля (при любой размерности), то в качестве базиса всегда можно выбрать систему (1, 0, 0,…,0)^T, (0, 1, 0,…,0)^T, (0, 0, 1,…,0)^T,…, (0, 0, 0,…,1)^T.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 – β*2 – γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b – 3/2c

Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х”1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х”2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х”3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х”1, x”2, x”3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х”1 = – x’1 + 3x’2 – 2x’3,
х’2 = 6x1 + 7x2 + x3, х”2 = – 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х”3 = 3x’1 – 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 – 1*1) – 6*(3*8 – 1*5) + 9*(3*1 – 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55 -19 -32
-39 -13 26
-57 23 10

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55 -19 -32
-39 -13 26
-57 23 10
* =
75 /182 -1 46 /91 1 9 /13
-13 /14 1 2 /7 -1
5 /182 1 3 /91 -1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 – 2 1 – 1 1 2 – 2 A = 3 – 2 1 2 1 2 3 – 1 – 2 = 3 · 1 · ( – 2 ) + ( – 2 ) · 2 · 3 + 1 · 2 · ( – 1 ) – 1 · 1 · 3 – ( – 2 ) · 2 · ( – 2 ) – 3 · 2 · ( – 1 ) = = – 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , – 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , – 1 , – 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 – 1 1 0 1 – 2 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 – 2 – 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , – 1 , – 2 ) a ( 2 ) = ( 0 , 2 , 1 , – 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства – e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n – некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 – x 1 ) · e ( 1 ) + ( x

2 – x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 – x 2 ) , . . . , ( x

n – x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , – 1 , 1 ) e ( 2 ) = ( 3 , 2 , – 5 ) e ( 3 ) = ( 2 , 1 , – 3 ) x = ( 6 , 2 , – 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 – 1 1 3 2 – 5 2 1 – 3

1 – 1 1 0 5 – 8 0 3 – 5

1 – 1 1 0 5 – 8 0 0 – 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 – 1 2 1 1 – 5 – 3 = – 1 ∆ x

1 = 6 3 2 2 2 1 – 7 – 5 – 3 = – 1 , x

1 ∆ = – 1 – 1 = 1 ∆ x

2 = 1 6 2 – 1 2 1 1 – 7 – 3 = – 1 , x

2 ∆ = – 1 – 1 = 1 ∆ x

3 = 1 3 6 – 1 2 2 1 – 5 – 7 = – 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) – координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

Базис системы вектор столбцов

Ну вот, смотрите:
Три первых столбца — базис.
Четвертый мы по нему раскладываем.
Обозначим базисные столбцы через е1, е2, е3.
Чтобы первый элемент четвертого столбца был равен -3, нам нужно взять е1 и умножить его на -3.
Получим вектор:
-3
0
0
0

Чтобы получить второй элемент, равный 6, надо к -3е1 прибавить 6е2. Получим:
-3
6
0
0

У каждого базисного вектора единица только в одном месте. Она отвечает за одну координату; другие при сложении не портятся.
В итоге должны получиться выражения для е4, е5 как линейные комбинации первых трех векторов:
е4=.
е5=.

Попробую объяснить немного с другой стороны.

В данном случае вы фактически решили систему линейных уравнений с ТРЕМЯ неизвестными и ДВУМЯ правыми частями методом Гаусса. Матрица системы это три первых столбца. Остальные два столбца это правые части. Если несколько правых частей для вас непривычная конструкция, считайте, что это несколько систем с одной и той же матрицей системы, но с разными правыми частями. Решение системы это три числа. Они должны быть такими, что умножая первые три столбца на эти три числа и складывая мы получим правую часть. То есть это коэффициенты линейной комбинации первых трех столбцов, которая равна правой части. Таким образом любую правую часть можно выразить через первые три столбца. С другой стороны эти столбцы линейно независимы. В самом деле, если предполжить, что их линейная комбинация равна нулю (правая часть системы равна нулю), то вы получите нулевое решение, то есть линейная комбинация тривиальна. Ну а полная и линейно независимая система столбцов и есть базис.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/vektornoe-prostranstvo/

http://diary.ru/~eek/p130236068_bazis-sistemy-vektor-stolbcov.htm

[/spoiler]

Тема: Найти базис системы вектор-столбцов и выразить остальные столбцы  (Прочитано 7124 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Пожалуйста помогите решить матрицы я вас очень прошу, я что-то совсем непонимаю
Найти базис системы вектор-столбцов и выразить остальные столбцы через базисные
1 2 1 2 3
0 1 1 1 2
2 3 2 3 1
3 1 3 1 2

и ещё есть система уравнений надо решить методом Гаусса-Жордана, но я не пойму она правильно написана или нет

x1+x2+2×4-x5=2
2×1+3×3-x4+x5=2
2×1-x2+x5=1
3×1+2×3-x5=1

вот фото задании 5 и 7
ссылка

« Последнее редактирование: 20 Ноября 2010, 20:30:36 от Asix »


Во втором задании избыточное число неизвестных. Поэтому все 4 неизвестных выразил через x1:

( x_2=frac{12}{5}x_1-frac{1}{5} )

( x_3=- frac{13}{10}x_1+frac{9}{10} )

( x_4=-frac{3}{2}x_1+frac{3}{2} )

( x_5=frac{2}{5}x_1+frac{4}{5} )

« Последнее редактирование: 20 Ноября 2010, 20:30:51 от Asix »

За жизнью надо тщательно следить, все время избегая с ней разлуки.


renuar911 спасибо со вторым заданием вроде разобрался, пожалуйста помогите срочно нужно решить второе

Найти базис системы вектор-столбцов и выразить остальные столбцы через базисные
1 2 1 2 3
0 1 1 1 2
2 3 2 3 1
3 1 3 1 2

« Последнее редактирование: 20 Ноября 2010, 20:30:59 от Asix »


« Последнее редактирование: 20 Ноября 2010, 20:31:08 от Asix »


что-то не получается у меня ничего пожалуйста помогите решить
Найти базис системы вектор-столбцов и выразить остальные столбцы через базисные
1 2 1 2 3
0 1 1 1 2
2 3 2 3 1
3 1 3 1 2

« Последнее редактирование: 20 Ноября 2010, 20:31:33 от Asix »


что-то не получается у меня ничего пожалуйста помогите решить

А что пытались сделать, чтобы получилось?

« Последнее редактирование: 20 Ноября 2010, 20:31:41 от Asix »


не получается привести её к правильному виду
1   2   1   2   3
0   1   1   1   2
2   3   2   3   1
3   1   3   1   2

1    2   1    2    3
0    1   1    1    2
0   -1   0   -1   -5
3    1   3    1    2

   1    2   1    2    3
0    1   1    1    2
0   -1   0   -1   -5
0   -5   0   -5   -7

   1    2   1    2    3
0    1   1    1    2
0    0   1    0   -3
0   -5   0   -5   -7

1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   5   0    3

   1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0   18

   1   2   1    3   2
0   1   1    2   1
0   0   1   -3   0
0   0   0   18   0

   1   2   1    3   2
0   1   1    2   1
0   0   1   -3   0
0   0   0    1   0

« Последнее редактирование: 20 Ноября 2010, 20:31:53 от Asix »


не получается привести её к правильному виду

1. Что вы подразумеваете под правильным видом?
2. Напишите, как вы переходили от одной матрицы к другой. Проверим.

« Последнее редактирование: 20 Ноября 2010, 20:32:01 от Asix »


к правильному виду тоесть я не уверен что это решение правильное

1   2   1   2   3
0   1   1   1   2
2   3   2   3   1
3   1   3   1   2

   ________________________________________

Шаг:1
Вычтем из строки 3 строку 1 умноженную на a3,1=   2
1    2   1    2    3
0    1   1    1    2
0   -1   0   -1   -5
3    1   3    1    2

   Шаг:2
Вычтем из строки 4 строку 1 умноженную на a4,1=   3
1    2   1    2    3
0    1   1    1    2
0   -1   0   -1   -5
0   -5   0   -5   -7

   Шаг:3
Вычтем из строки 3 строку 2 умноженную на a3,2=   -1
1    2   1    2    3
0    1   1    1    2
0    0   1    0   -3
0   -5   0   -5   -7

   Шаг:4
Вычтем из строки 4 строку 2 умноженную на a4,2=   -5
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   5   0    3

   Шаг:5
Вычтем из строки 4 строку 3 умноженную на a4,3=   5
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0   18

   Шаг:6
Поменяем местами столбцы 4 и 5.
1   2   1    3   2
0   1   1    2   1
0   0   1   -3   0
0   0   0   18   0

   Шаг:7
Разделим строку 4 на a4,4 =    18
Получим матрицу :
1   2   1    3   2
0   1   1    2   1
0   0   1   -3   0
0   0   0    1   0

   ранг матрицы |A| равен 4

« Последнее редактирование: 20 Ноября 2010, 20:32:08 от Asix »


Шаг:6
Поменяем местами столбцы 4 и 5.

Зачем?

« Последнее редактирование: 20 Ноября 2010, 20:32:17 от Asix »


« Последнее редактирование: 20 Ноября 2010, 20:32:24 от Asix »


а что неправильно?

В матрице со столбцами не работают.
+на шаге № 5 вы уже привели матрицу к ступенчатому виду.

« Последнее редактирование: 20 Ноября 2010, 20:32:43 от Asix »


Остальное всё правильно?
значит надо
Шаг:5
Вычтем из строки 4 строку 3 умноженную на a4,3=   5
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0   18

Шаг:6
Разделим строку 4 на a4,4 =    18
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0    1

ранг матрицы |A| равен 4
ранг нашел и что дальше сделать надо???

« Последнее редактирование: 20 Ноября 2010, 20:32:50 от Asix »


Остальное всё правильно?
значит надо
Шаг:5
Вычтем из строки 4 строку 3 умноженную на a4,3=   5
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0   18

Шаг:6
Разделим строку 4 на a4,4 =    18
1   2   1   2    3
0   1   1   1    2
0   0   1   0   -3
0   0   0   0    1

ранг матрицы |A| равен 4

Шаг 6 делать необязательно.

ранг нашел и что дальше сделать надо???

4 – это количество линейно независимых столбцов. У вас столбцов сколько всего,а из них линейно независимых сколько?


всего 5 столбцов и 4 линейно независимых и что дальше делать?


Линейной
комбинацией векторов
называется вектор,
где λ1, … , λm– произвольные коэффициенты.

Система
векторов
называется
линейно зависимой, если существует ее
линейная комбинация, равная,
в которой есть хотя бы один ненулевой
коэффициент.

Система
векторов
называется
линейно независимой, если в любой ее
линейной комбинации, равной,
все коэффициенты нулевые.

Базисом
системы векторов
называется
ее непустая линейно независимая
подсистема, через которую можно выразить
любой вектор системы.

П р
и м е р 2. Найти базис системы векторов=
(1, 2, 2, 4),=
(2, 3, 5, 1),=
(3, 4, 8, -2),=
(2, 5, 0, 3) и выразить остальные векторы
через базис.

Р е
ш е н и е. Строим матрицу, в которой
координаты данных векторов располагаем
по столбцам. Приводим ее к ступенчатому
виду.

~~~.

Базис
данной системы образуют векторы
,,,
которым соответствуют ведущие элементы
строк, выделенные кружками. Для выражения
векторарешаем уравнениеx1+x2+
x4=.
Оно сводится к системе линейных
уравнений, матрица которой получается
из исходной перестановкой столбца,
соответствующего,
на место столбца свободных членов.
Поэтому для решения системы используем
полученную матрицу в ступенчатом виде,
сделав в ней необходимые перестановки.

Последовательно
находим:

x4
= 0;

x2
= 2;

x1
+ 4 = 3, x1
= -1;

=
+2.

Замечание
1. Если требуется выразить через базис
несколько векторов, то для каждого из
них строится соответствующая система
линейных уравнений. Эти системы будут
отличаться только столбцами свободных
членов. Поэтому для их решения можно
составить одну матрицу, в которой будет
несколько столбцов свободных членов.
При этом каждая система решается
независимо от остальных.

Замечание
2. Для выражения любого вектора достаточно
использовать только базисные векторы
системы, стоящие перед ним. При этом
нет необходимости переформировывать
матрицу, достаточно поставить вертикальную
черту в нужном месте.

У п
р а ж н е н и е 2. Найти базис системы
векторов и выразить остальные векторы
через базис:

а)
=
(1, 3, 2, 0),=
(3, 4, 2, 1),=
(1, -2, -2, 1),=
(3, 5, 1, 2);

б)
=
(2, 1, 2, 3),=
(1, 2, 2, 3),=
(3, -1, 2, 2),=
(4, -2, 2, 2);

в)
=
(1, 2, 3),=
(2, 4, 3),=
(3, 6, 6),=
(4, -2, 1);=
(2, -6, -2).

    1. 3. Фундаментальная система решений

Система
линейных уравнений называется однородной,
если все ее свободные члены равны нулю.

Фундаментальной
системой решений однородной системы
линейных уравнений называется базис
множества ее решений.

Пусть
дана неоднородная система линейных
уравнений. Однородной системой,
ассоциированной с данной, называется
система, полученная из данной заменой
всех свободных членов на нули.

Если
неоднородная система совместна и
неопределенна, то ее произвольное
решение имеет вид fн
+ 1fо1+
… + kfоk
,гдеfн– частное
решение неоднородной системы иfо1,
… , fоk
фундаментальная система решений
ассоциированной однородной системы.

П р
и м е р 3. Найти частное решение
неоднородной системы из примера 1 и
фундаментальную систему решений
ассоциированной однородной системы.

Р е
ш е н и е. Запишем решение, полученное
в примере 1, в векторном виде и разложим
получившийся вектор в сумму по свободным
параметрам, имеющимся в нем, и фиксированным
числовым значениям:

= (x1,
x2,
x3,
x4) =
(–2a + 7b –
2, a, –2b + 1, b) = (–2a,
a, 0, 0) + (7b, 0, –2b, b) + +(–
2, 0, 1, 0) = a(-2, 1, 0, 0) + b(7, 0, -2, 1) + (–
2, 0, 1, 0).

­­Получаемfн=(–
2, 0, 1, 0), fо1= (-2, 1, 0,
0), fо2= (7, 0, -2, 1).

Замечание.
Аналогично решается задача нахождения
фундаментальной системы решений
однородной системы.

У п
р а ж н е н и е 3.1 Найти фундаментальную
систему решений однородной системы:

а)

б)

в)
2x1
x2
+3x3=
0.

У п
р а ж н е н и е 3.2. Найти частное решение
неоднородной системы и фундаментальную
систему решений ассоциированной
однородной системы:

а)

б)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ilya_56
Насколько я понял, в Вашем случае имеется пять четырёхкоординатных вектор-столбцов. Сами столбцы записаны в столбцах указанной Вами матрицы, а их одноимённые координаты – в строках этой матрицы.

В качестве базисных можно взять любой набор линейно независимых столбцов, через которые выражаются все остальные столбцы системы. Возьмём в качестве первого базисного первый столбец (1, 1, 2, 2). Второй столбец (2, 1, 1, 1) линейно независим с первым, поэтому его можно взять в качестве второго базисного). Третий столбец (2, 0, 2, 1) линейно независим с первыми двумя, поэтому его можно взять в качестве третьего базисного. И наконец, четвёртый столбец (1, 1, 1, 2) линейно независим с тремя предыдущими, поэтому его можно взять в качестве четвёртого базисного.

Чтобы выразить пятый столбец (3, 2, 1, 2) через базисные, нужно составить и решить систему четырёх уравнений, выражающих то обстоятельство, что координаты пятого вектор-столбца являются линейной комбинацией одноимённых координат соответствующих координат базисных вектор-столбцов. Получим такую систему:

[math]1a+2b+2c+1d=3,[/math]

[math]1a+1b+0c+1d=2,[/math]

[math]2a+1b+2c+1d=1,[/math]

[math]2a+1b+1c+2d=2.[/math]

Вам остаётся только решить эту систему. Найденные Вами коэффициенты a, b, c, d и будут координатами пятого вектор-столбца в базисе первых четырёх вектор-столбцов.

Добавить комментарий